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Strain field due to substitutional transition-metal impurities in bcc metals:
Application to dilute vanadium alloys
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The formalism for the generalized Kanzaki lattice static method is developed for a metallic crystal
with bcc symmetry. The interactions up to second-nearest neighbors are included in the derivation of
the dynamical matrix, impurity-induced force, and the atomic displacements. The formalism is applied
to calculate the strain field due to 3d, 4d, and 5d substitutional transition-metal impurities (Ti, Cr, Mn,
Fe, Nb, Mo, Ta, and W) in the vanadium metal, the only bcc systems in which the study of electric field

gradients has been performed. The effective ion-ion interaction potential for the transition metals, pro-
posed by Wills and Harrison, which includes properly the d-band effects, is used in the numerical calcu-
lations. In all the systems the atomic displacements are calculated up to 21 nearest neighbors and these
show oscillatory behavior. The maximum displacement (or strain field) is caused by a Ta impurity and is
about 3.5% of the first-nearest-neighbor distance. The strain field is found to depend, both in strength
and range, on the excess ion-ion interaction potential due to the impurity. The atomic displacements ex-
hibit the same trend, as shown by x-ray studies of the fractional change in the lattice parameter.

I. INTRODUCTION

The introduction of a substitutional impurity in an oth-
erwise perfect crystal changes the electrostatic interac-
tions in the vicinity of the impurity. ' The change in the
electrostatic interactions is brought about by two distinct
physical effects: the different electronic structure and
different size of the impurity. Both cause a change in the
atomic force constants between the impurity and host
atoms. The two effects are in fact interrelated. The al-
tered electrostatic interactions force the host atoms to
move to new equilibrium positions, thus producing a
strain field in the host lattice around the impurity.
Precise knowledge of the impurity-induced strain field is
of immense importance in studying several electronic
properties such as the redistribution of conduction-
electron density, residual resistivity, electric field gra-
dient, self-energy of the impurity, diffusion, etc.

The theoretical study of the impurity-induced strain
field can be classified into three categories: elastic contin-
uum models, computer simulations, "' and lattice stat-
ic methods. ' ' The merits and demerits of these
methods are discussed in our recent paper. ' Out of
these, the lattice static method is the most suitable as it
takes care of the discrete nature of the whole lattice. The
two lattice static methods, Kanzaki and Green-function
methods, ' are based on the Born —von Karman theory
of crystalline solids. The Kanzaki and Green-function
methods are different in approach, but are equivalent.
Recently, we' have generalized the Kanzaki method to
evaluate the strain field so that it is applicable to different
types of impurities. It is applied to evaluate the strain
field due to substitutional impurities in Al and Cu, having
fcc structure, where the excess impurity potential is eval-

uated using the dielectric screening theory. It has been
found that the calculation of the strain field due to a sub-
stitutional transition-metal (TM) impurity in a TM host
does not exist, which may be due to the complexity of the
systems. A TM impurity causes resonant scattering of
the conduction electrons in a metallic system, ' which is
difficult to deal with theoretically. Therefore precise
knowledge of the interionic potential in such complicated
systems was not available. Wills and Harrison' have
given an effective interionic potential for the TM's which
includes the d-band effects approximately. We therefore
think it worthwhile to apply the lattice static method'
for evaluating the strain field due to the substitutional
TM impurities in a TM host with bcc structure.

The plan of the paper is as follows. In Sec. II we give
necessary expressions of the lattice static method with
reference to the bcc crystal structure. In Sec. III we ap-
ply the formalism to calculate the strain field due to 3d,
4d, and 5d TM impurities in vanadium (V) metal. The re-
sults are discussed in Sec. IV.

II. THEORY

Consider a perfect monatomic crystal where R„and
P(r) denote the lattice points and ion-ion pair potential,
respectively. Let a substitutional impurity, assumed to be
situated at the origin, be introduced in the crystal which
displaces the surrounding host ions to new equilibrium
positions defined as

R„=R„+u(R„),

where u(R„) is the displacement of the nth nearest neigh-
bor (nNN) of the impurity. Kanzaki'3 assutned that
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u(R„) are produced by an appropriate distribution of
external forces (Kanzaki forces} in the lattice which de-

pend upon the nature of the impurity. The total energy
of the strained lattice can be expanded in powers of
u(R„), which in the harmonic approximation is given as

C) =+P(R„)=Co—g u (R„)F (R„)

then obtained by minimizing 4 with respect to Q(q) to
get

g [NP p(
—q)Qp(q) —Fp(q)5 p5 q]=0,

13

where

n, a

+—g g u (R„)up(R„.)P p(n, n'),
n, a n', P

(2)

F (q)=QF (R„)exp(iq R„),

P,p(q)= g P,p(n —n')exp[ iq (—R„,—R„)] .
n —n'

(8)

(9)

where

F (R„)=-
i3u (R„) u, (R'„)=o

P~p(n, n
'
}=

Bu (R„)Bup(R„.),(R„)= (R„,)=0

(3)

N is the total number of atoms in the lattice. F(q) and

P p(q) are the Fourier transforms of F(R„) and

P p(n n'), a—nd P p(q} is usually called the dynamical
matrix.

The dynamical matrix for a crystal structure can be ob-
tained from Eq. (9). P p(n ) for a central ion-ion potential
can be written as

Here a and p ( = 1, 2, 3) denote the Cartesian com-
ponents. @o=g„g(R„)is the total potential energy of
the perfect lattice and F (R„) is the a component of the
external force acting on the atom R„. P p(n, n') are the
force constants which satisfy the crystal symmetries. '

The equilibrium values of u(R„) are obtained by minimiz-

ing 4 with respect to u(Ro), which gives

B2
P p(n)= =

o (A„—B„)+5~pB„,
dr drp =Ro R„

(10}

where

F (R„)=g P, p(n, n') up( R„) .
n', P

(5)

Equation (5) shows that u(R„) can be evaluated if one
knows F (R„)and P p(n, n') It is con.venient to express
u(R„) in terms of normal coordinates Q(q) as

u(R„}=g Q(q}exp(iq. R„),
q

(6)

where q is the wave vector in Fourier space. The normal
coordinates satisfy the property Q'(q}=Q( —q). With
the help of Eq. (6}, one can Fourier transform the total
energy 4 of the strained lattice. The equilibrium state is

