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Time-differential measurements of nuclear-resonance scattering using synchrotron radiation sources
have been performed since 1984. In the present contribution the evaluation of this type of spectra is de-

scribed. Starting from the theoretical point of view numerical methods are applied to gain hyperfine in-

teraction parameters from time spectra. The coNUss program package that was developed can be used

to interpret either nuclear Bragg-Laue scattering or nuclear forward scattering. It is also possible to in-

vestigate combinations of several resonant samples which is important for comparing measurements.

INTRODUCTION

The large storage rings of high-energy physics are the
brightest x-ray sources available. The emitted synchro-
tron radiation (SR) has an energy bandwidth of about 30
keV at the existing rings and it will be shifted within the
next years up to 100 keV or even more. Therefore, low-

lying nuclear resonances —the Mossbauer (MB) levels-
can be excited. The proposal to use SR to observe recoil-
less resonant scattering (MB effect) by Ruby' marks the
starting point of the evolution of MB spectroscopy with
SR. Up to now, several experiments have been per-
formed that demonstrated how to use high brilliance,
time structure, and polarization of SR for resonant
scattering. It was especially useful to observe the de-
cay of the nuclear exciton in the time domain. In fact,
the time evolution of nuclear resonance scattering after
SR pulse excitation is scaled by the lifetime of the nuclear
resonance (e.g., Fe, 143 ns; " Sn, 25.7 ns, ' Tm, 5.8 ns).
The time resolution of existing x-ray detectors ( ~ l. 5 ns)
provides the possibility to filter the photons scattered by
nuclei simply by observing the delayed photons only.
This improves the signal-to-noise ratio considerably and
appears to be the key technique for nuclear-resonance
scattering experiments with SR.

Ultrahigh-brilliance SR sources like ESRF, APS, or
Springs will enable us to gain appreciable progress in
spectroscopic application of the method. The evolution
will strongly be influenced by the existence and availabili-
ty of evaluation programs. Indeed, an accurate measure-
ment must be analyzed in a proper way to gain new and
important results. To face this demand, the CONUSS
(coherent nuclear scattering from single crystals) pro-
gram package was developed.

The observed time spectra can be regarded as coherent
elastic scattering of SR in a narrow energy range which is

defined by the width of the excited nuclear level and some
additional broadening due to multiple scattering.
Theories that elaborate coherent elastic scattering in case
of sharp nuclear resonances have been developed by Han-
non and Trammell' ' and Afanasev and Kagan. ' '

Also a brief outline has been given by one of the au-
thors. ' These theories are complicated enough to make
a numerical analysis necessary.

In the present paper, we will follow the approach of
Hannon and Trammell in general and Ref. 21 in detail.
First, the elastic scattering amplitudes of a single atom in
a solid are calculated. This will already contain all
dependences of the nuclear-resonance scattering on the
hyperfine interaction. The next step will be to combine
the scattering amplitudes of several atoms coherently.
We will assume very thin platelets to avoid the
mathematical problems arising from multiple scattering
effects. This is equivalent to the first Born approximation
(kinematical approximation). The combination of a large
number of such platelets includes the effects of multiple
scattering and will lead us to Bragg-Laue scattering or, in
a more simple case, to forward scattering. The coherent
elastic scattering of a platelet is described by a 2X2 ma-
trix, which arises from the two independent transverse
polarizations of the incident photon. Additionally, each
matrix element is dependent on the energy and direction
of the incident photon.

This formulation allows the specification of the source
properties explicitly. Thus, the scattering response due
to illumination of resonant materials by synchrotron radi-
ation is easily derived once the four matrix elements and
their dependencies mentioned above have been calculat-
ed. Either energy or time representation of the resulting
scattering amplitudes are equivalent. CONUSS offers both
possibilities in addition to being able to calculate conven-
tional transmission spectra. In fact, the transmission in-
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tegral introduced by Margulies and Ehrmann and also
by Harris entirely involves multiple scattering effects in
the special case of forward scattering. As the intention of
CONUSS is more general we refer to the program package
wOTAN, which is a highly developed fitting procedure for
conventional transmission spectra.

The problem of linking a rather complex theoretical
approach to the needs of evaluating time-differential mea-
surements by experimentalists is treated in the present
contribution. The underlying principles and the numeri-
cal approach as realized in the CONUSS program package
are discussed. The source code is written in FORTRAN77.
The program was tested for about 5 years by evaluating
time differentia1 measurements performed at HASYLAB.
The CONUSS program package is freely available from the
authors.

