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Microcanonical simulation of the site-diluted three-dimensional Ising model
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We use a microcanonical simulation to obtain the phase diagram in the temperature-concentration
space of the three-dimensional site-diluted Ising model, for concentrations of magnetic atoms in the
range 1 > p > 0.4. The temperature and concentration dependence of the magnetization, internal
energy, and specific heat are calculated on 32 x 32 x 32 lattices. The resulting phase diagram agrees
well with recent Monte Carlo simulations and extends the numerical estimates up to the regime of

strong dilution.

I. INTRODUCTION

In this paper we report the results of microcanonical
simulations of the site-diluted simple cubic Ising model
with nearest-neighbor interactions, having quenched and
randomly distributed magnetic atoms. The simulations
were performed on lattices of size L = 32 with periodic
boundary conditions, and for various magnetic concen-
trations between p = 0.4 and p = 1. For each value of
p our procedure allows a simultaneous simulation of 32
samples at the same energy. The system Hamiltonian is

Hg = — Z Jeiejoi0;, (1)
(4,3)
where 0; = +1 are the Ising spin variables and the con-
figurational (random) variables €; can take values one,
with probability p, and zero, with probability (1 — p).
The sum is over all nearest-neighbor pairs of sites, and
J > 0 is the ferromagnetic exchange interaction.

Most of the numerical simulations of the model sys-
tem (1) were based on Monte Carlo (MC) algorithms,
and were centered on the investigation of the effects of
disorder in critical phenomena. In particular, for the
three-dimensional Ising model, where the specific heat
exponent of the pure system is positive, the theoreti-
cal picture! of sharp transitions with varying critical ex-
ponents has been supported by previous Monte Carlo
calculations.2”® On the contrary, there only exist a few
attempts at using deterministic algorithms to simulate
quenched site-dilute models.® These works were mainly
motivated by the effects of dilution on the nature of the
phase transitions of g-state Potts models.!® The authors
of Ref. 9 used the multilattice microcanonical simulation
technique!! to determine the energy-temperature curve
and locate the tricritical point induced by dilution.

The multilattice microcanonical simulation (MLMS)
method consists in applying the multilattice technique!?
to the Creutz algorithm.!® The characteristic feature of
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the MLMS method is to simultaneously simulate many
model systems at the same energy. Within Creutz’s pro-
posal the system is not isolated at all, but it can exchange
energy with a much smaller system called a “demon.”
The demon works as a local heat bath and it travels
around the system trying to change its dynamic vari-
ables. The energy that the demon can carry is bounded,
and the change is accepted if the demon either can ab-
sorb the energy released or has enough energy to supply
the amount of energy required by the system. Hence,
the total energy of the system plus the demon remains
constant.

The application of the Creutz algorithm to the three-
dimensional site-diluted Ising model has not yet been re-
ported in the literature. In the present work we use the
MLMS technique to study the thermodynamic properties
of such a disordered system in a wide range of temper-
ature (energy) and concentration. Section II describes
briefly the computational procedure. In Sec. III we
present our results, and make a comparison with pre-
vious Monte Carlo data for both the critical temperature
and the critical energy. Our conclusions are presented in

Sec. IV.

II. THE SIMULATION PROCEDURE

In order to generate an ensemble of configurations
microcanonically distributed of the Hamiltonian (1) we
used the Creutz algorithm.!® In the present implemen-
tation we follow the suggestion of Wilson and Vause,!!
which consists in simultaneously simulating multiple lat-
tices. This kind of approach is particularly useful when
quenched disorder comes into play, since each lattice sys-
tem represents an independent sample and the relevant
configurational averages are automatically carried out.

The occupation (static) variables ¢; of all the 32 sys-
tems are stored in an array of length 323 (the number
of sites in the simple cubic lattice), in which the bits are
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independently set with probability p. The corresponding
spin (dynamic) variables o; are stored in another array
of length 323. In both arrays, all bits of the same or-
der within a computer word are associated to only one
sample. From an arbitrary magnetic configuration, e.g.,
all samples in a ground-state configuration, we put them
in independent configurations with a previously specified
energy by frustrating an appropriated number of bonds.
The demon states are stored in three computer words
(see below), with each demon and its respective sample
corresponding to the same bit position in a word. The
demons are initialized to zero energy.