I

R„ is the a Cartesian component of R„. In a metallic
crystal, the ions are screened by the conduction electrons
thereby decreasing the ionic potentials faster, which ex-
hibit oscillatory behavior at large distances. It has been
found that in the d-band metals the screening is very
heavy. ' Therefore the major contribution to )I} p(q}
and F,(q) in these systems is expected to arise from a few
NN's. Including the interactions up to 2NN's (the sim-
plest approximation), P p(q) for a bcc structure, from
Eqs. (9) and (10), becomes

(q) =
—,'( A, +2B, )[1 cos(q a/—2)cos(qpa/2)cos(q a/2)]+4A2[sin (q a/2)+sin (qpa/2)+sin (q a/2)],

)t) p(q) =
—,'( A, B, )sin(q a l2)s—in(qpa/2)sin(qua/2), (12)

with aApAy. Here a denotes the lattice parameter.
One can also obtain the Fourier transform of the Kan-

zaki force F (q} from Eqs. (3) and (8). Considering only
the 1NN interactions one gets, for the bcc structure,

where aApAy. Here F& is the force acting on the 1NN
site, the position of which is given by R,. hP(r) is the ex-
cess interionic potential due to a substitutional impurity
and is defined as'

F (q}= —iF&sin(q a/2)sin(qpa/2)sin(q a/2), (13}8

3
NIH(r) PHH(r) (15)

with

F =—
I h$(r)c}

i
dr r=R

1

(14)
F (q }= i2F» sin(q a }, (16}

where QHH(r) and Q,H(r) are the host-host and impurity-
host interionic potentials. Similarly, considering only the
2NN interactions, F (q) becomes
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where

F»=— b,P(r)
a
Br r =Ro

2

(17)
F (R„)=— hP, —u(R„) bP

Br lrl = lR„ l

"
gr l~l = lR„ I

(27)

and R2 defines the position of the 2NN site.
With the knowledge of P &(q) and F (q}, one can solve

Eq. (7) for Q (q) using the properties of determinants.
For the radial forces on the 1NN only (usually called the
F, system) of the impurity,

smx cosy cosz G2 G3
3Ft

iQ, (q) = siny cosz cosx G, G4
1

sinz cosx cosy 64 6 i

(18)

where

Gi 62 G3

62 Gi 64

G3 G4 Gi

(19)

2B iI+ [ I —cosx cosy cosz]
1

A2+— (sin x+sin y+sinzz),
2 Ai

(20)

Bi
62 = 1 — sinx siny cosz,

1

(21)

Bi
G3 = 1 — sinx sinz cosy,

Ai
(22}

Bi
64 = 1 — siny sinz cosx,

1

(23)

q~a qa qa
2

'
2

'
2

z= (24)

sin2x 62 63
3 F»

iQ =— sin2y G G
4 NA1

sin2z 64 6 i

(25}

For the substitutional impurities, Rattan et al. ' have
proposed a model to calculate the impurity-induced force
given as

Q2(q) and Q3(q) can be obtained from Q, (q) using cubic

symmetry.
For the radial forces acting only on the 2NN sites

(called the F» system) of the impurity, Eq. (7) gives

It'HH(r ) ((HH(r }+PHH(r }+NHH(r )

where

(28)

Equation (27) can be solved in two approximations. If
u(R„) is very small, the second term in Eq. (27) can be

neglected. It is called the first approximation in which
the force constants of the host metal remain unchanged
in the presence of the impurity. If u(R„) is significant,
both terms in Eq. (27) should be retained. It is called the
second approximation and takes care of the impurity-
induced change in the force constants of the lattice. To
include the interactions up to 2NN's, the atomic dis-

placements in the F, and F» systems can be combined to
evaluate u (R„)in the second approximation just as done

by Kanzaki. '

III. CALCULATIONS AND RESULTS

In the estimation of impurity-induced strain field in di-
lute metallic alloys, the central quantity of interest is the
excess interionic potential b,P(r }. In a TM the s electrons
in the outermost shell of the atom get detached and are
free to move in the crystal. Therefore the TM ion
possesses quasilocalized d electrons in the outermost
shell, the effect of which should be included in evaluating
the ion-ion interaction potential. In the formation of a
TM, the d shells are broadened into quasilocalized bands,
with finite bandwidth, as a result of the Pauli exclusion
principle. Further, the d band experiences the crystal po-
tential of the TM, as a result of which it suffers distor-
tion. The d-band distortion is responsible for the s-d hy-
bridization and has the eff'ect of shifting the d-band
center.

In free-electron metal alloys, the calculation of b,P(r)
in the dielectric screening approach is simple because of
their on band structure. But in the TM alloys the band
structure is anisotropic and complicated, which makes
the evaluation of b,P(r}, in the dielectric screening ap-
proach, difficult. However, we outline, in the Appendix,
the evaluation of b,P(r) in the dielectric screening ap-
proach (not used in the present calculations) and discuss
it in light of the present calculations. Wills and Har-
rison' have given the analytical form for the effective in-
terionic potential for TM's which includes the effect of
the shift in the d-band center and the finite d-bandwidth.
They have calculated a number of properties such as the
bulk modulus, Griineisen constant, and the elastic con-
stants of a larger number of TM's and obtained reason-
able agreement for most of the TM's. Here we use the
effective ion-ion interaction potential due to Wills and
Harrison for the host metal, which is defined as

F.(R'„)=-
Bu (R„}

(26) e KT

4'HH(r ) =ZsHe «sh'(«, H) (29)

In the central field approximation, both u(R„) and F(R„)
are parallel to R„;therefore, one can expand b, P( ~R„,~ ) in

powers of displacements to write

2 6
225 A r

HH(r ) =ZdH mr'
(30)
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b ZdH
QHH(r )= —ZeH 1—

10
12

I /2
28. 1 rdH

(31)
mr'

