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Recently, several experimental groups have found superconducting behavior of one-unit-cell (i.e.,
one Cu02 bilayer) thick YBa2CusO& films. Using the functional-integral method, we calculate the
critical temperature T, for a system of two Cu02 planes coupled via a tunneling matrix element that
results in Josephson-type coupling. The Coulomb interaction between the two planes is considered
via inclusion of quantum phase Buctuations. We take into account the Quctuations of the modulus of
the superconducting order parameter in the planes and the Buctuations of the phase difference of the
order parameter between the planes. While for samples of in6nite size T, is strictly zero, samples of
6nite size L yield an effective two-dimensional to zero-dimensional transition at a 6nite temperature

T,', characterized by a jump in the speci6c heat. We obtain T,' as a function of L, Josephson
coupling parameter, and Coulomb interaction strength and predict the temperature dependence of
the specific heat near T,'. Our results are consistent with the T,' values observed on the single Cu02
bilayer.

I. INTRODUCTION

One of the central problems in the theory of the high-
temperature superconductors is to what extent the su-

perconducting properties are determined by the two di-
mensionality of the Cu02 planes, where the microscopic
superconducting mechanism is mostly believed to take
place, and how the extension into the third dimension is
achieved by the coupling between adjacent Cu02 planes.

In this context transport measurements on
YBa2CusOr/PrBa2CusOr (YBCO/PBCO) superlatti-
ces have reached considerable interest. The authors find
a resistive superconducting transition in systems consist-
ing of one-unit-cell (i.e., one Cu02 bilayer) thick YBCO
films separated by up to eight-unit-cell thick nonsuper-
conducting PBCO films with T, values of up to 20—
30 K. Although it is not overall accepted, many physi-
cists working in this field believe that the YBCO layers
in these superlattices are completely decoupled by the
PBCO layers. So it seems to be the case that a sin-

gle two-dimensional (2D) Cu02 bilayer system can ex-

hibit superconducting behavior. Nevertheless, it should
also be noted that some authors find a one-unit-cell
thick YBCO film sandwiched between PBCO layers to
be nonsuperconducting.

The question now arising is the following: Can the
transition into the superconducting state be described by
fluctuation eKects based on a BCS-like model, or is the
transition characterized by fluctuations into Kosterlitz-
Thouless-type vortex-antivortex pairs?

One should remember that "conventional" supercon-
ductivity with T, ) 0 is ruled out for systems with two

(or less) dimensions, s since long-range order is destroyed
by phase fluctuations of the superconducting order pa-
rameter (OP) for T ) 0. Some time ago Hassing and
Wilkins obtained similar results. They take into account
fluctuations of the superconducting OP up to fourth or-
der in a so-called biquadratic approximation; as a conse-

II. MODEL HAMILTONIAN AND FREE
ENERGY

A. Basic Hamiltonian

Omitting the Coulomb interaction at this point (see
Sec. IIB), we start with the Hamiltonian

H = Ho+Ha +H (2.1a)

quence of this procedure they only consider the modulus
of the OP. When Hassing and Wilkins calculate the crit-
ical temperature T, they obtain T, —= 0 in two or fewer
dimensions. Nevertheless, it is not really clear how the
phase fluctuations enter their theory.

Motivated by the experiments, we investigate in this
paper the superconducting critical temperature T, in a
system consisting of two mutually coupled Cu02 planes
with BCS-type pairing. Part of this work has been pub-
lished elsewhere. We take into account fluctuations of
the modulus of the superconducting OP in the planes
up to fourth order in biquadratic approximation, Quc-
tuations of the phase difference of the superconducting
OP between the planes, and the Coulomb interaction be-
tween the planes via inclusion of quantum phase fluctu-
ations.

In Sec. II we introduce our basic model Hamilto-
nian, &om which we derive a Ginzburg-Landau-type &ee-
energy functional by a functional-integral transforma-
tion; we also include the Coulomb interaction. In Sec. III
we calculate the critical temperature T, of a bilayer sys-
tem with infinite plane size and show that always T, = 0.
EfFects of finite size I are considered in Sec. IV. Numer-
ical results are given in Sec. V for a choice of parameters
suitable for YBCO. In Sec. VI we give a summary and
discussion.

0163-1829/94/49(13)/9064(9)/$06. 00 49 9064 1994 The American Physical Society



49 FLUCTUATIONS, SIZE EFFECTS, AND. . . 9065

with

Hp ——) ) sctc,
i=1,2 a

Hp= —g ) ) btqb;q,
i=&2 Q

H~ = ) (tct cz +H.c.).

