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The sheet current, electric field, and penetrating magnetic field in response to an applied per-
pendicular ac magnetic field are calculated for a thin type-II superconducting strip characterized
completely by its sheet resistivity, which may be either nonlinear and frequency independent or lin-
ear, complex, and frequency dependent. The general formulation is given for the linear or nonlinear
response of a strip and a circular disk in perpendicular time-varying magnetic field. An elegant
and rapid numerical method is presented which solves this, in general, nonlinear one-dimensional
integrodifferential equation with high precision on a personal computer and which accounts for the
facts that the integral kernel has a logarithmic singularity and the sheet current for nearly ideal
shielding (occurring at short times or high frequencies or for strong pinning of flux lines) has a
one-over-square-root singularity near the specimen edges. As examples the linear Ohmic response
of the strip to a sudden change of the applied field and to an ac field are given; Ohmic response
is realized during Bux Bow or thermally activated Qux How. The complex magnetic susceptibility
and the ac losses of the Ohmic strip are computed and approximated by simple expressions. This
work completes the calculation of dissipation peaks in vibrating superconductors caused by various
diffusion modes of the Qux lines.

I. INTRODUCTION

The discovery of high-T, superconductors (HTSC's)
has revived the interest in experimental methods which
measure the electromagnetic response of these extreme
type-II superconductors in dc and ac magnetic 6elds
H (t). Most of these experiments are performed in
perpendicular geometry, in which a thin ceramic or
monocrystalline platelet or film is exposed to a magnetic
field that has a component perpendicular to the speci-
men. This geometry gives a larger response since it gen-
erates a much a larger magnetic moment per unit volume
than the longitudinal geometry. Two examples may illus-
trate this, in which we consider the maximum negative
magnetic moment —m achieved during complete flux ex-
pulsion, e.g. , in the Meissner state of superconductors,
or, with normal conductors, in high-frequency ac fields
which penetrate only to a skin depth b (& d:

(i) A circular disk of radius a and thickess d
a in a perpendicular field H has —m = (8a /3)H
which is generated by a shielding sheet current J(r) =
(4/ )H- /(

' — ')'""
(ii) A thin strip of width 2a and length I )) a has a

moment —m = era LH~ generated by a shielding sheet
current J(y) = 2H y/(a2 —y ) ~ (see below).

Both results are independent of the thickness d
and mean large average magnetization or susceptibil-
ity —m/(VH ) = 8a/3vrd (V = specimen volume) and
—m/(VH ) = hara/2d. In the longitudinal case where H
is applied parallel to the specimen one always has the
much smaller negative magnetization —m/(VH ) = 1.

In perpendicular geometry, each volume element of the
specimen is afFected by not only the applied field but also

a field caused by the magnetization of all other volume el-
ements. These demagnetization efFects can be described
by a demagnetization factor N (0 & N & 1) if the spec-
imen has the shape of an ellipsoid and if the magnetic
response of the material is linear. Both requirements are
in practice never satisfied in experiments on HTSC's. In
spite of this, demagnetization corrections are usually ap-
plied by approximating disks or strips with rectangular
cross section by ellipsoids with half axes a and 6, yielding
demagnetizing factors N = 1 —orb/2a for thin disks and
N = 1 b/a for t—hin strips in perpendicular fields (b « a).
The field at the equator of the disk or edge of the strip
is then enhanced by a large factor 1/(1 —N); the same
enhancement factor applies to the homogeneous efFective
magnetic field experienced by each volume element and
to the magnetic moment as compared to the longitudi-
nal geometry, which exhibits no demagnetization effects.
Choosing the short axis b of the ellipsoid such that the
correct magnetic moment is obtained, one gets b = 3d/4
for the disk and b = 2d/vr for the strip. Exactly the same
result follows if one requires the volume or cross section
of the ellipsoid to coincide with the volume of the disk or
cross section of the strip, respectively.

The approximation by an ellipsoid, however, misses
several real effects. First, at the sharp edges of rectan-
gular samples the external field is enhanced even more,
by a factor diverging as the logarithm of the radius of
curvature of the edge, as follows &om the theory of po-
tentials by conformal mapping. Second, the sheet re-
sistance p/d of an ellipsoid with varying thickness d(r) =
d(0)(l —y /a ) ~ is not constant but diverges at the
edges if the specific resistivity p is constant (uniform
material). Third, the realistic rectangular cross section
causes a geometric surface barrier for the penetration
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d/2

J(y, z) = j(z, y, z) dx.
—d/2

The strip and the disk fill the space ~z~ & d/2 && a
and [y~ & a, ~z~ & L/2 && a or r = (y + z )i~2 & a,
respectively, (see the insets in Figs. 1 and 8 below)
yielding sheet currents J(y, z) = —J(y)z (strip) and

J(y, z) = J(r)P (disk, P = po—lar angle). From the sheet
current one obtains the magnetic moment m of the spec-
imen

1m= — jxrd z,
2

(1.2)

which points along x and may be written in the form

m = xML, M = —y J(y) dy (strip),
—a

(but not for the exit) of magnetic fiux even in type-I
superconductors. ' This barrier is due to the enhanced
shielding current flowing in the edge region because this
is thicker compared to the barrier-free elliptic cross sec-
tion. The observed asymmetry of the irreversible magne-
tization curve in perpendicular geometry has often been
misinterpreted as evidence for a Bean-Livington barrier
for the penetration of Hux lines through a planar surface.

The, usually tacit, assumption of an elliptic cross sec-
tion yields spurious results in many cases. One example
is the nonlinear static magnetization and the field and
current profiles in the Bean critical state of a disk2 or
strip. ' Another example is the linear magnetic response
of a disk or strip treated in the present paper and in Ref.
9. Numerical computations of the magnetization and of
field and current profiles in circular disksio is usually do
consider the correct rectangular cross section [see also
the review papers, Ref. 14]. The profiles of the magnetic
field component perpendicular to the plane of the disk or
strip can be observed by magneto-optics. is is

The present paper gives the general theory of the pen-
etration of a time-dependent homogeneous applied field
H (t) into a thin strip or circular disk perpendicular to
this field. This theory is then applied to the linear re-
sponse of a thin strip and the results are compared with
the results in longitudinal geometry. The present paper
is Part I of a projected series. The forthcoming Parts II
and III present explicit results for the circular disk and
for square and rectangular plates.