Here n is the number of 1NN's in a crystal, Z,H and ZdH
are the number of s and d electrons in the host atom
which are related to the valency ZH as Z,H+ZdH=Z„.
pHH(r) is the free-electron contribution obtained from the
Ashcroft empty-core model potential in conjunction with
the Thomas-Fermi approximation. ~ is the Thomas-
Fermi constant, and r,H is the model-potential core ra-
dius of the host atom. $HH(r) is the contribution arising
from the shift in the d-band center (or s-d hybridization)
and depends upon the d-state radius r&H of the host atom.
pHH(r) is the contribution arising from the finite d-
bandwidth and is of the form of a resonant bond. ' The
term ZeH(1 —Z&H/10) represents the continuous filling of
the bonding through antibonding levels. In a TM the s-d
hybridization arises from the scattering of mobile s elec-
trons from the d-shell electrons at the ion sites, which
causes distortion of the d shells. Therefore the screening
of polarized d charge by the s electrons is described by
the matrix elements (k~h, e~d), where ~k) and ~d) are
plane waves and atomic d state and h,z is the s-d hybridi-
zation potential. ' The parameter rdH is determined by
the matrix elements ( k

~ h,e ~
d ) and therefore includes

the s-d hybridization effects partially. Further, the s-d
hybridization changes the s and d charge in a TM atom.
The change in d charge, EZd, is accompanied by an equal
and opposite change in s charge, hZ„ to make the atom
neutral. Wills and Harrison' (and also this paper) used
Z, =1.5, which is obtained from self-consistent calcula-
tions. In the dielectric screening approach (see the Ap-
pendix), the screening, by s electrons, of the polarized d
charge at the ionic sites is included through the screened
form factors of monopoles and dipoles represented by
A, (K}/eo(K).

Equations (28)-(31) can be generalized to write the in-
teratomic potential for the impurity-host ion interaction
in an alloy. Wills and Harrison' suggested that the free-
electron contribution due to the impurity-host interac-
tion, /III(r ), is obtained by replacing Z,He by
(Z,HZ„e )' and cosh(ar, H) by

[cosh( ~'r, H )cosh(a'r„) ]
'

where Z, &
and r, &

are the number of s electrons and the
model-potential core radius, respectively, of the impurity.
x changes to the new value ~' as the conduction-electron
density changes with the addition of the impurity. The
d-electron contribution to the interionic potential de-
pends upon ZdH and rdH. For the impurity-host interac-
tion in the alloy, r&H is replaced by (r&Hr&I }',where r&I

is the d-state radius of the impurity ion. But very little is
known about the variation of the number of d electrons
in the d band by the introduction of the impurity. As the
simplest approximation, one can take the effective num-
ber of d electrons, Zd, in an alloy to be the weighted
average (by concentration) of the number of d electrons
in the host and impurity ions, i.e.,

Zd —CHZdH+ CrZ (32)

where ZsI is the number of d electrons in the impurity
ion. CH and C& are the concentrations of the host and
impurity ions, respectively. Taking into account the
above facts, {{}IH(r)can be written as

PIH(r ) ={IH(r }+BOIH(r )+PibH(r ),
where

(33)

e KT

{{}IH(r)=Z,HZ»e cosh(a'r, H)cosh(x'r„)
r

fir r
( ) Zge 225 dH dI

mr

Z' Rr rd 12 28. 1 AH rdI

(34)

(3&)

(36)

hP(r ) =hP (r )+hP'(r )+hP"(r ),
where

(37)

The potential QIH(r) includes the impurity-induced s-d
hybridization through rd, and effective charge Z, =1.5
and the corresponding d charge Z&. But as the TM im-

purity is introduced in a different TM host, there may be
a further transfer of electrons to or from the s and d
bands, as a result of which the conduction-electron
charge would rearrange around the impurity site to
screen or unscreen it. To include these effects, the d
charge on the impurity may be varied (keeping the atom
neutral) and its value should be calculated self-
consistently. The charge transfer will be appreciable only
when the TM's, mixed together to form an alloy, have d-
band centers differing by large amount of energy. But
most of the TM's considered in this text have their d-
band centers close to each other (within a few eV), and
therefore the charge transfer may be quite small and
neglected here. Hence the application of the potential

pIH(r) given by Eqs. (33)—(36) is quite reasonable. Thus,
in a metallic alloy the excess interionic potential due to
the impurity can be written from Eqs. (15) and (28)—(36)
as

Z e
hp (r )= ' [Z„cosh(a'r, H)cosh(~,'I)e "" Z,Hcosh (ar, H)e—"'],

r (38)

2 3
3 3 225 & dHhp'(r )= [Z& r&I Z&HreH 1— (39}
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TABLE I. Some he p ysical parameters and atomic
al.

e a omic orce constants at 1NN and 2NNN (in a.u.) of V met-

5.7205 93.6

~, (lo-')

—0.44602

8, (lo-'}

0.229 05

A (10 )

—0.435 44

8 (10 )

0.134 17

Zeff

bP (r)= —Z' '1 — 'r
10

rd& +ZdH 1
ZdH 3/2

10 dH

1/2
12 28 1 g r3/2

n mr
(40)

zc~=z
d dH. (41)

%e apply the formalism to calculate the strain field i

V-based dilute alloys with 3d 4d , and Sd substitutional

Equations (33)—(40) are vali"E ' — e valid at all concentrations. Here
r 'y represents the chancre in the fg

o e ion-ion interaction potential. 6 ' r
the contribution arisin
hb'd' t' d th f

ising rom the im urit -i

n ere ore describes the
o e ost metal on the im urit a

third contribution b, ~~ ( )
' '

i'
n z~ r j gives the chan e in i

teraction potential due to the im u
'

y-

In the present study, we are interest
s. n i ute metallic allo s t"

1 to d si y remains nearly the same as that in

pure host metal. Therefo th Th - i

do ot h ith th dd' '
ore e omas-Fermi

1 t 11 F th
e a ition of the im

~ ~

impurities, namely, Ti, Cr, Mn, Fe, Nb Mo
Th ra trs dd

t 14 fo Will dH
~6

1 y' 1

given in Table I. Th
u a e orce constantstants of V metal are

second approxim t'ximation, or all the TM
'

I&, eva uated in the

given in Table II.
e TM impurities, are

Figure 1 shows HH(r) as a function of r fo
The contribution P" ( )

found to deca fa
HH and ' r are positive and are

~ ~

o ecay ast. On the other hand, r
tive and decreases slowl Th

b
s ow y. The addition of th

a m' ' '
HH occurring at r=4.0a minimum in (r

is ance ess than the 1NN di
Fi ure2'g e shows hP(r ) as a function

istance.

