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Recently, several experimental groups have found superconducting behavior of one-unit-cell (i.e.,
one CuO; bilayer) thick YBa;Cu3O7 films. Using the functional-integral method, we calculate the
critical temperature T, for a system of two CuO3 planes coupled via a tunneling matrix element that
results in Josephson-type coupling. The Coulomb interaction between the two planes is considered
via inclusion of quantum phase fluctuations. We take into account the fluctuations of the modulus of
the superconducting order parameter in the planes and the fluctuations of the phase difference of the
order parameter between the planes. While for samples of infinite size T is strictly zero, samples of
finite size L yield an effective two-dimensional to zero-dimensional transition at a finite temperature

T, characterized by a jump in the specific heat.

We obtain 7. as a function of L, Josephson

coupling parameter, and Coulomb interaction strength and predict the temperature dependence of
the specific heat near 7). Our results are consistent with the T, values observed on the single CuO,

bilayer.

I. INTRODUCTION

One of the central problems in the theory of the high-
temperature superconductors is to what extent the su-
perconducting properties are determined by the two di-
mensionality of the CuO; planes, where the microscopic
superconducting mechanism is mostly believed to take
place, and how the extension into the third dimension is
achieved by the coupling between adjacent CuO planes.

In this context transport measurements on
YBa;Cu307/PrBa;Cuz0; (YBCO/PBCO) superlatti-
ces! have reached considerable interest. The authors find
a resistive superconducting transition in systems consist-
ing of one-unit-cell (i.e., one CuO; bilayer) thick YBCO
films separated by up to eight-unit-cell thick nonsuper-
conducting PBCO films with 7, values of up to ~ 20-
30 K. Although it is not overall accepted, many physi-
cists working in this field believe that the YBCO layers
in these superlattices are completely decoupled by the
PBCO layers.? So it seems to be the case that a sin-
gle two-dimensional (2D) CuO; bilayer system can ex-
hibit superconducting behavior. Nevertheless, it should
also be noted that some authors find a one-unit-cell
thick YBCO film sandwiched between PBCO layers to
be nonsuperconducting.?

The question now arising is the following: Can the
transition into the superconducting state be described by
fluctuation effects based on a BCS-like model, or is the
transition characterized by fluctuations into Kosterlitz-
Thouless-type* vortex-antivortex pairs?

One should remember that “conventional” supercon-
ductivity with 7. > 0 is ruled out for systems with two
(or less) dimensions,® since long-range order is destroyed
by phase fluctuations of the superconducting order pa-
rameter (OP) for T > 0.% Some time ago Hassing and
Wilkins” obtained similar results. They take into account
fluctuations of the superconducting OP up to fourth or-
der in a so-called biquadratic approximation; as a conse-
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quence of this procedure they only consider the modulus
of the OP. When Hassing and Wilkins calculate the crit-
ical temperature 7., they obtain 7. = 0 in two or fewer
dimensions. Nevertheless, it is not really clear how the
phase fluctuations enter their theory.

Motivated by the experiments, we investigate in this
paper the superconducting critical temperature 7, in a
system consisting of two mutually coupled CuO, planes
with BCS-type pairing. Part of this work has been pub-
lished elsewhere.® We take into account fluctuations of
the modulus of the superconducting OP in the planes
up to fourth order in biquadratic approximation, fluc-
tuations of the phase difference of the superconducting
OP between the planes, and the Coulomb interaction be-
tween the planes via inclusion of quantum phase fluctu-
ations.

In Sec. II we introduce our basic model Hamilto-
nian, from which we derive a Ginzburg-Landau-type free-
energy functional by a functional-integral transforma-
tion; we also include the Coulomb interaction. In Sec. III
we calculate the critical temperature 7T, of a bilayer sys-
tem with infinite plane size and show that always T, = 0.
Effects of finite size L are considered in Sec. IV. Numer-
ical results are given in Sec. V for a choice of parameters
suitable for YBCO. In Sec. VI we give a summary and
discussion.

II. MODEL HAMILTONIAN AND FREE
ENERGY

A. Basic Hamiltonian

Omitting the Coulomb interaction at this point (see
Sec. I B), we start with the Hamiltonian

H=Hy+ Hp + Hr, (2.18.)
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with
H, = Z Zeac:-',ac,-,a, (2.1b)
i=1,2 «
Hp=-g ZbI’Qbi,Q, (2.1¢)
i=1,2 Q
Hy = Z(tci{,acz,a + H.c.). (2.1d)

[+

Here, a = (k,0) and bg = Y, c_k Ck+@t. The index ¢
J

refers to the plane. g and ¢ are the intraplane pairing
energy and interplane tunneling matrix element, respec-
tively, which are taken to be constants. Hp describes a
BCS-like intralayer pairing and Hr a single-particle in-
terlayer tunneling.