In this work the coordinate perpendicular to the spec-
imen plane is denoted by x. The principal quantity to be
calculated is the sheet current

contribute 2m each.
The magnetic field generated by the sheet current fol-

lows from Ampere's law. For a thin strip one gets to an
accuracy of d/a

H(x, y) = — ' '
du +H . (1.5)

1 (y —u, —x, 0) J(u)
2' y —u2+x2

Equation (1.5) yields the tangential components H, = 0
and H„(d/2, y) = H„(—d/2—, y) =

2 J(y) since z/(u2+
z ) = xsgn(x) b(u) for ~z~ m 0: the sheet current de-
termines the jump of the tangential field H„. For the
perpendicular component H (O, y) in the plane of the
strip (i.e., inside the strip and outside the strip near its
surfaces, or at arbitrary distance ~y~ provided ~x~ && a)
one gets

H, (0, y) = H(y) = — du+ H
1 J(u)

~ P —Q

1 2u J(u)
J(u) du+ H

2Ã 0 g
(1.6)

with the kernel

K(k) E(k) (4ur) 'i'
u+r u —r u+r (1 8)

Here K(k) and E(k) are complete elliptic integrals of
the first and second kind. Note that the integral kernels
2u/(y —u ) of (1.6) and P(u, r) (1.8) are not symmetric
in their two arguments but can be written in the form

y 'fi(ylu) or r 'fz(r/u)
The above equations (1.1) to (1.8) describe the magne-

tostatics and do not contain any material parameter yet.
When the magnetic field changes with time, an electric
Geld E is induced which drives the sheet current accord-
ing to Ohm's law. If the skin depth b exceeds d (see
below) then E is constant over the thickness and one has

where in the second expression the symmetry of the in-
duced current J(—y) = —J(y) has been used. In (1.6)
and all similar integrals below, the interpretation is in the
sense of Cauchy's principal value. In a similar way, the
azimuthal (circumferential) sheet current J(r) circulat-
ing clockwise in a thin disk generates a radial field at the
disk surfaces H„(d/2, r) = H„( d/2, —r) = —J(r), and a
perpendicular field in the disk plane x = 0 (see also Ref.
2),

CL

H (O, r) = H(r) = — P(r, u) J(u) du,
27C 0

a
r' J(r) «(d») .

0
(1.4)

The factar 1/2 of the definition (1.2) has been dropped
in the expression (1.3) for the magnetic moment per unit
length of the strip, since one has to consider the contri-
bution of the U turn of the sheet current at the far-away
ends of the strip; since divj = 0 or divJ = 0 the inte-
grals over zJ„(y,z) and yJ,(y, z) are exactly equal and

J(y z) = E(y z)d(y z)/p(y z) . (1.9)

Here p/d is the sheet resistivity and p the electric re-
sistivity averaged over the sample thickness (u = 1/p
is averaged). In general, d/p may depend an the posi-
tion, e.g. , in inhomogenous specimens or if the thickness
varies spatially. Note that the shape of the sample cross
section enters only here but not in the magnetostatics
above, since we consider the limit d(y, z) « a. Another,
more frequent situation with spatially varying p(y, z) is
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encountered in type-II superconductors where the resis-
tivity is caused by moving Abrikosov flux lines and in
general depends on the local induction B and current
density j. For our thin specimens in perpendicular field
this means p depends on B = poH (y, z) and on the
sheet current J(y, z). If p depends on J, one has non-
linear resistivity, which may be caused by pinning and
depinning of the flux lines at material inhomogeneities.

A large variety of measured B-, J-, and T-dependent
resistivities of HTSC have been published (see, e.g. , Ref.
19). For theories of thermal depinning I refer to the
reviews, Refs. 20 and 21. With appropriately chosen
p(B, J), the equation of motion given below for the cur-
rent density J(z, t) in a slab in longitudinal fields (Sec.
II) and for the sheet current J(y, t) and J(r, t) in a strip
or disk in perpendicular field (Sec. III) may be used to
compute flux creep (nonlinear Hux flow) in the critical
states of a slab or of a disk or strip described in Refs.
2—4.

In the examples of the present paper I shall concen-
trate on the equally interesting linear response of thin
superconductors to a time-dependent applied perpendic-
ular field H (t). If required for linearity (in the flux-How

region one has, e.g. , p B), we assume a constant back-
ground field to which a small field H (t) is added. The
linear resistivity p, of a HTSC in general depends on the
frequency w/2' of the ac field. p, (u) was calculatedzz zs

taking into account the Meissner currents, elastic pin-
ning, usual flux flow, and thermally assisted flux flow
(TAFFzs z~). Somewhat simplified (i.e., disregarding the
contribution of normal electrons near T, treated in Ref.
22, and assuming ryAi;F )) rFF) one has (in SI units)

—1
2 TAFF +

pac(~) = &~go~ + pFF
7FF + 240

(1.10)

o'L, (t) = ~L, exP( —t/rVAFF) .

In frequency space this means

nL, ((u) = ni, iu)/(r~A'FF + i(u) . (1.12)

Here A is the magnetic penetration depth for currents
parallel to the specimen surface; pFF = Bp„/B,z is the
Hux-flow resistivity (p„= normal resistivity, B,z ——up-
per critical field); rFF = B /PFFar, is the relaxation time
of the displaced flux-line lattice when this experiences
a viscous-drag force density vpFF/Bz and —an elastic-
pinning restoring force density —uaL, (u = flux-line dis-
placement, nL, = Labusch parameter ); r~AFF )) rFF is
the creep time. If the creep is thermally activated with
activation energy U, one has r~AFF = rFF exp(U/kggT)
If the creep at low T is caused by tunneling of flux
lines out from the pins one has rgAFF = rFF exp(S@/li)
where S@ is the Euclidean action of the tunneling
process

In the derivationz4'z of (1.10) an exponential relax-
ation (creep) of a suddenly (at time t = 0) uniformly
displaced flux-line lattice was assumed, yielding a relax-
ing Labusch parameter