ELASTIC SCATTERING BY A MOSSBAUER ATOM

Here, the interaction between a photon field and the
electromagnetic currents of a solid scatterer will be dis-
cussed. The photon field has to be quantized as demand-
ed by the theory of quantum electrodynamics. But due to
the low density of photon modes of common x-ray
sources, it is sufficient to investigate the behavior of pho-
ton fields with only one mode occupied by a single pho-
ton. In this case, the photon field is described classically
as linear superposition of plane waves. Because the dis-
tribution of electromagnetic currents in a solid may be
very complicated, it is worthwhile to discuss first the
scattering behavior of a single atom. The scattered field
of an atom in phase space is given by

5+(k, co)
[A„' '(k, co)]f, = —c 4 f (Vf ~M„,(k, co;k', co')~%, ) Ao(k', co')d k'dco',

(2ir )

M (k co.ki coi) — f e
—i(kx —ni)eiH'b„(x)G(t —t')b, (xi)e —iHi'ei(k'x' —m i d3xd „'dtdt'

c
4mc

5+(k, co)=-
co2 —k 2c 2+ ie

Here and in the following equations, we use Greek in-
dices to describe transverse components of the photon
fields, and we apply the sum rule of Einstein. The incom-
ing field is represented by A 0(k, co), which may be under-
stood as the wave function of a photon. In fact,

~
A 0(k, co)

~
d kdco is the probability of finding the incom-

ing photon in the mode characterized by the wave vector
k, energy fico, and polarization v. 8+ is the propagator of
an outgoing photon. ~%, f ) is the eigenstate of the solid
before and after the scattering process. M„, is called the
scattering operator of the atom. It depends on the elec-
tromagnetic currents b„, on the Hamiltonian H, and on
the propagator 6 of the atom. The propagator itself can
be expressed in terms of the Hamiltonian and an operator
6, which describes the (small) perturbation of the atom
by the photon field:

lation of the diagonal elements of the operator M„,
which describe elastic scattering. The currents b„of the
atom are split into the nuclear and the electronic part.
This gives three contributions to the scattering operator:
the pure electronic part, the pure nuclear part, and an in-
terference term between the nuclear and electronic
currents. For calculation of the first term, we assume
scattering to take place far off any resonances of the elec-
tron shell. This kind of electronic scattering is slowly
varying in energy and conserves the polarization of the
incoming photon. With the atom located at R the well-
known result is

E„„(k,co;k , co )='2ir'5„,5(co' co)FDwe'"—

X —roF, (k' k)—+i 0 ~,(co) . (4)
. k

e
—i co{t —t')

G(t t')= f— dco .
2ir co —H —h, (co)

(2)

The real part of the perturbation operator leads to a shift
of the atomic energy levels which is negligible in this con-
text. The imaginary part gives the lifetime t of an inter-
mediate atomic state

~
4„):

(t) '= —2imI (e„(k~%„)I . (3)

The smaller this imaginary contribution becomes, the
more pronounced is the resonance behavior of the propa-
gator for a given intermediate state. This leads to a
strong enhancement of the scattering in the vicinity of
sharp nuclear resonances.

In the following, we will restrict ourselves to the calcu-

The Debye-Wailer factor FDw describes the reduction of
probability for elastic scattering due to interaction of the
atom with the lattice in which it is bound. Introducing
this factor we made use of the adiabatic approximation,
that is the eigenstate of the electron shell is assumed to
adjust immediately to the nuclear motion. ro is the clas-
sical electron radius, F, the form factor of the electron
shell, and cr, the photoelectric cross section of the atom.
The values of F, and o. , are tabulated. ' These tables
have been included in the CONUSS program.

The description of nuclear-resonance scattering is more
complicated. We assume the lifetime of the nuclear reso-
nance to be large in comparison to typical lattice vibra-
tion periods. Then the nuclear contribution is scaled by
the well-known Mossbauer-Lamb factor and we get
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(P, i J„(-k)ig„&(P„IJ,(k ) iy, )
N„„(k,co;k', co') = F—M„5(co' c—o)e'"

C 0„—0;—co' —I, A„,

Here the Fourier components J„ofthe nuclear currents in the center-of-mass system (CMS} of the atom have been in-

troduced. In the CMS, the eigenstates and eigenenergies of the atom have been labeled ~i}I ) and RQ. The sum includes
all possible intermediate states of the atom. The resonance width A„,- is given as a matrix element of the perturbation
operator 5:

A„, = —Imf (y„~k(Q, +~') ~y„) ] .