Applying a functional-integral transformation® to Eq.
(2.1a) and introducing the fourth-order term in the su-
perconducting OP in biquadratic approximation” yields
the free energy in Ginzburg-Landau form (for details see
Appendix A),

2 2
FarlA®, A0 = F + 3 agm (\A‘Q‘,’ni +|agn| ) + Nowd 3| A5 |G| cos (050 — ¥n - 20) . (22)
Qm Qm

with
agm = 2 {m% + T iml+ 6307 + ng}
Pl 3 (1300l i (2.3)
Here, A(Q’Zn = )Agz_n‘ exp (zgogln), t = |t|exp(iv),

Ko = [t|/(2wo), wo is the BCS cutoff parameter, by =
7/(872)¢(3)NoB2%, B = 1/(ksT), No is the density of
states at the Fermi surface in the normal state, and T,
is the Ginzburg-Landau mean-field critical temperature.
One sees that the the pairing term Hp, Eq. (2.1c), and
the single-particle tunneling term Hr, Eq. (2.1d), lead to
a Josephson-type coupling term in the free energy. Equa-
tion (2.2) has the form of a Lawrence-Doniach free-energy
functionall® without an external magnetic field.

B. Coulomb interaction

To treat the Coulomb interaction correctly, one has to
take into account the quantum-mechanical relation be-
tween particle number n and total phase ¢,

[n, o] = ik; (2.4)

i.e., n and ¢ are conjugate variables. Therefore, in the
presence of the Coulomb interaction the free energy con-
tains an additional phase-dependent term,!!
A" |8 2
Foe Y d_[<1) _(2)],
o= g | 4| [0 - e
with Vo = €%/(2C), where C is the capacitance of the
bilayer. Setting ¢(7) = ), ©om exp (iwy,7) with w,, =
2rm/(Bh), m = 0, £1, £2, ..., we get

4m?m? 1) @) \2
Fo = QZ 32V (‘PQm - ‘PQm) :

(2.5)

(2.6)

Especially, one sees that for the static (m = 0) compo-
nent of the free energy the contribution of the Coulomb
interaction is zero.

The total free energy F[A(1), A?)] is now given by the
sum of Egs. (2.2) and (2.6).

III. CRITICAL TEMPERATURE
IN INFINITE SYSTEMS

We first consider a system with planes of infimte size.
The critical temperature T is defined as the temperature
where the uniform and static fluctuation propagator

<|A00|2> <‘A(()](5) 2> = <|A8%)|2>
/ [16a8508), |a@| eoF
Qm
) / [1645), 6a8) e#F @
Qm Qm
Qm

has a pole.” The integrations in Eq. (3.1) run over real

and imaginary parts of Agm and A(er)n For Q # 0 and
m # 0, numerator and denominator cancel. Using Fgr,
of Eq. (2.2) (since F¢ = 0 for m = 0), we get

26!0

<|Aoo|2> = m—_—ng). (3.2)

Here, ap = 2ag0/No- This result is derived in Appendix

B. Therefore, the T, criterion is ag = k2 or

Tc bOc 2 _
Q ap=r3
with bg. = bo(T' = T.). The Q' sum yields
2\ A &t o 2
> (18el’) = 52 [ @@ (a0l
4 et Tom gy

= n
4m€2BN, a? — Kk}

(A is the area of one CuQO; plane; & is the in-plane zero-
temperature superconducting coherence length). This
expression diverges at ag = k3. As a result, we see that
Eq. (3.3) always has the solution

T. =0, (3.5)

independently of the interlayer coupling strength |[t,
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which is contained in xo. This result is consistent with
Ref. 7. In other words, two mutually coupled 2D systems
of infinite size still form a 2D system.