Mr, n, b, andTaintheVm a e
d Ti is posi

a.u.
ues o r and shows a minimum at r =4

, a distance close to that of 1NN.
=4.8

M
and exhibits

o r, n, andFeisne a'gative at small r values
'

i s a maximum at r =4.8 a.u. Such
of b,y(r) is due to the fact

P, (r) for these impurities. The i
'

ws
o e act that P„H(r) is lar er

uri ies. e intercomparison shows

x10
4

V metal
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FIG. 1. ~&~ . ~&H„(r) as a function of r fo th Vor e metal.

FIG. 2. (r ) as a function of r for Nb Ta
purities in V metal.

or, Ta, Cr, and Mn im-
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TABLE II. Impurity-induced forces F& and F» (in 10 a.u. ), evaluated in the second approximation, for Ti, Cr, Mn, Fe, Nb, Ta,
and W impurities in V metal.

Fi
F»

—1.579 08
—1.315 34

Cr

0.842 25
0.945 74

Mn

0.800 98
1.205 47

Fe

0.720 68
1.557 86

—1.943 10
—3.095 78

Mo

—3.19591
—2.685 34

Ta

—2.86442
—3.801 22

—5.54025
—3.631 19

Fq q= — Fq q,1
(42)

for the bcc structure. The cube edge is 4m /a The .in-

tegration is carried out by the Gaussian quadrature
method, and a convergence up to five decimal places is
achieved. The atomic displacements calculated in the F&

and F&& systems are then combined to include the interac-
tions up to 2NN's using the method of Kanzaki. ' The
values of F, and F«given in Table II are used to evaluate
the atomic displacements u(r) for the various NN's.

that hP(r ) is stronger and long ranged for the 4d and 5d
impurities as compared to that for the 3d impurities.
A.mong all the TM i mp uriti es„hP(r ) is the strongest for
Ta with the maximum range.

The atomic displacements are calculated in the F& and
F«systems using Eqs. (6}, (18},and (25). The numerical
calculations are simplified by replacing the summation
over q by the integration over the cube inscribing the first
Brillouin zone (BZ) and using the fact that, for any func-
tion F(q),

Tables III-X give u(R„) up to 21 NN's due to Ti, Cr,
Mn, Fe, Nb, Mo, Ta, and W, respectively, as these are of
interest in the theoretical study of other physical proper-
ties. ' Some of the interesting features which emerge
out of the present calculated values of u(R„) for the
diferent impurities are given below.

(i) The strain field u(r) is oscillatory in nature, but its
strength decreases with the increase of r. It is in agree-
ment with the existing calculations of u(r) for vacancies
and interstitials. '3'4' One should note that u(r) is
maximum at the 2NN site in all the substitutional TM
impurities except for W.

(ii) u(r) at the 1NN site has the same sign as that of F,
and F&&, but at the 2NN site its sign is opposite to that of
FI FII.

(iii) It is found that u(r) is maximum in magnitude and
longest in range for the Ta impurity. Similar behavior is
also exhibited by b,P(r ) for Ta. One should note that the
maximum value of iu(r)i in Ta, at the 2NN site, is about
3.5%%uo of the 1NN distance R, . In general, it is found that
stronger hP(r ) will produce a stronger strain field around

TABLE III. Atomic displacements (a.u. ) of the NN's of Ti
impurity in V metal.

Displacement components

TABLE IV. Atomic displacements (a.u. ) of the NN's of Cr
impurity in V metal.

Displacements components
NN's

(n] ng n3 )

111
200
220
311
222
400
331
420
422
511
333
440
531
600
442
620
533
622

~ I T

551
711
640
642
731

—0.01903
0.036 75
0.009 87

—0.015 75
0.012 59
0.002 39

—0.004 35
0.00441
0.007 27

—0.009 86
—0.003 85

0.00402
—0.00644
—0.00025

0.005 27
0.002 30

—0.004 84
0.003 88
0.004 28

—0.003 61
—0.007 70

0.003 48
0.003 89

—0.005 98

uy

—0.01903
0.0
0.009 87
0.000 87
0.012 59
0.0

—0.004 35
0.003 30
0.005 77
0.00040

—0.003 85
0.00402

—0.002 01
0.0
0.005 27
0.001 27

—0.001 31
0.001 93
0.004 28

—0.003 61
—0.00024

0.002 31
0.002 55

—0.000 70

uz

—0.01903
0.0
0.0
0.000 87
0.012 59
0.0
0.000 29
0.0
0.005 77
0.00040

—0.003 85
0.0

—0.000 29
0.0
0.003 83
0.0

—0.001 31
0.001 93
0.00428
0.000 10

—0.00024
0.0
0.001 57

—0.000 13

0.032 97
0.036 75
0.01395
0.015 80
0.021 80
0.002 39
0.006 16
0.005 51
0.01093
0.009 88
0.006 67
0.005 69
0.006 75
0.000 25
0.008 38
0.002 63
0.005 18
0.004 74
0.007 41
0.005 11
0.007 71
0.004 17
0.00491
0.00602

NN's

(n &, nz, 3)

111
200
220
311
222
400
331
420
422
511
333
440
531
600
442
620
533
622
Y f

551
711
640
642
731

0.014 57
—0.037 07
—0.011 12

0.013 80
—0.009 88
—0.009 29

0.005 04
—0.007 86
—0.008 29

0.01043
0.003 87

—0.005 10
0.007 02

—0.005 65
—0.005 44
—0.006 18

0.005 26
—0.00645
—0.00402

0.003 72
0.008 91

—0.005 OS
—0.00499

0.00678

0.014 57
0.0

—0.011 12
0.000 18

—0.009 88
0.0
0.005 04

—0.003 76
—0.004 63
—0.00002

0.003 87
—0.005 10

0.002 20
0.0

—0.005 44
—0.001 25

0.001 58
—0.001 55
—0.00402

0.003 72
0.000 14

—0.00228
—0.002 34

0.00045

0.014 57
0.0
0.0
0.000 18

—0.009 88
0.0
0.00009
0.0

—0.00463
—0.00002

0.003 87
0.0
0.00001
0.0

—0.003 02
0.0
0.001 58

—0.001 55
—0.00402

0.00007
0.000 14
0.0

—0.001 21
0.00009

0.025 23
0.03707
0.015 73
0.013 80
0.017 12
0.009 29
0.007 12
0.008 72
0.01056
0.01043
0.006 71
0.007 22
0.007 36
0.005 65
0.008 27
0.006 30
0.005 72
0.006 81
0.006 96
0.005 27
0.008 91
0.005 54
O.OOS 64
0.006 79
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TABLE V. Atomic displacements (a.u. ) of the NN's of Mn

impurity in V metal.
TABLE VII. Atomic displacements (a.u. ) of the NN's of Nb

impurity in V metal.