According to the Creutz algorithm, each demon travels
around its respective lattice trying to flip the spins. A
flip is accepted only if AHg + AHp = 0, where Hg and
Hp are the system energy and the demon energy, respec-
tively. During the flip procedure the simple cubic lattice
is divided into two interpenetrating sublattices and the
demon visits sequentially the sites of a given sublattice.
A new configuration is generated after the demon has
visited all sites of both sublattices: This corresponds to
one MLMS step.

For the simple cubic randomly dilute Ising model with
first neighbor interaction, Eq. (1), AHg/J is an even
integer ranging from —12 to +12. Therefore, a convenient
choice for the demon energy is

Hp = 2J8, )

where 2J is the smallest possible variation of the system
energy, and § = 0,1,...,0max. It follows that the new
demon state is specified by

6’=6+2nf—z, (3)

where ny is the number of frustrated nearest-neighbor
bonds in the old configuration and z the number of
nearest-neighbor sites occupied by magnetic atoms. Fur-
ther we should have 0 < §’ < dmax; otherwise, the flip is
rejected. We have chosen §,ax = 7 in order to accommo-
date the demon energy into only three computer words,
and still allow all possible changes in the system energy.
This also saves computer time since the overall procedure
is accomplished by logical operations.

Another function of the demon is to provide a means
to probe the temperature of the system. By noting that
during the simulation each demon state occurs a number
of times proportional to its Boltzmann factor, we have
sampled the § = 0 and § = 1 states to calculate the
temperature.l4

III. RESULTS

By employing the multilattice microcanonical simula-
tion (MLMS) technique we have done extensive simu-
lations of site-diluted simple cubic Ising models of size
32 x 32 x 32, and with periodic boundary conditions. For
a given value of concentration, the configurational aver-
ages were obtained from the data of simulations on 32
independent samples with random distribution of impu-
rities. The errors are standard deviations of the mean
values. For each value of energy, we ignored the first 100
configurations, which represent 10% of the 1000 equilib-
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FIG. 1. Temperature dependence of the internal energy

per magnetic site of the site-diluted simple cubic Ising model,
for various concentrations p of magnetic sites. The curves are
cubic spline fit to the numerical data.

rium configurations per sample considered in the micro-
canonical averages. Therefore, our final results included
a total of 32 x 103 equilibrium configurations.

In Fig. 1 we plotted the specific internal energy
u = E/Np as a function of the temperature for some
values of the magnetic concentration p, where Np is the
effective number of magnetic sites. The curves were ob-
tained by making a cubic spline fit to the numerical data.
In order to estimate the system temperature from the
data of simulation at a given energy, the demon states
were sampled after visiting 100 sites. However, for ener-
gies u < u, and u > u., where u. is the critical energy,
we sampled the demon states at intervals of five to ten
visits, since we notice in these limit cases that the errors
in the calculated temperatures are systematically larger
than those for intermediate energies. In fact, this reflects
the difficulty of simulating the system at even higher and
lower energies (temperatures), and it may also be seen
as an evidence of lack of ergodicity of the Creutz’s algo-
rithm.

In Fig. 2 we display the magnetization m =
((|Z:€:0:])) /Np plotted against the temperature, where
now we have statistical errors in both axes. The data for
p = 0.4, 0.7, and 1.0 plotted against the reduced temper-
ature T/T.(p) show that (see inset), for energies above
the critical energy u., the finite size effects are enhanced
for those systems with smaller values of concentration.

The dependence of the critical energy on the concen-
tration £ = 1 — p of nonmagnetic impurities is shown
in Fig. 3, where we plot our results (open symbols) for
u. = u(z,T.)/u(z,T = 0). The value for the critical
energy in the pure (z = 0) system was taken from our
previous work.!* In the present paper, both the critical
energy values and the error bars were obtained from the
corresponding values for the critical temperatures shown
in Table I, where we used the relation for u(z,T) ac-
cording to the fitting curves of Fig. 1. Comparing our
results with those of previous MC calculations (dashed
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FIG.2. Temperature dependence of the magnetization for
values of p=0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 (curves from left
to right). The inset shows the magnetization plotted against
the reduced temperature T'/Tc(p), for p = 0.4 (dashed line),
0.7 (dotted line), and 1.0 (solid line).