IV. SAMPLES OF FINITE SIZE

The divergency of the Q' sum, Eq. (3.4), appears at the
lower limit of the integral, Q' = 0, corresponding to L —
00, where L is the size of the system. In real situations
(i.e., experiments) one always works with specimens of
finite size L. And even in very large samples the layers
consist of crystallites connected by weak links, which act
as superconducting regions of finite size. Of course in
such systems one does not have a real thermodynamic
limit, and so one cannot expect a true phase transition
in a mathematically rigorous sense. But how can one
treat these finite systems? The wrong procedure would
be to introduce a lower cutoff of the order ~ 1/L in the
integral, Eq. (3.4), because T, is determined through the
divergency of the fluctuation propagator at @ = 0, and
so one must not exclude just the low-Q’ components in
the Q' sum.

The correct procedure is found in Ref. 7. There exists
a temperature T, given by

onbeq(T*) = L (4.1)

Here, £eq(T) is the temperature-dependent in-plane su-
perconducting coherence length, defined for T' > TF. At
T the system undergoes an effective 2D-0D transition.
Below T, the Q' sum Eq. (3.4) is dominated by the
(Q' = 0) contribution, and so the sum must not be sim-
ply converted to an integral. Approximately, we set

E :"_1 4Q' Q' (1aqul?),

E(lAQ’0|2> ~ J T>T;,

v <|A00|2>,
| T < T

(4.2)

The transition can, for example, be characterized by a
jump in the specific heat Cs(T') at T, which is calculated
as

(4.3)

8%*F 8 (1

where Z is the partition function [the denominator of Eq.

(3.1)].

|

*

a 2

*

To obtain an equation for T, we consider the two-

particle correlation function'?

oy () ~ (19} ()9, ©91(0)), (4.4)

which has the asymptotic form p(z)(r) ~ exp (—|r|/Ees)
for |r| — oo. This behavior for large |r| defines E.q.
p(2)(r) can be calculated as”

pa(x) ~ D" (JAgml*), (45)
Qm
where <|AQ0|2> is given by Eq. (3.2) (replace oq by

ago = ag + £2Q2). For |m| > 1,

4
o Fy (1 2751 —"g)
6 2 AHm
5
2

<|Alez> =

- SﬂNoa 4
sz 1 1,1;—;1——'{2L
(o7
2 TK2
~ - ™ 4.6
BNoagm 2,3N0012Qm (46)

(the calculation can be found in Appendix C). Here,
2F1(a,b; ¢;y) is the hypergeometric function and the ap-
proximations

oy (1,2; g; 1— :c) 5— —l—fﬂ\/_+ Olz], (4.7a)

for z <« 1 are used. k2, = k(cm)kZ with ¢,

41?m?/(BVc), and the function k(c) is shown in Fig. 1.
The asymptotic behavior of k(c) is

2c+0[c2], cK1,

k(c) = (4.8)

1 1
1- i +O[3/2] c> 1.

One sees that the “effective interlayer coupling” k(c,,)|[t|?
goes to zero for ¢,, = 0, i.e., Vo — 00, and approaches
the “bare interlayer coupling” |t|? for ¢,, = o0, i.e., Vo —
0, just as one would naively expect.

Now the T} equation is

wfed e S (0e) o

ap=a?

(4.9)

where b}, = bo(T — T}), and a} is the solution of

ar? — K} + Tgl (a; +n2m/4

mk(cm) K3 )
2(o + m2m/4)?

(4.10)

2
+ K3

wk(cm)K3

2
(cx? —md)? 2 ((a: Fam/a?

(ag +72m/4)3

) - (27;&&)2
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FIG. 1. Function k(c) vs c.

In Appendix D, Eq. (4.10) is derived from Eq. (4.1). In
the m sums, only the terms with m = 1 are retained,
since they yield by far the largest contribution.

V. RESULTS

To obtain quantitative results, we use a set of parame-
ters suitable for YBCO.3 These are the following: plane
separation d = 3.4 A, effective mass m* = 6my, £ = 15
A, wo = 50 meV, and T.o = 82 K. The capacitance C is
calculated as C = ¢/(4w)A/d with e = 4.

In Fig. 2 we plot T vs 1/L for five different values of
|t|, and in Fig. 3 we show T* vs |t| for five different values
of L with fixed Coulomb interaction strength (see remark
below). For each value of |t|, there exists a maximum
value for L, above which T} is zero. Also, for each L one
finds a minimum |¢|. For small values of L (27€o/L >
0.2), T} is approximately linear in 1/L. Furthermore,
our calculations show that the resulting T values do not
vary much, if V¢ is either very large or very small. The
reason for this unexpected behavior is that the Coulomb
interaction only affects the (m # 0) components of A,

100

T; [K]
S
|

0.00 0.25 0.50

2mé,/L

FIG. 2. T} vs 2n€o/L. From right to left: |t| = 0, 25, 50,
75, and 100 meV.
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(K]
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FIG. 3. T: vs |t|/wo. From left to right: L = 500, 1000,
2000, 3000, and 5000 A.

while the (m = 0) component makes by far the largest
contribution to T .