NN's

(n] n2 n3 ) ux uy u

Displacements components

lul

NN's

(n], n2, n3) ux uy uz

Displacements components

lul

111
200
220
311
222
400
331
420
422
511
333
440
531
600
442
620
533
622
444
551
711
640
642
731

0.019 38
—0.057 15
—0.017 93

0.01989
—0.013 38
—0.018 89

0.008 19
—0.014 38
—0.01341

0.01641
0.005 97

—0.008 56
0.011 17

—0.012 63
—0.008 48
—0.01207

0.008 37
—0.011 62
—0.00600

0.005 80
0.0l.4 49

—0.008 81
—0.008 39

0.01095

0.019 38
0.0

—0.017 93
0.000 97

—0.013 38
0.0
0.008 19

—0.006 09
—0.006 35

0.000 21
0.005 97

—0.008 56
0.003 51
0.0

—0.008 48
—0.001 90

0.00261
—0.002 13
—0.00600

0.005 80
0.00016

—0.00348
—0.003 44

0.000 53

0.019 38
0.0
0.0
0.000 97

—0.013 38
0.0
0.00040
0.0

—0.006 35
0.000 21
0.005 97
0.0
0.000 22
0.0

—0.00409
0.0
0.002 61

—0.002 13
—0.00600

0.000 21
0.000 16
0.0

—0.001 62
0.000 12

0.033 58
0.057 15
0.025 35
0.01993
0.023 17
0.018 89
0.011 59
0.015 62
0.016 14
0.01641
0.010 33
0.012 11
0.011 71
0.012 63
0.012 67
0.012 22
0.009 15
0.01201
0.01040
0.008 20
0.01449
0.009 47
0.009 21
0.01096

111
200
220
311
222
400
331
420
422
511
333
440
531
600
442
620
533
622
TW 7

551
711
640
642
731

—0.050 12
0.15090
0.047 60

—0.052 03
0.034 67
0.051 46

—0.021 77
0.038 75
0.035 62

—0.043 44
—0.015 75

0.022 85
—0.029 61

0.034 70
0.022 41
0.032 76

—0.022 19
0.031 27
0.015 78

—0.015 32
—0.038 51

0.023 61
0.022 39

—0.029 07

—0.050 12
0.0
0.047 60

—0.002 79
0.034 67
0.0

—0.021 77
0.016 18
0.01649

—0.00065
—0.015 75

0.022 85
—0.009 32

0.0
0.022 41
0.005 00

—0.006 96
0.005 52
0.015 78

—0.015 32
—0.000 39

0.009 19
0.009 04

—0.001 34

—0.050 12
0.0
0.0

0.034 67
0.0

—0.001 14
0.0
0.01649

—0.00065
—0.015 75

0.0
—0.00065

0.0
0.01062
0.0

—0.006 96
0.005 52
0.015 78

—0.000 60
—0.000 39

0.0
0.004 19

—0.000 30

0.086 82
0.15090
0.067 32
0.052 18
0.06006
0.051 46
0.030 81
0.041 99
0.042 58
0.043 44
0.027 28
0.032 31
0.031 05
0.034 70
0.033 43
0.033 14
0.024 28
0.032 24
0.027 34
0.021 68
0.038 52
0.025 34
0.024 50
0.029 10

TABLE VI. Atomic displacements (a.u. ) of the NN's of Fe
impurity in V metal.

Displacements components

TABLE VIII. Atomic displacements (a.u. ) of the NN's of Mo
impurity in V metal.

Displacements components
NN's

(n ] n2 n3)

111
200
220
311
222
400
331
420
422
511
333
440
531
600
442
620
533
622

551
711
640
642
731

ux

0.026 00
—0.085 27
—0.027 49

0.028 35
—0.018 18
—0.032 54

0.012 63
—0.023 61
—0.020 61

0.024 79
0.008 90

—0.01344
0.01700

—0.022 58
—0.012 73
—0.02045

0.012 73
—0.018 95
—0.008 77

0.008 70
0.022 34

—0.014 12
—0.013 18

0.016 81

uy

0.026 00
0.0

—0.027 49
0.002 11

—0.018 18
0.0
0.012 63

—0.009 36
—0.008 72

0.000 56
0.008 90

—0.01344
0.005 36
0.0

—0.012 73
—0.002 81

0.00407
—0.002 92
—0.008 77

0.008 70
0.000 17

—0.005 17
—0.004 99

0.000 63

uz

0.02600
0.0
0.0
0.002 11

—0.018 18
0.0
0.000 84
0.0

—0.008 72
0.000 56
0.008 90
0.0
0.000 52
0.0

—0.005 58
0.0
0.00407

—0.002 92
—0.008 77

0.00042
0.000 17
0.0

—0.002 18
0.000 15

lul

0.045 03
0.085 27
0.038 88
0.028 51
0.031 49
0.032 54
0.017 88
0.025 40
0.02402
0.024 80
0.015 41
0.01901
0.017 83
0.022 58
0.018 85
0.020 64
0.01397
0.019 39
0.015 19
0.012 31
0.022 34
0.01504
0.014 26
0.016 82

NN's

(n ] n2 n3)

111
200
220
311
222
400
331
420
422
511
333
440
531
600
442
620
533
622
444
551
711
640
642
731

ux

—0.038 94
0.07604
0.020 53

—0.032 39
0.025 77
0.005 60

—0.009 07
0.009 45
0.015 12

—0.020 45
—0.007 96

0.008 42
—0.013 38

0.00004
0.01092
0.005 13

—0.01005
0.008 26
0.008 82

—0.007 48
—0.01604

0.007 34
0.008 16

—0.012 43

uy

—0.038 94
0.0
0.020 53
0.001 70
0.025 77
0.0

—0.009 07
0.006 88
0.011 83
0.000 79

—0.007 96
0.008 42

—0.004 17
0.0
0.01092
0.002 63

—0.002 73
0.003 96
0.008 82

—0.007 48
—0.00048

0.004 77
0.005 26

—0.001 42

uz

—0.038 94
0.0
0.0
0.001 70
0.025 77
0.0
0.000 57
0.0
0.011 83
0.000 79

—0.007 96
0.0
0.000 57
0.0
0.007 84
0.0

—0.002 73
0.003 96
0.008 82
0.000 19

—0.00048
0.0
0.003 21

—0.00027

lul

0.067 45
0.07604
0.029 03
0.032 48
0.044 64
0.005 60
0.012 84
0.011 69
0.022 55
0.02048
0.013 79
0.01190
0.01403
0.00004
0.017 31
0.005 77
0.01077
0.009 98
0.015 28
0.010 58
0.01605
0.008 75
0.01022
0.012 52
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the impurity as is also expected based on physical argu-
ments.