(2.1b)

(2.1c)

(2.1d)

Here, a = (k, 0') and bq = g& c s~cg+q~. The index i
I

refers to the plane. g and t are the intraplane pairing
energy and interplane tunneling matrix element, respec-
tively, which are taken to be constants. HJ describes a
BCS-like intralayer pairing and Hz a single-particle in-
terlayer tunneling.

Applying a functional-integral transformation to Eq.
(2.1a) and introducing the fourth-order term in the su-
perconducting OP in biquadratic approximation~ yields
the free energy in Ginzburg-Landau form (for details see
Appendix A),

Foe[6&'&,6 ~I = Fo+ $ .cc
I Ac + Ac I +No&a% &c &c ' (NII (2.2)

with
2

aq = ln + —)m~ +(pq + Kp
Np T vr

2 T,p 4

+ —,):(i "i')~-'
Ql

(2.3)

III. CRITICAL TEMPERATURE
IN INFINITE SYSTEMS

We first consider a system with planes of infinite size.
The critical temperature T is defined as the temperature
where the uniform and static fluctuation propagator

Here, 6&(') —— Eq(') exp
~

iraq(') (, t =
~t~ exp(iQ),)'

Kp = ~t~/(2(dp), (up is the BCS cutofF parameter, bp

7/(Sz )((3)NpP, P = 1/(k~T), Np is the density of
states at the Fermi surface in the normal state, and T,p
is the Ginzburg-Landau mean-field critical temperature.
One sees that the the pairing term Hp, Eq. (2.1c), and
the single-particle tunneling term Hz, Eq. (2.1d), lead to
a Josephson-type coupling term in the free energy. Equa-
tion (2.2) has the form of a Lawrence-Doniach free-energy
functional without an external magnetic field.

B. Coulomb interaction

To treat the Coulomb interaction correctly, one has to
take into account the quantum-mechanical relation be-
tween particle number n and total phase y,

Lpp = Ap~p =

happ

---h~( ) bZ, ( ) ~( ) ', -P
Qm Qm pp

qm

f. g~(&) g~(2) PF—
qm~

(3.1)

&PP N, 4 . (3.2)

Here, ap = 2app/Np. This result is derived in Appendix
B. Therefore, the T, criterion is np ——top or

has a pole. r The integrations in Eq. (3.1) run over real
and imaginary parts of b, q( and Eq( . For Q g 0 and
m g 0, numerator and denominator cancel. Using FGL
of Eq. (2.2) (since I"c = 0 for m = 0), we get

[n, rp) =ih; (2 4)

n ~" a-
pe = —P"'( ) —

v '"( )PVc p Br . (2.5)

with Vc = e2/(2C), where C is the capacitance of the
bilayer. Setting y(7') = P y exp (i~ v) with ~
2zm/(Ph), m = 0, +1, k2, . . . , we get

i.e., n and p are conjugate variables. Therefore, in the
presence of the Coulomb interaction the fl.ee energy con-
tains an additional phase-dependent term,

lc ' + ) (IdcoI ) =0,
CX =ICCXO =ICO

with bp, ——bp(T -+ T,). The Q' sum yields

(—1

):(I&c I') =
—, J &O'Q' (1&c'I')

Qt

A (ap+ 1)2 —rp4
ln 2 44m(p PNp op —&p

(3.4)

c —) p~~ (v'c wc )
Qm

(2.6)

Especially, one sees that for the static (m = 0) compo-
nent of the free energy the contribution of the Coulomb
interaction is zero.

The total free energy E[b,(~), b, (z)] is now given by the
sum of Eqs. (2.2) and (2.6).

T—:0, (3.5)

independently of the interlayer coupling strength ~t~,

(A is the area of one Cu02 plane; (p is the in-plane zero-
temperature superconducting coherence length). This
expression diverges at o.p ——rp. As a result, we see that
Eq. (3.3) always has the solution
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which is contained in eo. This result is consistent with
Ref. 7. In other words, two mutually coupled 2D systems
of infinite size still form a 2D system.