In Fig. 4 the superconducting contribution to the spe-
cific heat, Cs(T), is plotted vs T in the vicinity of T}
for four different L values; the curves are shifted verti-
cally for clarity. One sees that the specific heat jump
decreases for increasing L and has almost disappeared
for L = 3000 A.

VI. CONCLUSIONS AND DISCUSSION

In this paper we consider a CuQO, bilayer system with
BCS-type intralayer pairing, single-particle interlayer
tunneling (which together leads to Josephson-type cou-
pling terms in the free energy), and interlayer Coulomb
interaction via quantum fluctuations of the phase differ-
ence of the superconducting OP’s in the two planes. We
also take into account fluctuations of the modulus of the
OP in the planes up to fourth order in a biquadratic ap-
proximation. For a system of infinite plane size, we cal-
culate the superconducting critical temperature, which
turns out to be always zero, a result consistent with the

2.50

Cs(T)/Cn(T7)
N

0.00 T T T T T T
0.9 1.0 1.1

T/T:

FIG. 4. Cs(T) vs T in the vicinity of T.'. From bottom to
top: L = 500, 1000, 2000, and 3000 A.
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works of Hohenberg and Rice, due to the strong ther-
mal fluctuations in two-dimensional systems. Then we
consider bilayers with finite plane size and obtain a fi-
nite temperature T, where the in-plane superconduct-
ing coherence length exceeds the size of the layers and
the system undergoes an effective 2D-0D transition. This
transition should in principle be measurable by a discon-
tinuity (or at least a rapid change in a finite temperature
interval) of the specific heat. Of course, one also expects
effects on other quantities, such as the resistivity, but
that is not the subject of the present paper and should
be studied in further work. With a suitable set of pa-
rameters for YBCO, we obtain T* values consistent with
experiment, if the measured transition temperatures are
identified with our T’s. Especially, for a realistic value
of |t| = 50 meV (Ref. 14) we predict that T* = 0 for
L > 4500 A. Our results turn out to be rather insensi-
tive to the strength of the Coulomb interaction, because
all quantities are dominated by the static (m = 0) com-
ponent of A, where the Coulomb interaction does not
contribute.

Most theoretical work by other authors in this field is
done for the case of an infinite number of layers, where it
is possible to apply a discrete Fourier transformation in
the ¢ direction.® A treatment of a system with a finite
number of layers is given by Ariosa et al.'® These authors
use the well-known XY model to describe the physics
in the layers and also consider the Coulomb interaction
between the layers. They obtain a Kosterlitz-Thouless
transition with a transition temperature TxT, which de-
pends on the number of layers via the capacitance of the
whole multilayer system. The authors do not consider
Josephson coupling between the layers.

All these results are in contrast to another group.?
These authors attribute the variation of the critical tem-
perature with YBCO-layer thickness in the experiments
to extrinsic processes, such as charge transfer, at the
YBCO/PBCO interfaces and not to intrinsic properties
of YBCO.

At this point it is not possible to decide whether our
model is appropriate to explain the experimental phe-
nomena observed on the YBCO/PBCO superlattices or
whether a Kosterlitz-Thouless-type mechanism is respon-
sible for the physical properties. In any case, our results
are consistent with experiment. To facilitate a decision
about the basic mechanism of superconductivity in the
high-T, oxides, further experiments to clarify the super-

conducting behavior of one-unit-cell thick YBCO (and
J

Z= /541 5¢y eGP HG )

also of other high-7T. materials) would be appreciated. It
will also be necessary to make more calculations within
the framework of our model to obtain a wider set of mea-
surable quantities. A very interesting problem would be
a system with more than one but still with a finite num-
ber of layers or bilayers. Looking at the experiments,
one expects an increasing transition temperature with
increasing number of layers and a saturation at the three-
dimensional transition temperature for an infinite num-
ber of layers. Such a calculation would be a good criterion
to check the validity of our model.