(iv) Figure 3 shows the variation of lu(r) l, at the 1NN
and 2NN sites, as a function of the atomic number of the
TM impurity. For comparison, the magnitude of the
fractional change in lattice parameter, i.e., la (da/dc) l,
is also plotted as a function of the atomic number of the
impurity. Here c denotes the concentration of the impur-
ity. It is evident from Fig. 3 that the variation of lu(r)l
exhibits the same trend as that of la '(da /dc ) l. We
have also investigated the variation of lu(r) l at the higher
NN's (i.e., 3NN's, 4NN's, 5NN's, 6NN's, etc.), and the
same trend is observed. It is well known that x-ray-
diffraction studies yield an average value of a '(da/dc)
caused by 1 at. % of impurity. Therefore the direct com-
parison of u(r) at different NN's, with a '(da/dc), is not
justifiable.

In Fig. 4 is plotted u(r), for a particular NN, as a func-
tion of a (da/dc) for the impurities. It shows that, for
a particular NN, u(r) is linearly proportional to
a '(da/dc) except for the Ti impurity. But the slope of
the straight line so obtained is different (both in magni-
tude and sign} for the different NN's; e.g., the slope is
negative for the straight line corresponding to the 1NN's
and 4NN s, while it is positive for those corresponding to
2NN's and 3NN's. Further, it is found that the average
value of the atomic displacements, (u(r) ), evaluated by
using the values of u(r) at the first 7NN's is directly pro-
portional to a '(da/dc), except for the impurity W, and
yields the correct sign of a '(da/dc).

It is interesting to examine the variation of u(r} for the
elements belonging to a particular series. u(r) at the
lNN and 4NN sites (Fig. 4) increases approximately
linearly as one goes through the 3d series from Ti to Fe,

TABLE IX. Atomic displacements (a.u. ) of the NN's of Ta
impurity in V metal.

Displacements components
NN's

(n &, n2, n3) lul

111
200
220
311
222
400
331
420
422
511
333
440
531
600
442
620
533
622

551
711
640
642
731

—0.060 11
0.167 90
0.051 87

—0.053 85
0.041 21
0.050 82

—0.023 63
0.039 92
0.038 74

—0.047 88
—0.017 54

0.02444
—0.032 46

0.033 08
0.024 82
0.032 85

—0.024 33
0.03242
0.017 84

—0.01697
—0.041 79

0.024 83
0.023 92

—0.031 65

—0.060 11
0.0
0.051 87

—0.002 12
0.041 21
0.0

—0.023 63
0.01760
0.01946

—0.000 37
—0.017 54

0.02444
—0.01020

0.0
0.024 82
0.005 60

—0.007 50
0.006 52
0.017 84

—0.01697
—0.000 53

0.01027
0.01028

—0.001 73

—0.060 11
0.0
0.0

—0.002 12
0.041 21
0.0

—0.000 91
0.0
0.01946

—0.000 37
—0.017 54

0.0
—0.00044

0.0
0.012 60
0.0

—0.007 50
0.006 52
0.017 84

—0.000 51
—0.000 53

0.0
0.005 01

—0.000 37

0.104 11
0.167 90
0.073 36
0.059 92
0.071 38
0.050 82
0.033 42
0.043 63
0.047 52
0.047 88
0.030 37
0.034 57
0.03403
0.033 08
0.037 30
0.033 32
0.026 55
0.033 71
0.030 90
0.02401
0.041 79
0.026 87
0.026 51
0.031 70

TABLE X. Atomic displacements (a.u. ) of the NN's of W im-

purity in V metal.

Displacements components
NN's

(71] 7l2 7l3) lul /')

/ '(

/

/

/

I

0.150-
—0.049 00

0.058 58
0.01101

—0.033 52
0.031 38

—0.023 92
—0.004 34
—0.006 71

0.007 72
—0.01376
—0.006 16

0.002 18
—0.008 16
—0.02421

0.007 88
—0.011 85
—0.006 16
—0.00405

0.008 00
—0.005 42
—0.007 68
—0.000 68

0.001 94
—0.006 50

—0.049 00
0.0
0.01101
0.005 61
0.031 38
0.0

—0.004 34
0.003 52
0.01400
0.002 16

—0.006 16
0.002 18

—0.002 48
0.0
0.007 88
0.002 18

—0.001 03
0.004 68
0.008 00

—0.005 42
—0.000 76

0.003 86
0.005 02

—0.002 12

—0.049 00111
200
220
311
222
400
331
420
422
511
333
440
531
600
442
620
533
622

~ ~ ~

551
711
640
642
731

0.084 87
0.058 58
0.015 56
0.03444
0.054 35
0.023 92
0.00646
0.007 57
0.021 25
0.01409
0.01068
0.003 09
0.008 69
0.024 21
0.014 64
0.012 05
0.006 33
0.007 76
0.013 86
0.007 71
0.007 75
0.003 92
0.006 71
0.006 85

0.0
0.0
0.005 61
0.031 38
0.0
0.002 02
0.0
0.01400

0.125-

0.100-

I

ci—0.075-
fa

0.002 16
—0.006 16 0.050-

0.0
0.001 68

0.025-0.0
0.009 49
0.0

0.00 I

Cr
—0.001 03 I

FeMn
t

Nb To
0.004 68
0.008 00
0.000 82

FIG. 3. Magnitude of the atomic displacements lu(r)l as a
function of the atomic number of the impurity. The dashed line
joining the triangles and the dot-dashed line joining the squares
show lu(r) l

of the 1NN's and 2NN's, respectively, of the impur-
ity. For comparison, the solid line joining the circles shows
l a (da /dc) l for the different impurities.