The same result follows from a force-balance equation, as
in viscoelasticity. However, recent ac experiments in Bi-
Sr-Ca-Cu-0 ceramics indicate an algebraic relaxation
law,

(1.13)

which for ~v. (( 1 yields the dispersion law

or, (~) = nL, (i~r)~I'(1 —P), (1.14)

where I'(1 —P) is Euler's Gamma function. The authors
of Ref. 32 find a nearly temperature-independent r =
4 x 10 iz s (for poH, = 1 T) and an exponent /3(T) =
1/(1+ U/k~T) (see also Refs. 33, 34), and P —1 for
T ) 70 K. Thus, I'(1 —P) —1/(1 —P). With (1.14)
one gets a complex resistivity (I assume r ) rFF to get
Re(p.,) -+ PFp for ~ ~ ~),

pac(~) i~go~ + pFF. . . (1.15)
BdrFF + Zidr pI' 1—

The frequency-dependent linear resistivity p(~, B,T)
(1.10) and (1.15) may be used in the equations of mo-
tion for current and field derived below for longitudinal
field (Sec. II, difl'usion equation) and for perpendicular
field (Sec. III, integrodifferential equation). These gen-
eral equations, however, describe the dynamics of Hux
motion not only in the linear case but also if the resis-
tivity is nonlinear, e.g. , if p depends on the current den-
sity. Nonlinear p(J, B,T) typically is considered at low
frequencies, where the nonlinearity generates higher har-
monics with an amplitude depending on the amplitude of
the applied ac field. Therefore, an explicit &equency de-
pendence of p(J, B,T) is usually not taken into account
in the nonlinear response.

What are the effects of a finite thickness d of the film?
Obviously, finite d will smear the singularities in the ideal
two-dimensional (2D) solutions J(y) and B(y) over a
width —d. Such singularities were obtained, e.g. , in Refs.
2—4 for the static Bean model in perpendicular geometry,
namely, infinite slopes of J(y) and B(y) at the penetrat-
ing flux front, and infinities of B(y) (~y~

—a) ~ at
the edges or ln )~y~

—
b~ at the flux front. More such

infinities will be obtained below for the linear response
at short times (Sec. IV) or large frequencies (Sec. V).

In the nonlinear case, if d exceeds the London penetra-
tion depth A, a current-caused longitudinal Bean critical
state may occur across the film thickness as described
in Sec. II. The extension of Bean's model to finite A,
which yields a nonlocal relationship between B„(x) and
the flux-line density n(x), is given in Ref. 36. For
the static nonlinear case our general treatment of the
response of the strip or disk presented in Sec. III repro-
duces the correct Bean critical state in perpendicular field
of Refs. 3,4 even when the current density is not uniform
across the specimen thickness, e.g. , if there is a constant
current-driven usual (longitudinal) Bean state across the
thickness of the strip or disk.

In the linear case, when d exceeds the longitudinal
ac penetration depth ~A,

~

given by A, = (p, /i~go) ~

(Refs. 24,25) with p, from (1.10) or (1.15), the skin ef-
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feet increases the sheet resistivity p/d above the value

p, /d, cf. Sec. II. However, in contrast to the static
(or quasistatic) nonlinear case, for which the assumption
d « a is sufficient, Eq. (1.9) and the expressions of Sec.
III do not describe the time-dependent linear response
when the film thickness d exceeds IA, I

or (for Ohmic re-
sponse with real p, = p) the skin depth b = (2p/~ps) ~z.

In this case, occurring at large frequencies ~ &) 2p/yed
equivalent to b' « d, the ac field and current do not pene-
trate to the center plane z = 0 of the film since the spec-
imen behaves as in the Meissner state. In particular, the
perpendicular field component B vanishes everywhere
inside the specimen except very close to the edges (for
a —

lyl » h). Therefore, our general time- and frequency-
dependent theory applies only if b & d or ur & 2p/pod,
in which case j(z, y, t) and B(z,y, t) are constant over
the film thickness. Approximate analytic expressions for
the high-frequency case h « d will be given in Sec. V.

The outline of this work is as follows. In Sec. II some
general results for longitudinal geometry are derived and
compiled which will be required below. The general equa-
tion of motion for the sheet current in thin strips in a
time-dependent perpendicular magnetic field is derived in
Sec. III, where also an elegant numerical solution method
is outlined which accounts for the singularities of the in-
tegral kernel and of the solution J(y). The penetration
of a sudden change of the applied perpendicular field into
an Ohmic strip is considered in Sec. IV, and the linear
response of the strip to a perpendicular ac field is calcu-
lated in Sec. V. The ac losses are discussed in Sec. VI,
and the main results summarized in Sec. VII.

here in the form B = E' with B = BB/Bt, we get Rom
(2.1) and (2.2) the general nonlinear diffusion equation
for the flux density B,

B(x, t) = [D(x, t) B'(x, t) ]', (2.3)

with difFusivity D = p(x, J, B,T)/IJ, (x, B,T) T.he cur-
rent density obeys a difFerent difFusion equation,

—
[ (*t) (* t)] =,[ ( t) (* t)]. (2.4)

Note that p, p, and D = p/p depend implicitly on time
t via B and j.

If the applied field B = IJeH is homogeneous and
no current is fed into the strip by contacts, then B(z) =
B( z) —is symmetric and j(x) = —j(—z) is antisymmet-
ric. Here I assumed a homogeneous or a symmetrically
inhomogenous [p(—x) = p(z), p( —x) = p(x)] specimen
and used the fact that p and p, depend only on the ab-
solute values IBI and

I Jl. In this case one may integrate
(2.4), obtaining

8
p(z, t) j(z, t) = zB.(t)+ — dz,

0
&1

x p(z2, t)j(z2, t)dz2.
0

(2 5)

This integrodifFerential equation for j(x, t) should be
compared with Eq. (3.3) derived below for the sheet cur-
rent J(y, t) in perpendicular applied field.