ACKNOWLEDGMENTS

The author would like to thank Professor J. Appel for
suggesting the interesting problem of the CuQO; bilayer
and for many fruitful discussions. Helpful discussions
with C. Timm are also acknowledged. This work was
supported by the Deutsche Forschungsgemeinschaft.

APPENDIX A:
GINZBURG-LANDAU FREE-ENERGY
FUNCTIONAL

To obtain a free-energy functional, we have to calcu-
late the partition function Z = Tr e #H with H from
Eq. (2.1a). In this appendix, we formally only consider
Cooper pairs with zero total momentum (k 1, -k |). We
write H as

H= Z Z A,'jczyacj,a -9 z Z czyacl&ciya,ci,a,, (A1)
ij o aa'

1

where
Ea t
A= ( o ea) (A2)

is a Hermitian matrix, a = (k,1), and & = (—k,J). Now
one has to introduce two complex random variables (;
and (3 to get rid of the four-c term in H and to get an
expression for Z which only contains products of two ¢
operators. Later, (; and (; will turn out to be propor-
tional to the gaps in the two layers, A() and A(®). In
the static limit, where {; and (, are time independent,
Z can be written as®

1 1.,
x H Tr exp _ﬂz {Ai:ic;r,acj,a + 531'1-(03,&6},& - cI,ac},a) + 2 i (CiaCja — ci,acj,&)} ) (A3)
a i3

where

is a symmetric matrix.
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To perform the trace, we have to bring the sum 3 ..{---} in Eq. (A3) into the form

2

Z ’\i,a’ht,aﬂi,a + const,

=1

(AS5)

where the n’s are Fermi operators. This is done with a procedure similar to calculations by Lieb et al.'® Our aim is

to diagonalize an operator of the form

0= Z [Aijc:.'cj + 58,-]- (cITc;[l - cuch) + EBZj (cuc” - c,-chi) ,
i

with A;; = A}, and B;; = Bj;. We make the ansatz

Mkt = Z (gkmcmT + hkmcjw) :

m

(A6)

(A7)

With help of the relation [A, BC] = {A, B}C — B{A,C}, where [---] and {- - -} denote commutator and anticommutator,

respectively, we get

(e, O] =Y (gkmAmjch + gkmBrmjcl, — himAr el + hkmB:na'CiT)

mj

= Akt

= Z (/\kgkjcﬁ + /\khkjc}l) .
J

Comparison yields the matrix equations

/\kn‘gk =A'gl¢+B’.= 'hk, (A9a)
Akll-hk = B'gk—A* 'hk, (A9b)

which lead to
[B*- (A* + Apl) - B+A—X\el] -gx =0.  (A10)

Here, 1 denotes the unit matrix. A nontrivial solution of
Eq. (A10) only exists if
det [B*-(A*+ \l)"'-B+A— A1) =0. (All)

Equation (A11) is used to determine the A’s of Eq. (A5).
Inserting our matrices A and B, Egs. (A2) and (A4), and

setting \/mg/B(1,2 = A1,2, we obtain the solutions (u =
1,2)

1 1
A a=ei+ '2‘1A1|2 + 5|A2|2 + [t)?
1 2
+ 3 [(IAIIZ —|A2]?)
+ 4|t)? {42 + |A1)? + |Az)?
1/2
— 2|84 [|As] cos(1 — w2 —24)}]

where the upper (lower) sign corresponds to u = 1 (2).
The symbols are explained below Eq. (2.3). Now the
trace in Eq. (A3) can be performed, since the expectation

values of the operators n'7 are only 0 and 1. The result
is

(A12)

2
Z = (ﬂ) /5A15A26—B/Q(IA1I’+IA2|’)
g

1 1
X HeXP (—ﬂ {€a - 5)\1,01 - ‘2‘/\2,a})

X (14 e Prue) (1 + e Prae), (A13)

(A8)

[
We now introduce Z,, the partition function in the nor-
mal state, and write

2
20 _ (-‘3—) / 6A; 6A; e PFIB1,A2] (A14)
2 g
with
A 2 A 2
FlA;, &) = 1218 182]
g g
1 1
+ ; {5a - 2/\1,0 2/\2,01
2 Be —BA
+Eln(1+e °) —ln(1+e “')
—%ln(l + e““z-a)} (A15)

The next step is to expand A; and Az up to order |t|2,
It
Ves + A

% 262 + [A1]? — |A4]|Az[cos &
|A1]% = [Ae|? ’

Al,oz ~ 512:(+|A1|2+

(A16)

with @ = 1 —p2—29 and Ay o = A1, With |A1] & |A2|.
Replacing the sum over a by an integral over €4,

wo
> = 2N, de g, (A17)
P 0

and integrating, we get, up to second order in the OP’s,
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F= 32 (1A1]% + |Az[*) In — Nolt|?
c0
Nolt|?
+ % (1217 +]A2%)
Nolt
+ "' ' |A1]|Az] cos(pr — 02 — 29). (A18)

A generalization of Eq. (A18) to finite @ and m values
J
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and introduction of the fourth order term in A according
to Ref. 7 leads to Eq. (2.2).