—0.000 76
0.0
0.00400

—0.000 37
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0.20

0.16-
o 1NNs

~ 2 NNs

3 NNs

o ANN&

Nb

0.08- Mo

0.01, -

0.00-

—0.08-

"0.1 2 I I I I I I I 1 I

0 10 0 08 0 06 -Q.Q I, -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12

0 (do/dc)

FIG. 4. u(r) as a function of a '(da/dc) for the different
NN s of the impurities. Open circles, solid circles, triangles,
and squares represent u(r) for the 1NN's, 2NN's, 3NN's, and
4NN's of the impurities, and the corresponding lines passing
through them are represented by solid, dashed, dot-dashed,
double-dot-dashed lines, respectively.

i.e., with the increase in the number of d electrons. A
similar variation of u(r) is also found in going through
the 4d and Sd series. On the other hand, at the 2NN and
3NN sites u(r) is found to decrease in going through each
of the 3d, 41, and Sd series. The same trend is also found
for the higher-order NN's of the impurity. The above-
mentioned variation of u(r) at different NN's is due to its
oscillatory behavior.

(v} The strain field u(r) does not show any dependence
on the excess impurity charge b,Z =Zi —ZH. The values
of the electric field gradient in the V-based alloys with 3d,
4d, and Sd impurities also does not show any depen-
dence on EZ. On the other hand, both the strain field
and the electric field gradient show linear dependence on
a '(da/dc), which indicates that u(r) may play a
significant role in explaining the electric field gradient in
these alloys.

IV. DISCUSSION

The generalized Kanzaki method' has been applied to
evaluate the strain field due to substitutional impurities in
metallic crystals with bcc structure. The expressions for
the dynamical matrix, impurity-induced force„and the
atomic displacements, taking into account the interac-
tions up to the 2NN's, have been derived for the bcc sym-
metry. The formalism has been applied to evaluate u(r)
in V-based metallic alloys with 3d, 4d, and 5d TM impur-
ities.

In a TM the atomic d shells are distorted by the crystal
field, ' which give two contributions. First, the distor-
tion shifts the center of the d band, and second, it
broadens the d state into bands with finite bandwidth.
Wills and Harrison' have proposed an effective ion-ion
interaction which takes care of both these contributions
and further have suggested its generalization to the al-
loys. It is found that both QHH(r) and hp(r) (Figs. l and

2) are very small and vary smoothly beyond the 2NN dis-
tance. Therefore the contributions to P Ii(q) and F (q)
are expected to be negligibly small beyond the 2NN site.
In the present investigations, u(r) has been calculated for
Ti, Cr, Mn, Fe, Nb, Mo, Ta, and W impurities in the V
metal. It has been found that the strength and range of
u(r) is proportional to the magnitude and range, respec-
tively, of b,P(r). The direct comparison of o '(da/dc)
with oscillatory u(r} is not possible because the x-ray
study gives some sort of average value of a '(da/dc).
But it is found that u(r} for all impurities, at a particular
NN, is approximately proportional to a '(da/dc}. Fur-
ther, the averaged value of atomic displacement, (u(r)),
for all the impurities is proportional to a '(da/dc) both
in magnitude and sign except W.

The lattice static method, formulated in Sec. II, is
based on the harmonic approximation, which neglects the
angular forces in the TM's. The study of lattice dynam-
ics of the TM's 8 —2o, 28, 29 in the harmonic approxj
tion, yields reasonably good agreement between the cal-
culated and experimental values of phonon frequencies,
which shows that this approximation works reasonably
well in the TM's. The angular forces can be taken care of
partially in the evaluation of effective ion-ion interaction
by using the dielectric tensor approach (see the Appen-
dix}. But the numerical evaluation of the local field effect
[see Eq. (A21}],which describes angular forces, is compli-
cated and consumes lot of computer time as it involves
the exact electronic band structure. We want to point
out that the efFective ion-ion interaction potential pro-
posed by Wills and Harrison' uses Z, =1.5, and this
value has been taken from the self-consistent calculations
done by Pettifor ' and Moriarty. As the TM impurity
is dissolved in a different TM host, the value of Z, may
further become different as a result of charge transfer.
Therefore some residual electrostatic interaction, al-
though very small in the dilute alloys under investigation,
might have been left. To improve upon the present re-
sults, one should investigate in detail the electronic band
structure of the TM in the presence of the TM impurity
and calculate self-consistently the effective value of the d
charge on the impurity.
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APPENDIX

In the TM's the conduction electrons possess both s
and d characters. The d conduction electrons are quasi-
localized and anisotropic and give rise to a nonuniform
component of conduction-electron density, which is re-
sponsible for the existence of local fields (LF's), in addi-
tion to the uniform s-conduction-electron density. The
overall conduction-electron density in the TM's becomes
nonuniform, which makes the dielectric function a ma-
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trix, eH(K, K'), and the off-diagonal elements of it are

manifestations of the LF effects. K and K' are wave vec-

tors in Fourier space, and the subscript "H" indicates

that the dielectric matrix is of the host metal.

The general expression for eH(K, K') isi3

~H(K~K } ~Q, +' U(K)yH(K, K'),

where

U(K) = I —f„,(K)4~e (A2)

o(Ei' }—o(Ei'+K.- }
XH(K K'}= X X & &, &l(ii,(r)le ' '~pi, '+K-(r))(pi, '+K, .(r)~e'K"~l(z~(r)) .

A,,A.
' k, K" Eg Ek+K-

(A3)

Here fo(E&) is the Fermi-Dirac distribution function.