In the vicinity of a sharp nuclear resonance (which means Q;+co =Q„), the matrix element A„, is given by the natural
linewidth I 0=2%A„;.

Usually the excitation of a nucleus is described in terms of multipole radiation. Therefore, a multipole expansion of
the nuclear currents is extremely useful. For calculation of the arising matrix elements, it is necessary to make assump-
tions about the interaction between the nucleus, the electron shell, and the rest of the solid. We will restrict ourselves
to the cases that are known as fast relaxation limit and slow relaxation limit. Then, the interaction between the nucleus
and electrons may be taken as independent of time. The energies iriQ and the wave functions ~iI) ) occurring in Eq. (5)
now describe a nucleus under the influence of static hyperfine fields. In this case, it is convenient to use a set of eigen-
states [ ~Im) ] of the nuclear spin operator for the representation of the nuclear wave functions. This leads to

n(2I„+1) .
,„, „, [Ti„';(k)]„'[T~L.„',(k')]„

N„„(k,co;k', co') = FMi 5(co' —co)e'" "'" g 5Li5L i g (7)
LL'l, l,' zni N l

with
' 1/2

2I„+1 g Yq~'(k)C(I;LI„;mN)(I;m ~P; ) ($„~I„m+M ),
Mm

z„;(co')= (Q„—Q; —co') .
2A

0

I, „are the nuclear spins of the ground state and excited state. Yz'~ represents the vector spherical harmonics, C( )

the Clebsch-Gordan coefficients in the notation of Rose. 5r i are the multipole mixing coefficients. They are normal-
ized to the total internal conversion coefficient a of the transition:

(1+a)g ~5„~'= 1 .
LA,

Usually one multipolarity predominates. Then for an (LA, } multipole transition, the matrix elements of the nuclear
scattering operator are given by

~(2I„+1),,„, „,„[T,"„',(~)]„'[T,"„';(~')]„
N„„(k,co;k', co') = FML5(co' co)e'"—

k 1+a

For the Mossbauer isotopes of Fe, ' Tm, and " Sn, nearly pure M1 Mossbauer transitions are observed. This corre-
sponds to L = 1 and A, =O.

The nuclear contribution to the x-ray scattering of an atom depends strongly on energy. The energy range in which
strong scattering occurs is determined by the natural linewidth I 0 and by the nuclear level splitting given by
i'(Q„—Q; ).

The interference terms between nuclear and electronic currents gives a small correction of the nuclear contribution in
Eq. (7). They are included in a satisfactory way by a substitution of the multipole mixing coefficients as calculated by
Goldwire and Hannon:

5LjL5L'i.'~5Li.5L'jU( +EL', )( + L'i.')

with

IE &l«i, (10}

whereas the real part of EL& is fairly negligible, the imaginary part changes the shape of the resonant response. Intro-
ducing PL i, =2 Im[EL i ], the nuclear scattering matrix including interference terms reads

N„(k, co;k', co') = FMi 5(co' —co)e'" "'
( I+i@Ii )g

This equation and the electronic part given in Eq. (4) sum up to the elastic scattering matrix of the whole atom.



9288 %. STURHAHN AND E. GERDAU

The elastic scattering from a Mossbauer atom depends on the direction and polarization of the incoming and outgo-
ing photon, the energy of the photon, and the interaction between the nucleus and electrons. The effect of the interac-
tion between the nucleus and electrons is to inhuence the hyperfine interaction and therefore the nuclear eigenstates and
eigenenergies. Because of the sharp resonance of the nuclear contribution, the elastic scattering is very sensitive to the
hyIierfine interaction. In addition, strong polarization mixing occurs, which is described by the scattering strengths
[TL„);(k)]„ofthe possible excitations of the nucleus according to the properties of the scattered photon. How nuclear
eigenenergies, nuclear eigenstates, and the vector spherical harmonics that have to be combined to give the scattering
strengths are calculated by CONUSS will be discussed in more detail.