II. DYNAMICS OF LONGITUDINAL CURRENT
AND FLUX

A. Diffusion equation

B. Nonlinear and linear response

Equations (2.1)—(2.5) may be used to compute j, B,
and E (voltage drop) for given nonlinear resistivity p and
slope y, . In the special case

E(x, t) = p(x, j,B,T) j(x, t) (2.1)

and via the reversible magnetization curve B(H) or its
slope p(x, B,T) = dB/dH, which appears in the current
equation j = (dH/dB)V x B that in our geometry reads

In this section some general results for longitudinal ge-
ometry are derived to allow comparison with the results
for perpendicular geometry presented in the following
sections. I consider the same strip specimen as above
(lzl & d/2 « a, lyl & a, lzl & I/2 &) a), but now with
field H and induction B along y, and current density j
and electric field E along z. H, B, j, and E then depend
only on x and t (time). Material parameters enter via
Ohm's law

p = 0 for
Ijl &j,(B), p = m for

I jl &j,(B), (2.6)

one obtains the critical states of the slab which reduce
to the simple Bean modelm ifj,(B) = const and p(B) =
p0 are assumed. If a smooth nonlinearity is considered,
say, p oc exp(j/ji) or p oc exp( —jz/j), the solution of
(2.1)—(2.5) describes flux creep, which may also be called
nonlinear difFusion.

An equally important example, which will be discussed
here in some detail, is the linear diffusion of flux, realized
in the regimes of the usual flux flow or thermally assisted
flux flow or in normal conductors. In this Ohmic case the
resistivity is constant and real.

C. Linear response to a Geld change
B'(z, t) = p(z, B,T)j (z, t) (2.2)

(B' = BB/Oz). Here for generality the superconducting
material is allowed to be inhomogeneous, i.e., p and p,
may depend on ~ explicitly, in addition to their implicit
dependence on x via j(x) (if nonlinear resistivity is con-
sidered) and via B(x). With Faraday's law B = —V x E,

Let us first consider the situation where the applied
field H is suddenly increased by bH . This field en-
hancement and the shielding current then penetrate into
the slab diffusively according to B = DB" and

&~j =
Dj ". The difFusivity D = p/po is constant in a normal
conductor or, in superconductors, if B» B,i (such that
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H. (t) = 0(t), (2.7)

ie. , H (t(0) =Oand — . e

)

— an H (t 0) =1. The
P g P

f
[ [ ( d/2 H

it}1
n=0, 12.

s „x where k„=
Due to th d'ff '

e
'

s o
d

1 t t 1/ „=I'D or explicitly,

theslo e = = nst By Kp p = po ——const; B y = K= Po

ot t h I thH. =l
=0 is the

j(z, t) =— —1)"sin[(2n + 1)vr z/d e '
n=0

vrz e ". (2.10)

At t one has near the ed

o fo boh

, one has
1 t). Bt ftr . u ater t =co this inte r wig 1 decreases 'th

The ma ng ethic moment rn = —"
1 ) f becomes (Fig. 2

=sab

~„=~o/(2n+ 1)', ro ——d'/(vr'D (2.8)

d/2

M(t) =- zq(z, t) dz = B z, t) dz

This gives for Hg' for H and j = dH/dz Fig. 1 )

OO

= —) (2n+1) e '

4
OO „cos[(2n+ 1) ~ ] e 'i ", (2.9)

(2.11)

From (2.11) one has M t = = 'd

and for t
m as = = '

eal shielding),as t = 0) = 1 id

ield'
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D. Li'near ac response a complex ac susceptibility p(&u = ' —i
( an with@ tu~oo) =0,

Next I consider an aapplied ac perturbation Geld,

H (t) = exp(i&et) . (2.12)
M(ur)

M((u m oo)

tanh u
(2.16)

The hnear response of the sl b
fl 1 d d'

o e s a is now for the e

(1.10' (F

In particular, for Oh mac real and nondinon dispersive)

( po / p)
—(] + i)((JJ7e~2/8) /2 an(P

H(z, ~) = cosh(z/A, )/cosh(d/2A„ (2.13) (smhv + sin v) —i(sinh v —sinn)

v(cosh v + cos v)
(2.17)

y (z, ~) = A, sinh(z/A, ) / cosh(d/2A, ), (2.14)

M(QJ) = 1—2A s sinh(z/A, ) tanhu
d cosh(d/2A, ) u

(2.15)

1.0

0.8—

0.6

where A, = 1 —iere A, = (1—t') (p, /2pe(u)'/' is the corn le
tio d th 1 =d/2A . F
erage magnetic moment e

u =,. From M(v& /the ne gative av-
omen per unit volume) one may define

with v = (]. —i)u = (ud
d/b where b = 2

to u70 ——1.0295 1 and d 2b = 1
—2.254, corresponding

one has for small and large ur,

p((u) = 1 —ur r x4 120 —'

0
—uvres /12,

(2.18)

p(u) =(1—i)(2/m r ) / u /~7.o ~, (u )) re '. (2.19)
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1.0

Oe8

short-time limit M(t « Tp) = 1 —4s, q.t E . 221
reproduces the high-frequency limit (2.19). Equations
(2.20) and (2.21) will be used in Sec. V to calculate the
ac susceptibility of the Ohmic strip in perpendicular 6eld.

0.6

Oe4

Oe2

0.0

I ~ IIFIG. 5. Complex ac susceptibility p, (p)) = p)) = p —iy,
(2.16) of a fat Ohmic conductor in longitudinal ac field (sohd
lines). For comparison the corresponding p(u) = y, g for per-
pendicular ac field (Sec. V) is also given (dashed lines). The
t' nits are chosen such that the slopes of p, ~]' and p, z atime uni s a
p) = 0 coincide, namely, for pz the unit is 7 = ad/27rD ( . )
and for p)) the unit is d /16D = s rp/16 instead of 7p (2.8).