line),>!® one notices a complete agreement in the region

of low dilution = < 0.2, whereas, except for the most di-
luted system with = = 0.6, the observed deviations are
within error bars. We also show the experimental results
(solid symbols) (Ref. 15) on the diluted antiferromag-
net Coy_,Zn,Cs3Cls, along with the curve (solid line in
Fig. 3) for u.(x) = 0.269/(1 — z) expected for Ising
bce models which follows closely the experimental data.
We conclude that the MC data on simple cubic lattices
(see also Refs. 2 and 16) cannot be directly compared
with the experimental results shown in Fig. 3. Further-
more, the present analysis suggests that a simulation of
the site-diluted bcc Ising models, with coordination num-
ber z = 8, is required.

The temperature and concentration dependence of the
specific heat, calculated from the numerical derivative of
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FIG. 3. The reduced critical energy as a function of the
concentration z of non-magnetic impurities. The symbols
are the following: open circles (this work), open square
(Ref. 14), and solid circles (Ref. 15). The dashed line u.(z) =
0.328/(1 — z) follows from the Monte Carlo data of Refs. 2
and 16, whereas the solid line corresponds to the experimental
results of Ref. 15 (see text).
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TABLE 1. Critical temperature 7Tc(p), for the
three-dimensional site-diluted Ising model.

p Te(p)

This work Ref. 17 Ref. 3

1.00 4.514(15) 4.5115(1) 4.511(6)
0.95 4.259(16) 4.2622(4) 4.263(6)
0.90 4.01(2) 4.0108(5) 4.030(6)
0.80 3.50(2) 3.4992(5) 3.505(6)
0.70 2.98(5) — 3.045(6)
0.60 2.41(4) 2.4220(6) 2.509(6)
0.50 1.86(6) — 1.968(6)
0.40 1.37(10) — 1.449(11)

the specific internal energy (curves shown in Fig. 1),
present a well-defined peak even for magnetic concentra-
tions down to p = 0.5, indicating that the phase tran-
sition remains sharp for all systems with p > 0.5. The
critical temperature for a given concentration, T,(p), was
determined from the position of the peak (maximum for
p = 0.4) in the corresponding specific heat curve. In Ta-
ble I we display our results together with those of Heuer!”
and Chowdhury and Stauffer.® Note that we assumed for
the quoted value of T.(1) given by Ref. 3 to be the same
as that of Ref. 17.

A quite good agreement between our results and those
of Ref. 17, may be observed spite of the much smaller
CPU time spent in the present calculation. (In fact the
work of Ref. 17 is mainly concerned with accurate eval-
uations of concentration-dependent exponents.) Except
for the most diluted system simulated, p = 0.4, where
one might expect a stronger dependence on the number
of samples and on their effective sizes, all other estimates
for T.(p) have error bars which are smaller than 7%. The
observed linear dependence of the critical line with dilu-
tion, for all values of concentration considered in this
work, indicates a rapid decrease in T.(p) in the interval
between 0.4 and 0.33 (the percolation concentration).

IV. CONCLUSION

In this paper, we have employed the multilattice mi-
crocanonical simulation technique to study the thermo-
dynamic behavior of the simple cubic Ising model hav-
ing quenched (site-diluted) distribution of nonmagnetic
impurities. Except in the extreme cases of lower and
higher energies (temperatures), where we found some ev-
idence of lack of ergodicity of the Creutz algorithm, our
results for the magnetization and the internal energy on
the 32 x 32 x 32 lattice spin systems show a smooth vari-
ation with dilution. This fact should encourage further
works on disordered systems using microcanonical simu-
lation methods.

We have also calculated the concentration dependence
of both the critical energy and the critical temperature.
Our results for u.(z) and T.(z) agree reasonably well
with previous Monte Carlo calculations. We recall that
in the present work, the values of T.(z) are determined
from the location of the peaks of the specific heat. Ac-
cordingly, a precise determination of the critical energy
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is strongly dependent on this naive method of obtain-
ing the critical temperature. We conclude that the esti-
mated errors in these quantities reflect such a method-
ology rather than the statistical quality of our data. A
direct method of analysis of the critical behavior, which
we are not concerned here, consists in obtaining the criti-

cal energy without knowledge of the critical temperature,
and vice versa.!* Work in this direction is in progress.
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