Using the same set of eigenstates [ ~ nI„m ) ] of the nuclear spin operator as in Eq. (7), we get the following matrix ele-
ments of the difFerent multipole orders of the hyperfine interaction Hamiltonian:

W& 1ml H(hor)
I
lm' ) =fi. ,Eo,

C I1I'
&&&mlHh'r'llm') = —p&),r( 1)

C I1I IO
&o ~ ~ (O & g),

t
(12)

+ "—[2)(," (a,p, y)+n(z), (a,p, y)]

Eo gives the isomer shift. p is the magnetic dipole moment of the nucleus, and Bhf the magnetic hyperfine field. The
angles 8 and (t) are the spherical coordinates of the direction of the magnetic hyperfine field in the (arbitrarily) chosen
quantization system. q is the electric quadrupole moment of the nucleus. V„ is the largest eigenvalue of the electric-
field gradient tensor, and rl is the asymmetry parameter of the EFG. a, p, y denote the Euler angles that give the rota-
tion from the system of the EFG main axes to the quantization system. All rotations are performed by the rotation ma-
trices')( ' as defined by Rose.

This representation of the Hamiltonian of hyperfine interaction is convenient but generally not diagonal. This im-
plies that the actual nuclear states are no longer eigenstates of the spin projection operator.

In order to get a representation that can be handled numerically a quantization system has to be chosen. In the
CONUSS routines we use the main axes system of the EFG because of the simplification of the Hamiltonian matrix ele-
ments in Eq. (12). For the sum of the multipole orders of these elements we get

erI1 zz C(I2I;m, m' —m)
2 2C(I2I;IO) ™v 6

(13)

mm'

5JJ g QJpff Q J
mm'

(14)

For an arbitrary spin of the nuclear state, this system of
equations cannot be solved analytically. Therefore,
CONUSS uses an iterative diagonalization algorithm pro-
posed by Eberlein. '

The calculation of the vector spherical harmonics in
this quantization system is straightforward. For the sake
of convenience, a linear base of polarization is used. If
we denote the two orthonormal vectors by e„,@=1,2, the
components of the vector spherical harmonics are given
by

1/2

g' ~(k) —(i )N+ i
[

co(L)
( 1 )i+Pc@(L)

]

(15)

The coefficients of the nuclear eigenstates u =
& Im~gj )

and the energy shifts E of the nuclear levels are solutions
of the following eigenvalue problem:

&,&JJ
= g &,m(~mm ~~m Eo»;

I

The argument of the rotation matrices are the Euler an-
gles which rotate the photon system given by k,e„ez to
the quantization system. Thus, with a proper set of pa-
rarneters describing the atom the elastic scattering ampli-
tude of Eq. (9) is calculated as a function of the properties
of the incoming and outgoing photon.

COHERENT SCATTERING FROM THIN PLATELETS

The scattering of x rays by a solid may take place
coherently or incoherently. From the microscopic point
of view, this is due to whether the quantum state of the
part of the solid that acts as scatterer is changed. This
part may be a region in space, the whole solid, or only
one atom. If we consider lattice vibrations the spatial re-
gion that acts coherently is given by the spatial coherence
of the phonon that is created or annihilated in the
scattering process. The usual case is a thermally excited
solid. Then the spatial coherence length of phonons is of
the order of the interatomic distance. An equivalent in-
terpretation of this behavior is that vibrations of neigh-
boring atoms are not correlated. In this scenario, inelas-
tic coherent scattering is ruled out. The only remaining
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coherent scattering process occurs elastically without
phonon creation or annihilation. The in6uence of tem-

perature will be taken into account by averaging over the
initial atomic states with an appropriate Boltzmann fac-
tor. The reduction of the scattering amplitude due to in-

elastic scattering is given by the Mossbauer-Lamb factor
and the Debye-Wailer factor.

The assumption that scattering of a single photon
mode by a solid is described by the sum of the contribu-
tions of the individual atoms is fairly justified in the x-ray

I

case by calculations of Hannon and Trammell. ' They
also proved that mirror terms that arise from virtual pho-
ton exchange between two atoms lead to a minor contri-
bution and can be neglected. We will take the thermal
average over all initial nuclear states at a temperature
very much larger than their splitting. For an incident
monochromatic plane wave field with wave vector ko, en-

ergy Acoo=kcko, and amplitude ao„, we get for the
scattering amplitude of a thin platelet:

J„' '(k, co) = —cS+(k,co)ge ' 'M„'~'(k, co;kp, co)5(co—ckp)ap, ,
J

with

rF,' '(k— k)+i —0','(~) . (16)
. k

The sum over j has to be taken over all atoms of the pla-
telet. 00 is the nuclear-resonance cross section. Equation
(16) clearly neglects multiple scattering but is a very good
approximation because the intensity of the scattered radi-
ation is small in comparison to the incident radiation. It
is the first Born or kinematical approximation. Next, we
consider thin platelets for which this approximation is
sufficient.