E. Frequency-dependent sheet resistivity

J(y, z) x x sin h(z/Aa, )
2 sinh(d/2A„)

' (2.22)

If a longitudinal current is applied to the strip then in
general the sheet current J(y) (1.1) will not be constant
but has to be determined self-consistently as described,
e g. , in Refs. 4, 39 for the Bean critical state. A similare ~ el ~

inhomogeneous J(y) occurs in the Ohmic case at suffi-
ciently high frequencies. The inhomogeneous J(y) in a
strip [or J(r) in a disk and J(z, y) in arbitrarily shaped
fiat plates] may be applied by contacts or induced by an
applied perpendicular field. In all these cases the current-
caused magnetic field H and the current density j are for
linear complex resistivity p, and complex penetration
depth A, = (p, /ia)pp)i/2,

M(u)) = iu) M(t) exp( —ia)t) dt,
0

(2.20)

p(a)) = —Mo
' M(t) exp( —isn't) dt,

0
(2.21)

where Mo ——M(t = 0) = M(a) —i oo). Indeed, from the

The ac responses (2.13)—(2.16) may be obtained also di-
rectly from the responses (2.9)—(2.11) to a steplike per-
turbation (2.7) by Fourier transformation, noting that
the Fourier transform of 8.(t) is I/iur In par. ticular, one
has the general relationships,

J(y, z) cosh(x/A, )
2A, sinh(d/2A, )

(2.23)

Note that in the thin specimen considered, J = V x is
no given yt '

b the gradient of the perpendicular field, VH~,
allelwhich is negligible, but by the gradient of the para e

field H„or H„which in the presence of H means a
curvature of the 6eld lines. The sheet current equals
the jump of the parallel field component; if no parallel
field is applied one has the surface field H(d/2, y, z) =
—H( —d/2, y, z) =

2J(y, z) x x.
The dissipated power p per unit area cause yed b the

sheet current is obtained by integrating the power en-
sity g = g p, over'E —'2 over the thickness or by calculating the
Poynting vector E x H at the surface. The result is

0.6
Pac

z(z, z) = J(z, z)'Re cezh (2.24)

0.4

70 where Re(z) = 2(z + z") denotes the real part. For
Ohmic resistivity p reduces to

2 p sinh(d/b) + sin(d/b)
'( / ) + '( / )

Oe2 with d/b = U = (ad p/2p) cf. (2.17). In the limits
of low and high frequencies (2.25) yields

0.0
p J p/d for d/b &1, (2.26)

p= J p/2b for d/b) 2. (2.27)

FIC. 6. Asymptotic behavior at large frequencies of the
complex ac susceptibility p(u) = p)) = p' — p,

"
( .e ~ ~

longitudinal geometry, cf. (2.19). Note that p' and p" at
large p) slightly oscillate about the line (2/7r ~7p) ~ with

The dissipation P per unit length of a strip with width
2a at large w )) 2p/()Mods) (in the ideal screening case
d « b) is concentrated near the edges where J(y)
1/(a —

]y~) diverges. Introducing a cutoff at ~y~
= a —6,

where 4 is of the order of the skin depth b or thickness
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d, we get for a strip with a transport current I the sheet
current J(y) = (I/7r)(a —y ) ~ (Refs. 4,39) and the
dissipation

With the strip half width a as unit length one may write

(3.2) in the form

P = (I p/27r ah) ln(2a/4) . (2.28)

For a strip in a perpendicular ac field H one has J(y) =
2yH (a —y ) x~ (Refs. 3,40) and gets

0
J(y, t) = ~(y) —2~yH (t)

1

+ J(u t) ln duy —u

y+u (3.3)

P = (2H pa/2b) [ln(2a/6) —2] . (2.29) with the relaxation time

At lower frequencies 2n'p/(yoad) « ur & 2p/(pod ) one
still has nearly ideal shielding across the strip width (see
below) but, since now h' & d, Eq. (2.26) has to be used;
thus in Eqs. (2.28) and (2.29) 2h' is replaced by d. For a
strip with transport current this gives

P = (I p/7r ad) ln(2a/6),

and for a strip in perpendicular 6eld,

P = (2H pa/d) ln(2a/e 6),

(2.30)

(2.31)

where the cutoff width b, = b, (ur) —p/(10poud) in (2.30)
and (2.31) is obtained in Sec. V.

III. DYNAMICS OF SHEET CURRENT
AND OF PERPENDICULAR FLUX

A. Sheet current in a strip

In this section I derive the equation of motion for the
sheet current J(y, t) (1.1) fiowing in a superconducting or
normal-conducting strip to which a time-dependent ho-
xnogeneous transverse magnetic field H (t) is applied (see
inset in Fig. 8 below). The small efFective penetration
field (d/a)H, i and a possible equilibrium magnetiza-
tion of the material will be disregarded. With these as-
sumptions, a constant applied field penetrates coxnpletely
as t ~ oo. For the perpendicular induction and field com-
ponents one thus has B(y, t) = IJOH(y, t), where H(y, t)
follows from Ampere's law (1.6) for a given sheet cur-
rent J(y, t) Integrating . (1.6) from y = —yi to y = yi
and noting the symmetry J(—y) = —J(y) of the induced
current, one obtains the magnetic Bux per unit length
threading the strip ~y~ & yi,

~(y) = p.ad(y)/[2~p(y)] . (3.4)

Gad

J(y, t) = J(y, ur) exp(iut) 2' ' (3 5)

obeys the integral equation

J(y, (u) =i(u7. (~) 2xryH (u))

1

J(u, (u) ln du,y —u

y+u

with 7 (tu) = goad/[2irp((u)].

(3.6)

B. Spatial integration

Both Eq. (3.3) (for nonlinear or linear but nondisper-
sive p) and Eq. (3.6) (for linear dispersive p) in general
have to be solved numerically. Here three problems arise.
(a) One is due to the logarithmic singularity of the kernel

In general, w(y) may depend on the distance y f'roxn the
strip axis explicitly via a variable thickness (if the strip
cross section is not rectangular) or via an inhomogeneous
resistivity p(y), or implicitly via the dependence of p on

B(y, t) and J(y, t). For constant film thickness and linear
resistivity, however, w does not depend on y. Note the
similarity of Eqs. (3.3) and (2.5).