APPENDIX B: STATIC
AND UNIFORM FLUCTUATION PROPAGATOR

We have to calculate an expression of the form

With the substitution 8 = ¢; —
gration yields!®

Loum f0°° dz; (B? fo°° dzy zo f_‘:" dor j‘j"' dya e—a(z'f+:c§)—‘7:nzz cos(p1—p2 —21)
- ™ . B1
Laen [ deyay fJ° dapaz [7] dipy ST dipg ema(aite)—yaizs cos(or—e2—29) (B1)
[
w2 — 29, the angle inte- For fixed Q and m, we have to calculate
+
15, = / dpl), / ) e PFom. (C2)
e~ YT1Z2 cos @ —7 -

+T—p2— 2¢
[ e |
- T—p2—2¢

where Iy is a modified Bessel function of order zero. The
z, integration then is'®

= (2m)%Iy(yz172), (B2)

= 2 1 2
/ dry xo Io(’y:tl.”l,‘z) e 9%2 — 2_8‘1211/(40,)' (B3)
0 a
Finally,
Inum X /Oo dll .’L':I e—[a—‘yz/(‘la)]zf
0
= 1 (B4)
2[a —v%/(4a)]
and
Iden X / d:l)l Xy e_[a_"/z/(‘la)]zi
0
1
= 3Ta — ~2/(4a)’ B5
2[a — +2/(4a)] (B5)
so that
1

Iden B a— 72/(40') -

With a = Bago = BNoap/2 and v = BNyk2, we obtain
Eq. (3.2).

APPENDIX C: FLUCTUATION PROPAGATOR
WITH COULOMB INTERACTION

We first consider the phase-dependent term of the free
energy, F¥ = ZQm om With

am*m® oy (2) 2
Fén= G, (¥om — ¥5n)

+ Nox2 ’A(l) ' 'A(z) cos ((p(len — <p(Qz1)n) . (C1)

In the following, we suppress the indices Q and m. Since
F¥ only depends on the phase difference, we substitute

p1—p2 = ¢, (C3a)

p1+ @2 =1, (C3b)
1

dp1dps = 3 do di. (C3c)

The regions of integration for the phase variables @1, @2
and ¢, 9 are sketched in Fig. 5. For any even function f
that only depends on ¢ we get

/_ dor / dea f(6) = 0"d¢(47r—2¢)f(¢). (Ce)

P2
(a)
T
- j? P
—7
P
(b)
27
e : == ¢
—27

FIG. 5. Regions of integration for the phase integrations
(a) in the variables 1 and @2, (b) in the variables ¢ and .
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So we now have to evaluate integrals of the form

27

27
A d¢ e—c¢2—dcos¢ _ 2/ d¢¢e—c¢2—dcos¢’ (05)
0

0

with
4m2m?
C=cCm = ——i, Cé6a
BVe (Céa)
d = ﬁNon(z) |A1||A2|, (CGb)
N —
Y

which cannot be done directly. Instead, we use the series

expansion'®
e=d 6 — I1(d) + 2 Z(—l)klk(d) cos ko, (C7)
k=1

where the I are modified Bessel functions of order k. If
we insert Eq. (C7) into Eq. (C2), we have

19 =) Ar(0)In(d), (C8)
k=0
with
2n 2w
Ao(c) = 4r / dpe=%" —2 / dppe*,  (C9a)
0 0

27 2
Ax(c) = (-1)* (871’L dpe=* coske

2r
-4 / dppe=% cosk¢) for k> 1. (C9b)
0

To get rid of the infinite sum over k, we write I¥ in the
form

explnI¥ = expln z Ag(c) Ik (d)
k=0

(C10)

and expand the logarithm up to the second order in d,
i.e., to order |A;||A2|, so that the integrand of the |A,|
and |A,| integrations has the form e #¥, where F' con-
tains the Josephson coupling terms up to quadratic order
in |A|. Taking into account the behavior of the Bessel
functions at small arguments, one gets

lni Ar(©)Ii(d) ~ In Ao(c) — k(c)d + O [d?], (C11)
k=0
with
k(c) = — 2‘:1410(8) (C12)