A look at Eq. (16) reveals that for ~k —kp~%0, the spa-
tial positions of the atoms in the platelet are of impor-
tance. On the other hand, in the case of forward scatter-
ing ( ~

k —kp ~
=0), it does not matter whether the material

is ordered or not. Thus, CONUSS performs calculations
for the more general case of an ordered material. For-
ward scattering even for polycrystalline or amorphous
materials is automatically included. The sum over all
atoms that occurs in Eq. (16) can be split into a sum over
the unit cell of the ordered material and a sum over all
unit cells in the platelet. We get

'M'~' =M'"'~ (1 )pv pv ~e 7
J J

The positions of the unit cells are given by v, and M„'"„'
denotes the scattering matrix of the unit cell. It is given
by the position and kind of the atoms in the unit cell. If
rJ is a possible position in the unit cell and p, is the
probability to find this position occupied by an atom of
kind a, we may write

M'"' =~ 'M"
pv ~PaJe pv

aj

The sum over all unit cells can be written as a sum of 5
functions if we assume that the dimensions of the platelet
perpendicular to the surface normal are large compared
with the range of x rays in the material. Introducing the
planar reciprocal lattice vectors of the platelet g, we get

In this equation the indices xy denote the component per-
pendicular to the surface normal of the platelet. V„, is

the volume of a unit cell, and b is the thickness of the pla-
telet. The scattered field is then given as a sum over the
contributions from each reciprocal-lattice vector. After
inserting this result into Eq. (16) we perform a Fourier
transformation to obtain the scattered photon field in

space and time. We get wave fields only for those
reciprocal-lattice vectors g, that fulfill the condition

~ kp ~ +g, ~

& kp. Finally we get

with

k p =kp„+g,+zg k p
—(kp„+g, )

~ + M„'",'(k,+—
, cop;kp, cop)

p PV

V„,(k,+),

(20)

ELASTIC SCATTERING FROM REAL SAMPLES

The plus sign hold for zx ~0 if the surface normal of the
platelet is denoted by z with zkp) 0. Thus, the scattered
wave field is a superposition of plane waves with frequen-

cy cop=ckp and with wave vectors k + or k below or
above the platelet. In this notation, k + and kp are iden-

tical. Furthermore, we introduced the planar scattering
~+0+

amplitudes f„', , which express the coupling of a v po-
larized photon propagating in the 0+ channel to a p po-
larized photon propagating in the r channel. Note that
the polarization indices refer to the same reference sys-
tem thus leading to an additional projection factor if
different polarization bases are chosen for incident and
scattered photons.

ge ~ JM'J'=M'"'
/lV PV y ~ Pal Xg gT)

J UC

(19)

Samples that are investigated experimentally do not
obey the rules for "thin" scatterers. This implies that the
first Born approximation is no longer valid for the scat-
tered fields, and multiple scattering has to be considered.



9290 W. STURHAHN AND E. GERDAU 49

Bragg scattering of thick crystals or transmission
through absorbers of appreciable thickness may serve as
examples. Up to this point, we calculated scattering am-
plitudes for thin platelets, which we could derive from
the density, position, and properties of the atoms. It is
straightforward to use these results for the calculation of
the scattering amplitudes of a thick platelet. We apply

the trick of cutting up the crystal into thin platelets that
are equivalent. The displacement of the platelets in the
direction of the surface normal z is then mb, where m is
the platelet number that counts from m =0 (upper sur-
face of the crystal) to m =D lb (D is the thickness of the
crystal). The change of the fields of the r+—channels from
one platelet to the next is then given by

Ib k —(k

y+

with

M„'"y'(k g, aio, k +,a), )

V„,(k y),
(21)