Equation (3.3) applies to arbitrary nonlinear resistiv-
ity p(J, B). In the case of linear, complex resistivity it
is more appropriate to express this equation of motion
in frequency space in order to account for a possible fre-

quency dependence of p = p, (ur) (which makes the equa-
tion nonlocal in the time representation). The Fourier
transform J(y, ~) defined by

a

P(yx) = — J(u) ln du + 2yxprjH . (3.1)
7l p y1+ u

K(y, u) = ln = K(u, y)y+u (3.7)

J(y, t) = yH. (t)
p(y)

a

J(u, t) ln du2' p y+u (3.2)

When this fiux (along x) changes with tixne, an electric
field E = P/2 (along —z like J) is induced at y = yi
and Eat y = —yi. —This electric field E(y, t) drives
the sheet current J(y, t) = E(y, t)d(y)/p(y). With (3.1)
inserted one then gets the equation of motion for J (Ref.
40),

at y = u and (b) a second to the singularity of the ideal
shielding current

Jo(y) = 2yH /(a —y )'~ (3.8)

at y = +a (or y = +1 if a is the length scale). This
ideal shielding current Bows either immediately after H
is switched on [J(y, t = 0) = Jo(y)] or at very large
frequencies [J(y, ur » v i) = Jo(y)]. A further problem
is (c) that the time derivative in (3.3) is on the wrong"
side and thus a direct time integration is not possible.
By the same token, a direct iterative solution of (3.6) is
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1 1

J(u, t)K(y, u) du = J[u(v), t] K[y, u(v)] tv(v) dv
0 0

= f[y() t]

~ f;(t) =) K,,J,(t), (3.9)

possible only for not too large ~v. All these difhculties
are overcome by the following numerical solution method,
which I describe here for the strip geometry but which
works equally well with the disk geometry.

First, substitute in (3.3) for y and u an odd function

y(v) = u(v) of a new variable v with y(0) = 0, y(1) = 1,
and y'(1) = 0, e.g. , y(v) = u(v) = 2v —2v, which yields

the weight function ui(v) = y'(v) = 2(1 —v ). Then, in
order to evaluate the integral as a sum, the new variable v

is discretized, e.g. , at N equidistant points v, = (i z)/N—
with i = 1, 2, ...N, N 10...100. The integral is thus
approximated by a sum,

ij = —n
y'+ y&

N 4' Ny~

fori $0

fori = j (3.12)

C. Time integration

J;(t) =) K,, 'f, (t) . (3.i3)

Next I show how the time integration of (3.3) may be
performed. Our task is to find the N-vector J,(t) for all
times t & 0 starting with the known initial function, e.g. ,

J(y, t = 0) = Js(y) (3.8) if H is switched on at t = 0,
cf. Secs. II and IV. This is achieved by first inverting the
matrix K,~ (3.12). The inverted matrix K, has to be
calculated only once. The general solution J, of (3.9) for
arbitrary f; then reads

with f, (t) = f[y(v;), t], Jz(t) = J[y(v~), t], and

K;, = K[y(v;), u(v, )] iv(v, )/N . (3.10)
Equation (3.3) may now be solved for the time derivative

J(y, t) by writing it in the form

This integration method is very accurate. The sub-
stitution of the integration variable u m u(v), du -+
u'(v)dv, with vanishing weight at the integration bound-
aries, not only allows one to use equidistant integration
points v, but it also removes the infinity of the integrand

(1—u) ~2 occurring for u -+ 1 at t = 0. Note that due
to the symmetry of the integrand the point u = 0 is not
a real integration boundary beyond which the integrand
is unknown; therefore, the accuracy of the integration is
determined only by the choice of the points u, = u(v, )
near the boundary u = 1.

The definition (3.10) of K;~ is not yet complete since
with (3.7) for i = j one would get K,; ln0 = oo.
Thus, K;~ (3.10) is valid only for i P j, and K;, has to
be defined separately. One might put K,, = 0, but this
would cause a large numerical error of order 1/N. The
optimal choice is to determine K,, such that the sum
in (3.9) exactly equals the corresponding integral for the
special case where J~ =const and the limits of integration
extend to infinity. With this choice the integration error
decreases with a high power of 1/N. For N » 1 one has

with Stirling's formula for ¹!,
N+ —,

' N

ln xdx —) lni
0 4=1

1) f=
~

N+-
~ ~

lnN+ —11 —»(N')
2p i 2N

:- —(1/2) ln(2z') for N ~ oo . (3.11)

Using this and accounting for the varying distance of the
points y; —yi = (i —j)ui;/N for i —j, where y,
y(v;) and ui; = y'(v;), one sees that in the argument of
the logarithm the difference ~y;

—
y~~ for a = g should

be replaced by ui;/2mN. The complete definition of the
kernel matrix is thus

J(y, t)/r(y) —2vryH (t) = f(y, t) . (3.14)

Discretizing and inverting this as described above we get

J;(t) = ) K, .' [J (t)/T —27ry;H (t)], (3.i5)

2 H(u) —H (a' —u' l '~'„
vr y —u (az —yz)

(3.16)

From this one finds in the Appendix that the equation of
motion (3.3) can be written in the equivalent form (with
a = 1)

8J(y, t) 2y OH (t)
Bt (1 —y2) '» Ot

0 J(u, t)x -- de
Bu '( r)u

(3.i7)

By partial integration Eq. (3.17) may be put into the

form J(y, t) = F(J(y, t) }, which may be solved on a
grid yielding an equation of motion for the vector J(y, , t)
similar to Eq. (3.15).

where w~ = r[y(v~)]. Note that r~ in general depends
implicitly on t via B and J. Equation (3.15) for the
sheet current J(y, t) is easily integrated by a Runge-
Kutta method; for an example, see Sec. IV.

The outlined solution method consists in inverting the
integral kernel numerically. For strip geometry, the ker-
nel K(y, u) (3.7) can be inverted also analytically. As
shown in Ref. (41), the inversion of Eq. (1.6) is
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D. Magnetic Seld in a strip

The perpendicular local magnetic field H(y, t) in and
near the strip is obtained by inserting the solution J(y, t)
of (3.3) or (3.17) into (1.6). In principle, H(y, t) may also
be obtained directly as the solution of an integrodiffer-
ential equation. The induction law for the strip reads
ppH(y, t) = E'(y, t) = [J(y, t)p(y)/d(y)]'. Inserting
here J(y, t) (3.16) one obtains an equation of motion for

H(y, t),

2y/n' 'H(u, t) —H (t) 1 —u'

r(y) p
u' —y' 1 —y2

(3.18)

The numerical integration of the diffusionlike Eqs. (3.17)
and (3.18) appears to be less stable and less accurate
than the integration of our main equation (3.3) by the
method outlined above.