E& is the energy eigenvalue for the electron wave func-

tion gi, (r), where k and A, are the electron wave vector

and band index, respectively. The function U(K) is the

electron-electron interaction potential, which includes

the exchange interactions through the function f„,(K}.
yH(K, K ) is the polarizability matrix which is the prod-

uct of the band structure part (in square brackets} and the

overlap matrix element part. The periodicity of the elec-

tron charge distribution requires eH(K, K') to be nonzero

when K'=K+G, where G is the reciprocal lattice vec-

tor.
In the TM's the formalism for the effective ion-ion in-

teraction should include the effect of anisotropic and

nonuniform density of d electrons, ' which gives rise to
LF's and is responsible for the existence of angular

forces. ' Rattan et al. ' have derived the expres-

sion for hP(r} due to a substitutional impurity in a TM,
which is given as

hZ ZHe
4P(r) =

/r/
+—g 'EF(K)e (A4)

Q()K2
&F(K)=

2 g 6 V (K) '(eKH, K+G)—5x ~+G
8me

where

x VH(K+6), (AS)

&V (K)= Vi (K)—VH(K) . (A6}

where the excess impurity valency EZ=Z& —ZH and &
is the total number of lattice points in the lattice. The
prime over the summation sign excludes the r =0 term.
The first term gives the change in the direct ion-ion
Coulomb interaction due to the presence of the impurity.
The second term represents the change in the ion-ion in-
teraction via electrons and is equal to twice the Fourier
transform of the change in the energy wave number
characteristic function hF(K). The function b,F(K)
takes care of the LF effects and hence the angular forces
in the TM's. The general expression for hF(K) is given
as'4

Here we have used the periodicity condition. Vz~(K) and

V,"(E}are the Fourier transforms of the bare electron-ion

potentials for the host and impurity ions, and 00 is the
atomic volume. Nonlinear effects arising from the ex-

change and correlation interactions are included. If the
function hF(K} is assumed to be spherically symmetric,
Eq. (A4) becomes

EZ ZHe Qo
b,P(r)= + f hF(K) K'dK

/r/

(A7)

1g(r) = exp(ik. r},0
(A8)

pq~(r) = g exp(ik R„)gi„(r—R„}.d = 1

N
(A9}

Q=NQO is the volume of the crystal, and R„are the
direct lattice vectors of the crystal structure. Pi(r —R„)
are the atomic wave functions centered at the R„site.
Equation (A9) gives one of the local representations, and
one can also use Wannier functions in place of the atomic
wave functions. In such a mixed-band scheme, eH(K, K')
can be split into two parts. First is the purely diagonal
part eo(K) arising from the intraband transitions in the s
band and is just the Lindhard function. The second con-
tribution arises from the intraband and interband transi-
tions between the partia11y filled s and d subbands and
contains both the diagonal and nondiagonal contribu-
tions. Therefore eH(K, K+G) can be written as' ' '

which is the usual expression for the free-electron met-

als. From Eqs. (A4) —(A7) it is evident that hP(r) can be

estimated with the knowledge of eH'(K, K'), V, (K), and

VH(K}.
The inversion of the dielectric function is a diScult

problem as it is an infinite-dimensional matrix. Therefore
one has to resort to some simplifications. It is convenient

to evaluate the inverse dielectric matrix in the mixed-

band scheme' in which the s conduction electrons are

represented by plane waves and the d conduction elec-

trons by a local representation, i.e.,
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EH(K K+G):ep(K)QK

—v(K) g A, (K)f„.(K)A,'. (K+G),
$, $

(K) ~ fp k f0 k+K(Ei~j ) — (pi~ )

k kFH k k+ K

Xexp[ —i(k+K) ~ (Ro —R„.)] . (A12)

where

A, (K)=fPi'i(r)e ' 'P&k(r+R„)dr,

(A10) The subscript s denotes {nlAA', ],, where 1 is the orbital
quantum number.

The inverse dielectric matrix can now be obtained easi-
ly from Eq. (A.10) and is written as

eH'(K, K+G)= 5K K+o+ g A, (K)F„(K)A,*(K+G)
ep(K+G) ' + eo(K) „, (A13)

where

F„.(K)=[f,, '(K) —f,", (K)]

f, (K)—g A, (K+G')A;(K+G')
eo(K+ G') (A14}

In the TM's the crystal field polarizes the d-electron
charge, producing monopoles and dipoles at the lattice
positions which are screened by the s conduction elec-
trons. Thus the present model of the mixed-band scheme
is similar to the breathing shell model. For the intra-
band transitions, A, (K)/ep(K) gives the screened form
factor for the monopoles, while for the interband transi-
tions it gives the screened form factor for the dipoles.
Putting ep(K) =1 for the ideal insulators, Eq. (A13) gives
screened dipolar model of screening. Equation (A13)
includes all sorts of interactions between the screened
monopoles and dipoles mediated by the resonant function
F„(K).

Substituting Eq. (A13}in Eq. (A5), we get

gF(r)=gF' (r)+g g U, (R„}X,,(r —R„) (A20)
n s'

AF(r), bF' '(r), U, (r), and X,(r) are the Fourier trans-
forms of hF(K), bF' '(K), U, (K), and X,(K), respec-
tively. Equation (A20) gives the exact expression for the
change in the energy wave number characteristic func-
tion in r space.

Substituting the values of b,F(K) in Eq. (A4}, one can
obtain

hZ ZHe
hP(r)= +25F(r}

EZ ZHe~
+2SS'"(r)

bF(K) =bF' '(K)+ g gX, (K)U, .(K+G),
s' Q

where

(A15)

+2 g g U, .(R„)X,.(r —R„),
n s'

(A21)

0
bF' '(K)= b, V (K) —1 VH(K), (A16)

8ne' . ep(K)

0+ A, (K)
X, (K)=

2
v(K) g b, V (K} F„(K), (.A17)

8me ep(K )

A; (K+G)
U, .(K+G)= VH(K+G) .

eo K+G} (A18)

g U(R„)exp(iK.R„)=g U(K+G), (A19)

we obtain

Taking the Fourier transform of Eq. (A15) and using the
identity

which gives the exact expression for b,P(r) in the mixed-
band scheme. Both bF(r) and bP(r) depend upon the
electronic band structure through X, (r —R„) and the
crystal structure through the lattice sum. The 6rst two
terms in Eq. (A21) are isotropic and correspond to the
free-electron-like contribution. The last term represents
the interaction of monopoles and dipoles arising from the
distortion (polarization} of the d-electron charge on the
TM ions. Therefore this term incorporates the effect of
angular forces or LF's, which is anisotropic in nature.
The comparison of Eqs. (37) and (A21) shows that the
effects of bP'(r) and blab(r ) are included in the last term
of Eq. (A21) more precisely. But the numerical calcula-
tion of Eq. (A21) is too difficult as it requires first-
principles calculations of the electronic band structure,
which in itself is a separate problem. But if one neglects
the d-band contribution in Eq. (A21), a simple metal ex-
pression for b,P(r) is retrieved. '
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