I

The fields of the open channels are then solutions of the
following set of differential equations:

da„' (z)=i g (s +5„'„+f„'„)a'„(z)dz,
p+

These equations determine the photon fields inside the
crystal recursively. The deviations of the wave vectors
from the result of the first Born approximation are ex-
pected to be small. Thus, a phase factor may be split off
leaving a field amplitude that varies only slowly in space:

(22)

a„' (m —1)=e ' a„' (m) ib g f„'—„a'„(m)
i+

T

with

s + = —(ko+ G,),++k 0
—(ko„y+ G,„y ) (23)

The coupling of a field amplitude a„' of a particular
channel k + to another channel k y becomes significant

if the phase holds ~sinbs ~~=~bf' '
~. For a given

direction of the incident wave vector, these channels are
called open whereas the others are called closed. Note
that the forward channel (GO=0) is always open because
~ + =0 for all directions of the incident radiation.

0
In experiments often only one or two open channels

have to be considered. This is the case for simple for-
ward scattering (only 0+ channel open} or for Bragg
scattering (0+ and 1 channel open} or for Lane scatter-
ing (0+ and 1+ channel open). CONUSS is able to deal
with these three cases. Because our interest is restricted
to the fields on top and at the bottom of the platelet, the
following boundary conditions apply:

a„' (m =0)=ao„5 ~ ~,
(24)

D
a m= —=0.

P

6, is a reciprocal-lattice vector of the crystal. This sub-

stitution leaves Eq. (21) in the following form:

+ lbK T+T™~~
a„' (m+1)=e '

a& (m)+ib g f„'„' a„(m)
T —+

+
a„' (0)=a0„5 + +,

This system of linear equations is homogeneous, and thus
the eigenvectors are determined up to an arbitrary factor.
Therefore, one component of each eigenvector is set to
unity. The leads to an inhomogeneous system of linear
equations with reduced dimension, which is solved easily
by the method of Gauss and Seidel. The field amplitudes
at depth z

&
in the crystal a „' (z & ) and the field amplitudes

at the depth z2 in the crystal a „' (z2 ) satisfy the following
linear equations (no summations over p):

+ ik (z2 —z )
a„'„a„' zz =e " ' ' a&az z, (28)

If we take the boundary conditions of Eq. (25), the fol-
lowing equations determine the desired field amplitudes
a„' (D) and a„' (0):

a„' (D)=0.

The determination of the solutions is straightforward
once the corresponding eigenvalue problem has been
solved. CONUSS evaluates the eigenvalues k„as roots of
the following characteristic polynomial:

detI(a ~ —k„)5„', +f„', I=0. (26)

The order of the polynomial is two times the number of
open channels, which is four in the Bragg-Laue case and
two for forward scattering. Vanishing polarization mix-

ing in the Bragg-Laue case allows a factorization into two
quadratic equations. This is handled separately to mini-
mize computing time. In the general case, a numerical
iteration of a damped Newton type is applied. A quality
of better than 10 ' for each root is achieved. The eigen-
vectors n„'„are calculated from the following set of linear
equations:

(27)
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(29}

Note that a summation over the index JM need not be per-
formed. In the cONUSS program, two orthogonal linear
polarizations of the incoming radiation are assumed and
the corresponding scattered field amplitudes are calculat-
ed. The choice of the polarization reference system de-

pends on the scattering problem. In the case of forward
scattering, the direction of an external field and the direc-
tion of the incoming y quanta define a reference plane. o
polarization is then represented by the unit vector per-
pendicular to this plane. m polarization is then represent-
ed by the other transverse unit vector. This corresponds
to the definition of Gonser and Fischer. In the case of
Bragg-Laue scattering, the reference plane is defined by
incoming and scattered y quanta. The definition of the
polarization vectors is then the same as above. This is
the usual definition from x-ray crystallography.

From Eq. (29}, we obtain the field amplitudes as solu-
tions for the two cases a0 =1, aa =0 and a0 =0,
a0 =1. The corresponding solutions are combined to
2X2 matrices that describe the field amplitudes of each
open channel:

a' (case 1) a' (case 1}
+ +a' (case 2) a' (case 2) z=D

a' (case 1) a' (case 1)
(30)

a' (case 2) a' (case 2) z=0

This matrix description of the scattering behavior is espe-
cially useful if several samples are arranged in subsequent
order. The total scattering matrix is then obtained by
multiplication of those matrices that describe the used
open channels. In this way, cDNUSs allows the combina-
tion of Bragg-Laue reflections and forward scattering in
arbitrary order.