J(y t) = 2yi(1- y')'" for t = 0, (4.1)

1

J(y, t) = r J(u, t) K(y, u) du for t & 0, (4.2)
p

with K(y, u) = ln[~y —u]/(y+ u)]. As in the longitudi-
nal geometry, the general solution to (4.2) is a linear su-

perposition of eigenfunctions f„(y) exp( —t/r„) decaying
with relaxation times r„ that are related by r„= r/A„ to
eigenvalues A„which follow Rom the eigenvalue equation

states, cf. Sec. I. We assume here constant thickness, thus
r(y) = r = @pad/2mp. As in the longitudinal geometry
of Sec. II, the perturbation field is denoted by H (t) and
performs a step (2.7) or oscillates (2.13) with unit ampli-
tude; a possible constant background 6eld is ignored in
our notation.

For a suddenly switched-on field H (t) = 8(t), the
sheet current J(y, t) in the strip obeys Eq. (3.3) with
initial value J(y, 0) (3.8), or explicitly,

E. The circular disk
1

f„(y) = —A„ f„(u) ln du.
y+u (4.3)

For a circular disk the equation of motion for the sheet
current J(r, t) looks similar to Eqs. (3.3) or (3.6) for the
strip; one just has to replace y by the radial coordinate
r, the strip half width a by the disk radius R (which may
be chosen as unit length), the term 2myH by mrH, and
the integral kernel K(y, u) (3.7) by a more coinplicated
kernel Q(r, u) obtained by integrating the kernel P(r, u)
(1.8). Explicitly, one has

1

J(r, t) = 7 (r) mrH (t) + J(u, t) Q(r, u) du, (3.19)
p

At large times, only the slowest (fundamental) mode
n = 0 survives. By iterating (4.3) and accounting for

the normalization condition f f2(y) dy = 1 one obtains
for this mode Ap = 0.6385675210... . The fundamental
relaxation time of an Ohmic strip is thus

rp = r/Ap ——0.249 24 adpp/p . (4.4)

This relaxation time was estimated in Ref. 38 as 7p

2adpp/(m p), which is smaller than the exact value (4.4)
by a factor 0.81.

The fundamental mode fp(y) is shown in Fig. 7, to-
1

Q(r, u) = — P(ri, u) ri dri,
p

(3.20)

r(r) = ppRd(r)/[27rp(r)] . (3.21)

Both kernels K(y, u) and Q(r, u) for the strip and the
disk are dirnensionless and depend only on the ratio of
their arguments y/u or r/u and are thus easily tabulated.
The set of Eqs. (3.19) to (3.21) is completed by Eq. (1.7)
for the magnetic field H(r).

Since the equations governing the current and Bux dy-
namics in a strip or disk have the same form, the argu-
ments leading to the equation of motion (3.15) for J;(t)
are the same, and the numerical problems for the two
geometries are thus nearly identical.

IV. PENETRATION OF A JUMP IN THE
PERPENDICULAR FIELD

In this and the next section I consider the linear prob-
lem of the penetration of sheet current and of perpendic-
ular fiux into a thin strip with Ohmic (=linear and real)
resistivity p. This situation is realized in normal con-
ductors and in superconductors in the flux-flow or TAFF

0 I I I I 0
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Y

FIG. 7. Fundamental eigenfunction fp(y) of Eq. (4.3) to-
gether with the magnetic field Hp(y) obtained by inserting
the sheet current J(y) = fp(y) and the applied field H = 1
into equation (1.6). At times t » rp (4.4) after a constant
field H is applied, the profiles of the sheet current J(y, t) and
field difference H(y, t) —H look as depicted here, and their
amplitudes decrease as exp( —t/rp). The amplitudes of fp(y)
and of Hp(y) —H have no physical meaning since fp(y) is
normalized.
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J(y) = iv&72m'y+ u w 2m[y+ (1—y )arctanhy]

+O(~ ) . (5.5)

I IIThe complex magnetic moment M(u) = M + tM
(1.3) may be obtained by integrating y J(y, u) over y for
many u values. In the case of nondispersive p or 7, a more
convenient way is to use Eqs. (2.20) and (2.21) and inte-
grate the real magnetization M(t) of Sec. IV over u; the
resulting susceptibility p(u) = p' —ip" = 1 —

( )/
is shown in Figs. 5 and ll (remember Mp ——7ra2H or
Mp ——vr in our units); p has a maximum p" „=II = 0.4488
at (umax = 0 7074/7 = .1.108/rp = 4.445p/(@pad).

The limiting expressions for small and large frequencies
are obtained as follows. Inserting (5.5) into (1.3) one gets

M(ur)/Mp ——sissy+ 2(u w + O((u ); (5 6)

1.0

0.8

0.6

cedure corresponds to an expansion in powers oof 1~~(d

and converges well for su~ ) 3. Both metho s yie
exactly the same J(y). To achieve convergence in the
iteration of both equations, which have the original form
J(y) = F(J(y) j, these have to be iterated in the form
J(y) ~ cI'(J(y) I+ (1 —c)J(y) with c ( 1. A small
convergence factor c « 1 is required when the number
N of integration points is large and when the expansion
parameter ur7 or 1/(u7) is large.

The complex ac sheet current J(y, ur) = J' + iJ" and
the corresponding perpendicular field H(y, u) = H' +
iH" obtained by this iteration are depicted in Figs. 9
and 10. Here J' and H' are the in-phase components,
and J" and H" are out of phase by n/2 with respect to
the applied field H (t) = exp(iut). J'(y, u) looks sixnilar
to J(y, t) in Fig. 8, while H'(y, u) penetrates more slowly
than H(y, t) in Fig. 8. The imaginary parts "(y, ~)
and H" (y, ur) depend nonmonotonically on u as does the
dissipative part p" of the ac susceptibility shown in igs.
5 and 11. From (5.1) one gets the expansion

1.2

1.0

0.8

0.6

0.4

0.2

0.0
10 20 30

FIG. 12. Asymptotic behavior of the complex ac suscepts-
b'l'

( ) = = p' —ip" (solid lines) for perpendicularbiiity p, ~~~ = p, ~ ——p,
'—

geometry at large frequencies. The dashed lines give the lim-
iting expression (5.7).

thus y, '(ur) 1 —2ur2r and p"(~) su&7. In (5.6) I used

the integral j i du J i dyuy ln ~y
—u~ = —1. The slope

of p" (u) at u = 0 may be obtained also from (2.21) as
Mp fp M(t) dt = 47/3.