IV. SAMPLES OF FINITE SIZE

2'(,xx(T;) = L. (4 1)

The divergency of the Q' sum, Eq. (3.4), appears at the
loxx)er limit of the integral, Q' = 0, corresponding to L ~
oo, where L is the size of the system. In real situations
(i.e., experiments) one always works with specimens of
finite size L. And even in very large samples the layers
consist of crystallites connected by weak links, which act
as superconducting regions of finite size. Of course in
such systems one does not have a real thermodynamic
limit, and so one cannot expect a true phase transition
in a mathematically rigorous sense. But how can one
treat these finite systems? The wrong procedure would
be to introduce a lower cutoff of the order 1/L in the
integral, Eq. (3.4), because T, is determined through the
divergency of the fiuctuation propagator at Q = 0, and
so one must not exclude just the low-Q' components in
the Q' sum.

The correct procedure is found in Ref. 7. There exists
a temperature T, , given by

To obtain an equation for T', we consider the two-
particle correlation function

P(*)(~) - (@t(~))t(r)@)(o)@~(o)) (4.4)

which has the asymptotic form p(2)(r) exp( —~r~/(, xx)

for ~r~ -+ oo. This behavior for large ]r~ defines (,xx.

p(2)(r) can be calculated as

)'(~)(~) - ):"'(l&))-l') (4.5)

( 72' 1) 2) —
) 1—

6
( ) 5PNj)aq

2 7l K~
PNpaq 2PNpa2q

Ckaq~ )
~4 &

Cl'aq~)

(4.6)

(the calculation can be found in Appendix C). Here,
2Fi(a, b; c; xI) is the hypergeometric function and the ap-
proximations

where Ago is given by Eq. 3.2 replace ao by

aqp ——ap+ QQ2). For ~m~ & 1,

Here, (,ix(T) is the temperature-dependent in-plane su-

perconducting coherence length, defined for T & T,*. At
T; the system undergoes an effective 2D-OD transition.
Below T;, the Q' sum Eq. (3.4) is dominated by the
(Q' = 0) contribution, and so the sum must not be sim-

ply converted to an integral. Approximately, we set

( 7
2Fi

~
1, 2; —;1—z

~2

( 5

15m= 5 — ~z+ O[z],
4

3'= 3 ——~z+ O[z]
2

(4.7a)

(4.7b)

for z « 1 are used. e2 = k(c )I(;2p with c
4n m /(PV~), and the function k(c) is shown in Fig. 1.
The asyxnptotic behavior of k(c) is

):(I&a 01') = )

(l~ool'),

(4.2)

2c+0 c, c&(1,

k(c) = (
1 ——+0 c)) 1.

4c c )'

(4.8)

, T&T

The transition can, for example, be characterized by a
juxnp in the specific heat Cs (T) at T;, which is calculated
as

One sees that the "efFective interlayer coupling" k(c )~t~2

goes to zero for c + 0, i.e., V~ -+ oo, and approaches
the "bare interlayer coupling" ]t~ for c -+ oo, i.e., V~ ~
0, just as one would naively expect.

Now the T' equation is

)(' 1
Cg(T) = T, =T, —

i

—lnZ i, (4.3) )~~' + 0+~ 0. (ll&col*) C (4 9)

where Z is the partition function [the denominator of Eq.
(3 1)l.

Qp —Q

where bp, ——bp(T + T; ), and a,' is the solution of

-( ~k(c ) rp2
I +- -/4 2( .+ /4)

. ( 2 hark(c )~p2

(a' —~ )2 ((a'+7r m/4) (a*+ 7r m/4) )

(2vrgp ) '
(4.10)
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works of Hohenberg and Rice, due to the strong ther-
mal fluctuations in two-dimensional systems. Then we
consider bilayers with finite plane size and obtain a fi-
nite temperature T, , where the in-plane superconduct-
ing coherence length exceeds the size of the layers and
the system undergoes an efFective 2D-OD transition. This
transition should in principle be measurable by a discon-
tinuity (or at least a rapid change in a finite temperature
interval) of the specific heat. Of course, one also expects
efFects on other quantities, such as the resistivity, but
that is not the subject of the present paper and should
be studied in further work. With a suitable set of pa-
rameters for YBCO, we obtain T' values consistent with
experiment, if the measured transition temperatures are
identified with our T, 's. Especially, for a realistic value
of ~t~

= 50 meV (Ref 14.) we predict that T,* = 0 for
L ) 4500 L. Our results turn out to be rather insensi-
tive to the strength of the Coulomb interaction, because
all quantities are dominated by the static (m = 0) com-
ponent of 6, where the Coulomb interaction does not
contribute.