dent of energy, from the total scattering matrix. The
time response of the regime due to nuclear scattering is
then given by

%(t,8)= f [A„„i(c0,8)—%„(8)]e '"'dc0 . (31)

Also, the degree and kind of polarization of the incoming
radiation must be specified. We use the density matrix
formalism and describe the polarization state of the in-

cident beam by a 2X2 matrix p. The polarization
analysis of the scattered photons is performed by a polar-
ization filter which is described by the 2 X2 matrix P.
We obtain for the time-dependent intensity

I(t, 8)=Tr[pR P PA] . (32)

X T(t+ br r')d8'dr—' . (33)

The background Ib, the scaling factor c, the angular posi-
tion 8, the shift of the time scale At, and the widths of the
distributions 8'and T are subject to a fitting procedure to
minimize the y value as usual. y serves as measure for
the quality of the fitted theory and its parameters.

For comparison with a measurement, three operations
have to be added. First, the periodic bunching of SR has
to be considered. This is done by adding the time-shifted
intensities. The time shift tz is given by the bunch dis-

tances in the synchrotron. This effect is of importance if
the bunch separation is not much larger than the decay
time of the scattering regime. Second, the divergence of
the incident radiation and/or crystal bending is taken
into account by a normalized distribution 8'(8). Third,
the time resolution of the detector system is given by a
normalized distribution T(t). The types of distributions
that are implemented at present are rectangular,
Lorentzian, symmetric Gaussian, and asymmetric Gauss-
ian. For the intensity I, which has to be compared to the
measurement, we get

I(t, 8)=I,+cf g I(t'+nts, 8')W(8 8')—
n&0

SOURCE PROPERTIES AND SCATTERED INTENSITY APPLICATIONS

The total scattering matrix contains the entire depen-
dence on energy and time. In the Bragg-Laue case, there
is also a strong dependence on the angle of incidence 0 of
the incoming plane wave. On the other hand, for the
evaluation of measured data in a given setup, the proper-
ties of the incoming radiation have to be defined. We will
focus on synchrotron radiation sources. In the energy
range of nuclear resonance scattering, the field arnpli-
tudes of incoming SR are independent of energy. This
follows from the very short duration of typically 10 ' s
of the emission process of photons in a synchrotron radi-
ation beam. The time response of a scattering regime is
then obtained by Fourier transformation of the total
scattering matrix %, „i(c0,8). The total scattering matrix
is the product of matrices as given in Eq. (30) each
describing one resonant scatterer of the regime. Our in-
terest is restricted to observation of the nuclear-delayed
part of the total scattering. Thus, it is reasonable to sub-
tract the faroff resonance part %„(8),which is indepen-

Measurements with high statistical accuracy that are

performed with well-known samples are especially useful
to verify theoretical calculations as described above. Un-
til now, time-dependent nuclear resonance scattering was
investigated in Bragg, Laue, and transmission geometry.
The best quality of data was achieved by using pure nu-
clear reflections of single crystals.

The first example is a set of measurements of the pure
nuclear refiection (002) of yttrium iron garnet (Y3Fe50,2).
The spectra are shown in Fig. 1 (data taken from Ref.
11}. They were taken at different angles between the
[100] crystal direction and the scattering plane while
keeping the magnetization perpendicular to the scatter-
ing plane. This leads to variations of the hyper6ne in-
teractions due to changed angles between magnetic
hyperfine 6eld and main axis of the electric-field gradient.
Therefore, we observe different quantum beat patterns.
Details on the results of this evaluation are given in Ref.
33.
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FIG. 1. The quantum beat pattern of the (002) pure nuclear
reflection of YIG changes significantly with the angle between

magnetic hyperfine field and main axes of the EFG. The calcu-
lations performed with CONUSS are shown as solid lines. The
data are taken from Ref. 11.

The temperature dependence of the quantum beat pat-
tern of the pure nuclear reflection (333) of iron borate
(FeBO3) is shown in Fig. 2 (data taken from Ref. 34). As
the temperature approaches the Neel point, we observe
an increasing quantum beat period that is directly corre-
lated to the diminishing magnetic hyperfine fields. De-
tails on the results of this evaluation are given in Ref. 33.