[k(c) > 0, since A;(c) < 0]. Especially, one sees that
only a finite number of A; functions contribute to the
expansion coefficients. The term In A¢(c) is independent
of |Ay| and |Az| and is absorbed in Fy. In presence of
the Coulomb interaction, the “effective” interlayer cou-
pling is given by k(c)|t|? (d is proportional to |t|2). The
function k(c) is plotted in Fig. 1.

We now examine the asymptotic behavior of k(c). For

large ¢, we can replace the upper limit of integration in
Egs. (C9) by co. Then,'®

2m3/2 1
Ao(c) ~ \/E - -E, (0133)
3/2 )
Ay(e) m =2 o1/t0) 3
-3 Z (2n n 1)'c" (C13b)
For small c,
, 8 2
Ao(c) = 4m° — TC+ 0[], (C14a)
Ai(c) = —167%c+ O [?] . (C14b)

Equation (4.8) then follows from Egs. (C13) and (C14).
To perform the remaining integrations over |A;| and
|Az|, one has to evaluate integrals of the form

oo 23 oo 2 2
/ dz, {:cl }/ dzs z, e (F1t22) " Aziez (C15)
0 1 0

with A = Bk(c)y. The z, integration yields'®

1 A2g2 /\.’171
1 n(9)ee?/(8a) (_)
-T(2)e 2\ 7

where D_, is a parabolic cylinder function. Finally,'®

e —|la— a.:c A2
/ day 28 e~la=3*/(8a)] _2(‘/_2_(;3,1)
0

274/7l(4) 7 a— A?/(4a)
- T o (125 =) e

(C16)

and

/ dey 2y -l /Gt p [ A
0 2a

2I'(5/2)a '’ a > » (C18)

from which Eq. (4.6) immediately follows.

APPENDIX D: DERIVATION OF Eq. (4.10)

To obtain an expression for {.¢, we have to calculate

> (JAgml’); (D1)
Qm
cf. Eq. (4.5). For m = 0, we get, with help from Eq.
(32),
2a
2y . “%Q0
(1800™) = FRotaz, — =)

2(a0 + £3Q%)
= BNo[(ao + €3Q%)2 — ra]’

(D2)
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For m > 1 we write agm as

oQm = ag+ B, + :SSQZ, (D3)
with
Br= " jm|— 2 3™ (jagul?) (D4)
m = N 2. Qol*),

and since always agm > 1 for m > 1, we use the approx-
imation in the second line of Eq. (4.6). Furthermore, we
have

> (lAem®) = (1Aqol®) +2 Y (1Agml®),

m=0,%1,... m>1

since the argument of the sum only depends on |m]|.

If we had no interlayer coupling, i.e., K9 = 0, the func-
tion to be Fourier transformed in Eq. (4.5) would just be
proportional to (ap+£2Q?) 1. Since &g is determined by
the large |r|, i.e., small @ behavior of the correlation func-
tion, we expand (32, (|Agm|?)) " up to quadratic order
in @ and bring it into the form B(Q) ™! = §;(1+62£2Q%).
The Fourier transformation then yields®

oo 2w
Y e B@ x [ daq [ avererrB(Q)

Q
bt Q
dQ ————— Jo(r
<[ a5y T o,eaqe) @)

), G @
() (D6)

where Jy and K are again Bessel functions of order zero.
The asymptotic behavior of Ko(z) for large z is!®

Ko(2) ~ %e—z (1 +0 ED , (D7)
so that
et = /5260 (D8)

is identified with the effective superconducting coher-
ence length. Thus we have to determine §,. Expanding

>om (]Aqm|2> in Q, we get

ap 2 wk(cm )3
ag? — K§ + Z (a0+Bm

- X oo + 5
2= 010 +’€0 N Z _ Wk(cm)n,g .
(ao — K4)2 a() + Bm)2 (ao —+ Bm)3
(D9)

Now o is defined by Eq. (4.1) at ag = o, which leads to
Eq. (4.10), if we set B,, approximately equal to w2m/4.
Numerically this turns out to be a good approximation.
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