Most theoretical work by other authors in this field is
done for the case of an infinite number of layers, where it
is possible to apply a discrete Fourier transformation in
the c direction. A treatment of a system with a finite
number of layers is given by Ariosa et al. These authors
use the well-known XY model to describe the physics
in the layers and also consider the Coulomb interaction
between the layers. They obtain a Kosterlitz-Thouless
transition with a transition temperature TK~, which de-
pends on the number of layers via the capacitance of the
whole multilayer system. The authors do not consider
Josephson coupling between the layers.

All these results are in contrast to another group. ~

These authors attribute the variation of the critical tem-
perature with YBCO-layer thickness in the experiments
to extrinsic processes, such as charge transfer, at the
YBCO/PBCO interfaces and not to intrinsic properties
of YBCO.

At this point it is not possible to decide whether our
model is appropriate to explain the experimental phe-
nomena observed on the YBCO/PBCO superlattices or
whether a Kosterlitz- Thouless-type mechanism is respon-
sible for the physical properties. In any case, our results
are consistent with experiment. To facilitate a decision
about the basic mechanism of superconductivity in the
high-T, oxides, further experiments to clarify the super-
conducting behavior of one-unit-cell thick YBCO (and

I

also of other high-T, materials) would be appreciated. It
will also be necessary to make more calculations within
the framework of our model to obtain a wider set of mea-
surable quantities. A very interesting problem would be
a system with more than one but still with a finite num-
ber of layers or bilayers. Looking at the experiments,
one expects an increasing transition temperature with
increasing number of layers and a saturation at the three-
dimensional transition temperature for an infinite num-
ber of layers. Such a calculation would be a good criterion
to check the validity of our model.
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APPENDIX A:
GINZBURG-LANDAU FREE-ENERGY

FUNCTIONAL

To obtain a free-energy functional, we have to calcu-
late the partition function Z = Tr e ~ with H from
Eq. (2.1a). In this appendix, we formally only consider
Cooper pairs with zero total momentum (k t, —k $). We
write H as

H=) ) A;, ct c,. —g) ) c,. c,. c, -,c, „(A1)
ij cx i aa'

where

(A2)

is a Hermitian matrix, a = (k, t), and a. = (—k, $). Now
one has to introduce two complex random variables (q
and (2 to get rid of the four-c term in H and to get an
expression for Z which only contains products of two c
operators. Later, (q and (2 will turn out to be propor-
tional to the gaps in the two layers, 6& & and A~ &. In
the static limit, where (q and (2 are time independent,
Z can be written as

e
— (l&~ I'+ 141')

Tr exp —p) (A;ce c + —B; (c, c - —c, -c )+ —B;(c, -c —c; -))

where

(A4)

is a symmetric matrix.
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To perform the trace, we have to bring the sum P, .( . .j in Eq. (A3) into the form

2

) A; gt g; + const, (A5)

where the g's are Fermi operators. This is done with a procedure similar to calculations by Lieb et aL Our aim is
to diagonalize an operator of the form

1 t t t t't 10 = ) A;~c, c + —B;~ c,tc ~
—c,~c.t I

+ —B; c;~c~t— (A6)

with A;~ = A*; and B;~ = B~i. We make the ansatz

ggmc~~ + kg~c~~t (A7)

With help of the relation [A, BC] = (A, 8jC —B(A, C), where [ ] and ( ) denote commutator and anticommutator,
respectively, we get

[nag, &I = ) (ga A ,~ ~ + gr, B , f:
q

—h, „ A', c.
q + hr, B' .c,q)

Tn2

= &~gIg

= ). X~gs, c,g+ ai, h~, c (As)

Comparison yields the matrix equations

A&a . g&
—A gA,. + B' hI„

AgX hg ——B gI, —A' hI„
which lead to

(A9a)

(A9b) 2

Zp (7t'g )
(A14)

I

We now introduce Zo, the partition function in the nor-
mal state, and write

B' (A' + Asi) B + A —Al, ll gg ——0. (A10)

Here, Il denotes the unit matrix. A nontrivial solution of
Eq. (A10) only exists if

det B' ~ (A' + Asll) ~ B + A —Asll = 0. (All)
Equation (All) is used to determine the A's of Eq. (A5).
Inserting our matrices A and B, Eqs. (A2) and (A4), and
setting gag/P(q 2 ——Aq 2, we obtain the solutions (p =
1, 2)

with

1 1
+ ) s —-Ag —-A2ck

2
A

2
cx

a
2 p~ 1+ —ln(1+e ~'-) ——ln(1+e ~"'-)

&„',.= &'. + - I&il' + - l&21'+ ltl'

+ —
(I &~ I' —

I
&2 I')2.