An experiment performed with a hematite crystal at
the KEK undulator source demonstrates the use of nu-
clear diffraction at future synchrotron radiation
sources. The experimenters measured the quantum
beat pattern of the (777) pure nuclear reflection with a
resonant count rate of approximately 15 kHz and a very
good suppression of the nonresonant prompt peak. The
spectrum is shown in Fig. 3. The solid line represents the
theoretical calculation obtained with CDNUSs by defining
two sublattices with partly different hyperfine interac-
tions. The results of the Gt procedure are given in Table
I. The parameters for which errors are given were varied
to give a minimum y of 56(8). In fact, this value is sub-
stantially larger than it should be if the errors of the mea-
sured data are of statistical nature. Systematic errors
that superimpose the assumed statistical square-root er-
rors are probably the reason. We assumed an asymmetric

FIG. 2. The quantum beat pattern of the (333) pure nuclear
reflection of iron borate is strongly influenced by the magnetic
hyperfine field. This is shown for different temperatures in

which the hyperfine field decreases approaching the Neel tem-

perature. The calculations performed with CONUSS are shown

as solid lines. The data are taken from Ref. 34.

Gaussian shape for the response of the detector. The ra-
tio of the widths before and after the maximum is 0.3
with a total of 2.22(4) ns FWHM. The angular diver-

gence of the incoming beam was taken as symmetric
Gaussian with a FWHM of 19.4(3) p, rad. In fact, these
shapes are probably not the best choice thus leading to

10

rn 10

0
O

10

'~i' ' . = +jF~&~h~i+ e VPaai

10
0

I

200
I

400 600
time (ns)

I

800

FIG. 3. The quantum beat pattern of the (777) pure nuclear
reflection of hematite was measured very accurately. The calcu-
lation performed with coNUSS is shown as solid line. The data
are taken from Ref. 37.
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TABLE I. The hyperfine parameters of hematite as given by
three different references. Blank positions indicate that no
value was given for this parameter. 4 is the angle between the
hyperfine fields of the two lattice sites. The f factor is the prod-
uct of isotropic abundance and Mossbauer-Lamb factor.

Parameters

—'eqV (mm s ')
Bgg (T)
4 (deg)

f factor
EFG axes

Ref.'
—0.40(2)
51.56(3)

170.0( 16)
0.88(3)

[111]

Ref

0.13(2)
51.45(8)

Ref.'

—0.24(6)
51.5(5)

'Present paper.
Kikuta et al. (Ref. 35), same data but evaluated by Fourier

transformation.
Kistner et al. (Ref. 36), conventional MB transmission experi-

ment with a polycrystalline sample.

systematic errors.
In future applications, it will be of considerable interest

to evaluate time differential measurements taken in a for-
ward scattering geometry. In advance to this situation,
several cases of hyperfine interactions such as polycrys-
talline powders with and without external magnetic field
are already implemented in CONUSS. Updates that will
become available in the near future will include thickness
averaging, relaxation effects due to nonstatic hyperfine in-
teractions, and real fitting of the hyperfine parameters.

CONCLUSION

We extended the dynamical theory of MB optics of
Hannon and Trammell by allowing arbitrary static
hyperfine interactions of the scattering nuclei. The spe-
cial properties of nuclear-resonance scattering as energy
dependence, polarization mixing, and angle dependence
(in case of crystal reflections) are handled accurately on
the basis of the given theory. Thus, phenomena like

quantum beats, dynamical beats, and speed up that were
addressed more empirically in several publications on
time differential nuclear-resonance scattering are includ-
ed in a general way in the equations given in the present
contribution. The resulting description is formulated in a
manner that allows conversion to computer source code
easily. The numerical procedures (the coNUss program
package) were used to evaluate several time-differential
measurements of nuclear Bragg scattering. It proved to
be a powerful tool for understanding this kind of reso-
nant scattering in the neV range. The excellent agree-
ment between computed and measured data allows an ac-
curate determination of hyperfine interaction parameters.
The huge number of possibilities of setting up the calcula-
tion of nuclear resonance scattering addresses various
kinds of experimental arrangements such as symmetric
and asymmetric Bragg-Laue scattering, forward scatter-
ing, and any combination of different absorbers or crystal
reflections. The flexible structure of the program pack-
age makes adaptations to different hardware and operat-
ing systems extremely easy to handle. The outstanding
features of the CONUSS program package and its availabil-
ity assign it an important role in a rather young but rising
field of nuclear resonance scattering with SR.
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