+41tl'(4s.'+ I& I'+ I& I'
- X/2

cos(yz —rp2 —2Q) ) (A12)

2

e
—Plu(l &.I'+

I
&~ I')

$7Cg)

r 1 1x exp
I

—P s ——Aq ——A2
2 ' 2

x (1+e ~"'-) (1+e
—~"'-) . (A13)

where the upper (lower) sign corresponds to p = 1 (2).
The symbols are explained below Eq. (2.3). Now the
trace in Eq. (A3) can be performed, since the expectation
values of the operators pter are only 0 and 1. The result
1S

1——ln(1+e ~"'") (A15)

The next step is to expand Aq and A2 up to order It12,

2

&~,- = v'&.'+ I&~I'+
Qs' + Ib, g I'

+
I
+&

I I
+&

I 1
+21 cos cp

X (A16)

47p) m 2Np de
CX

0
(A17)

and integrating, we get, up to second order in the OP's,

with P = pz —y2 —2g and A2 ——Az with IA& I
~ 1421.

Replacing the sum over o. by an integral over e
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' (l&il'+ l&21')»
2 Tc0

and introduction of the fourth order term in 4 according
to Ref. 7 leads to Eq. (2.2).

+, i~ill~21 cos(v» —
v 2 —2@).

Npltl

4(d0
{A18)

APPENDIX B: STATIC
AND UNIFORM FLUCTUATION PROPAGATOR

A generalization of Eq. (A18) to finite Q and m values We have to calculate an expression of the form

num

Ig,„
p d~ ~ t'+ d,„+ d,„e—a(z1+x2) —px1xg cps((p1 —rp2 —2g)

f dzyzy f dz2z2 f d(p' f+ dp2e &(&i+&')»&»«»(v& v'2 2&)
(Bl)

With the substitution 8 = p' —y2 —2Q, the angle inte-
gration yields

For fixed Q and m, we have to calculate

+vr +m —(pe —2Q

d(pP2 dge '7

—7r —~—p2 —2Q

= (27r) Ip(pzyz2), (B2)

Iq = d(pq d(p~ e(1) (2) p p+
(C2)

In the following, we suppress the indices Q and m. Since
F' only depends on the phase difference, we substitute

where I0 is a modified Bessel function of order zero. The
x2 integration then is

f
2 '

"zzz2Ip(pz, z2)e * = —e
0 2G

P2 = 4''

Pl+%2 =')
1

dpi dV2 = —dPdg.
2

(C3a)
(C3b)

{C3c)

Finally,

I oc dzxenum ~ 1X1e
0

1

2(a —"/(4a))'
(B4)

The regions of integration for the phase variables p1, p2
and P, g are sketched in Fig. 5. For any even function f
that only depends on P we get

+7r +m 2'
dy1 dy2 —— d 4m —2 . C4

d~ ~ e-I -~'/'(
den ~ x1Z1e

so that

1

I:
—~'/( )j' (B5)

num

Id, n

1.-"/(4 )
(B6)

With a = Papp = PNp(l'p/2 and p = PNpwp2, we obtain
Eq. (3.2).

(b)

APPENDIX C: FLUCTUATION PROPAGATOR
WITH COULOMB INTERACTION

We 6rst consider the phase-dependent term of the &ee
energy, F~=P& F&~-, with

4Z m, (1) (2)
„"vC
+Np"pA' b,' cos p' —p' . ( )

2 jL

FIG. 5. Regions of integration for the phase integrations
(a) in the variables y' and y2, (b) in the variables P and v/r.
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So we now have to evaluate integrals of the form

4m2m2

pv~
d = P~oirp I&iII&2I,

(C6a)

(C6b)

2' 2'
4 dy

—cg —d cos p 2 dy y
—c4P —d cos qh (C5)

0 0

with
27I-3/2 1

Ap(c) =
c c

1/(4 )
23/2

e +—

(-1)"n!
c2 ) (2n+ 1)!c"n=o

Ag(c) =—

(C13a)

(C13b)

We now examine the asymptotic behavior of k(c). For
large c, we can replace the upper limit of integration in
Eqs. (C9) by oo. Then, ~o

e ~ = Ip(d) + 2) (—1)"Ig(d) coskg,
k=1

(C7)

which cannot be done directly. Instead, we use the series
expansion1

For small c,
4

Ap(c) = 4vr' — c+0 c2,

Ai(c) = —16' c+ 0 c

(C14a)

(C14b)

where the Ik are modified Bessel functions of order k. If
we insert Eq. (C7) into Eq. (C2), we have

Equation (4.8) then follows from Eqs. (C13) and (C14).
To perform the remaining integrations over IAqI and

Ib, 2I, one has to evaluate integrals of the form

I" = ) Ag(c)Is(d),
k=o

(C8)
OO X3 OO

d~] d~2 ~2 e o!c~+cs1 "*'c' (C15)
o ~1 o

with

2' 2'
Ap(c) = 47r dPe '~ —2 dPPe

0 0
2'

Ag(c) = (—1)"
I

8m' dPe '~ coskg
0

(C9a)

with A = Pk(c)p. The x2 integration yields~o

I (2)
A c~/(su)D

2a E 2a
(C16)

where D 2 is a parabolic cylinder function. Finally,

—4 dPPe '~ coskP
I

for k & l. (C9b)
)0

To get rid of the infinite sum over k, we write I~ in the
form

f &3 &
—[a—A /(Sa) jx& D1 1 —2 +1

0 2a

2 4~7ri'(4) ( 7 a —A'/(4a) l
2I'(7/2)a' ' ' ' '2'

explnI~ = expln) Ag(c)Ig(d)
k=o

(Clo)

and expand the logarithm up to the second order in d,
i.e., to order Ib, qIIEqI, so that the integrand of the Ib, qI

and Ib, 2I integrations has the form e ~+, where I' con-
tains the Josephson coupling terms up to quadratic order
in IEI. Taking into account the behavior of the Bessel
functions at small arguments, one gets

dz, z, e-t -"' "~j*'D
2 —z,

2-' ~el'(2) ( 5 a —A'/(4a) l
21(5/2). ' ' &"2'

from which Eq. (4.6) immediately follows.

ln) Ag(c)Iq(d) = lnAp(c) —k(c)d+ 0 d, (Cll)
k=p

with

APPENDIX D: DERIVATION OF Eq. (4.10)

To obtain an expression for (,g, we have to calculate

Ag (c)
2Ap (c)

(C12) ).'' '(Iss-I )' (Dl)

[k(c) & 0, since Aq(c) & 0]. Especially, one sees that
only a finite number of Ak functions contribute to the
expansion coefficients. The term ln Ap(c) is independent
of Ib, qI and Ib, 2I and is absorbed in I"p. In presence of
the Coulomb interaction, the "efFective" interlayer cou-
pling is given by k(c)ItI (d is proportional to ItI2). The
function k(c) is plotted in Fig. l.

2' gp
( I Qo I ):p~ (

2( .+4a')
p~o [(ao + I!oq')' —Kp]

(D2)

cf. Eq. (4.5). For m = 0, we get, with help f'rom Eq.
(3.2),
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For m & 1 we write og as

~q —= ~o+ B- + (oQ',
with

where Jo and Ko are again Bessel functions of order zero.
The asymptotic behavior of Ko(z) for large z is

): (l&q-I') = (l&qol')+2) . (I&q I') (»)
m=0, +1,... m)1

7r2 ' ) (l&qol') (D4)
0

and since always o.g & 1 for m & 1, we use the approx-
imation in the second line of Eq. (4.6). Furthermore, we
have

so that

Ko(z) —e
I

I+0
2z q z)'

(.tr —= ~b2(o

(D7)

(D8)

OO 2') e'~'B(Q) oc dQ Q dt's e'q" ' ' B(Q)
Q

0 0

Q~ ( ~(,Q, )
o( Q)

oc dQ Jo(rQ)
0 2(0 +Q

&M~.kr ' (D6)

since the argument of the sum only depends on lml.
If we had no interlayer coupling, i.e., Ko = 0, the func-

tion to be Fourier transformed in Eq. (4.5) would just be
proportional to (no+(oQ ) . Since (,tr is determined by
the large Ir I, i.e., small Q behavior of the correlation func-

tion, we expand (g (IBq Iz)) up to quadratic order
in Q and bring it into the form B(Q) = bq(1+b2(ozQ2).
The Fourier transformation then yields

is identi6ed with the effective superconducting coher-
ence length. Thus we have to determine h2. Expanding

(lhq lz) in Q, we get

cro —Ko &
(cro + Bm 2(cro + Bm)

cro'+Ko4 . ( 2 hark(c )~oz )
(cro' —~')' - ((cro+ Bm)' (cro+ Bm)')

(D9)

Now cr,* is defined by Eq. (4.1) at cro ——cr,*, which leads to
Eq. (4.10), if we set B approximately equal to mzm/4.
Numerically this turns out to be a good approximation.
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