A similar direct analytic expansion of J(y) and M(a)
in powers of 1/w using Eq. (3.17) fails since all but the
zeroth terms (Jp and Mp) are infinite. However, M(w)
and p(ur) at large u may be obtained from the short-time
behavior of M(t) (4.5) using Eq. (2.21); this gives

p(~) = ci ——i 1n(16.2(u7) /(sr~) + O(u) ) . (5.7)".2
The constant 16.2 in the argument of the logarithm is a
fit to the numerical result p" (u) as shown in ig. 12. The
constant ci in (4.5) and (5.7) follows from comparison of
the dissipation P = IJpH2uvra2p" (ur) (Sec. VI) with Eq.

2(2.31). This yields for the prefactor ci ——2/7r and for
the cutoff width 6 = a/(60uv) = n p/(30ppurd)

From the behavior at small and large ~ one can con-
struct useful analytic expressions w 'c p'6t ' u and
p" (ur) of the strip in a perpendicular ac field in the entire
range —oo ( u ( oo (cf. the dashed lines in Fig. 11), and
which have the correct asymptotic behavior, namely,

p'((u) = [1 —c+ (c +s. (u ~ )' ] ', c = s. /4, (5.8)

0.4

0.2

0.0
0

I ~ IIFIG. 11. Complex ac susceptibility y, (u) = pz = IJ, —ip
of an Ohmic strip in perpendicular ac Geld, cf.6 ld cf. Sec. V,solid
lines). The dashed lines give the approximate analytic ex-
pressions (5.8) and (5.9), which exhibit the exact asymptotic
behavior for large and small frequencies and deviate from the
exact result by less than 0.8% or 0.5'Fo.

(rf —+,z = (d'r . (5.9)4* l ( +1)+5.57.

These surprisingly sample expressions eviaeviate from the
exact p,

' by less than 8 x 10 and from p" by less than
5x10 only. Note that these excellent Bts do not contain
any Gtting parameter apart from the constant 5.57 =
21n16.2 which was adjusted at u ~ oo. Similar 6ts for

p an p, 0d " of the disk are given in a forthcoming paper.

VI. ac LOSSES IN A STRIP

In this section I summarize and compare the results for
the d

' at P per unit length of a strip in longitudinal
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or perpendicular ac magnetic field H oc exp(isn't). Most
conveniently, P is calculated &om the Poynting vector
E x H at the two fiat surfaces z = +d/2,

Pj~ (td) = 2adlj, pH~ld p,
~~

(K) (6.2)

with ~II(~) & m p~) V'll ~II (2.17). In particular,

pI~
= ~70~~7r /12 «r ~'ro~~ &&»nd

pI~
= (2/~ ~70~~)

for mrp~~ && 1 with 7p)( = ppd /(vr p). For per7xendicular
ac field (Sec. V) one has

P~(~) = ~a'poH.'~p~(~) (6.3)

P(t) = —4 E,
~

—,y, z, t
~

H„~ —,y, z, t
~

dy. (6.1)
fd l (d-

)
In ac experiments one is interested in the time-averaged
dissipation P(ur) = (P(t)). In complex form, with E oc

H oc exp(iut) one has (E(t)H(t)) = Re(EH'). In this
section for brevity I denote the time average (H (t)) by
H2.

Let us first discuss the linear Ohxnic response from
above. For longitudinal ac field one has (for clarity I use
the indices

~[
and J in this section)

The magnetic line tension is 2adppH~ or wa ppHd2, re
spectively, where H~, is the longitudinal or perpendicular
applied field, which is at a right angle to the effective ac
6eld generated by the tilt vibration of the strip.

Equations (6.4)—(6.7) also determine the height and
position of the attenuation peaks in vibrating supercon-
ductors in oblique magnetic 6elds where, at suKciently
small vibrational amplitudes, the dissipation originates
&om various diffusion modes of the lux lines. This pre-
diction was recently con6rmed by experiments.

For comparison, I give here also the nonlinear ac
losses PNL obtained &om the original (longitudinal) Bean
model~4'4 and from the Bean model for a strip in per-
pendicular field. s 5 For the ac losses in a circular disk,
see Refs. 2,48,49. A synopsis of these geometries was re-
cently given by Gilchrist. In all these models the critical
current density j, or critical sheet current J, = j,d was
assumed to be independent of the local induction B, and
the slope dB/dH (Sec. II) was put equal to pp, this ap-
plies for B » B,i. If H (t) cycles between +Hp and
—Hp, the nonlinear losses equal the area of the hystere-
sis loop of the magnetization curve times the frequency
P = 4) 2')

with p&(u) (5.9) from the susceptibility pg = p& —iIJ&
obtained in Sec. V; one has p&

——4ung/3 for A)7~ && 1
and p&

—— (2/n tow~) ln(16+v~) for +7~ && 1 with
7g = goad/(27rp). The logarithmic factor in p& at large
frequencies originates &om the concentration of the dis-
sipation J2(y)p near the strip edges, cf. Eq. (2.30). At
very large frequencies, where the skin depth h is shorter
than d/2, the ac losses are given by Eq. (2.29).

Maximum linear ac losses P occur at ~ = ~

PNL ——vip M H~ dH~. (6 8)

The hysteresis loss per cycle does not depend on the &e-

quency or shape of H (t) but only on its amplitude H
If H (t) = H cos(ut) the above factor H2 [e.g. , in Eqs.
(6.2)—(6.4) and (6.6)j has the value (H2(t)) = iH2 .

For longitudinal ac Geld the Bean model yields the
time-averaged dissipation per unit length of a strip,

P~( max = 2adppH~cumax x 0.417, (6.4) NLii
= 4advppH

ii
f(H~/H~ii), (6.9)

(u)( ~~„= 1.0295vpll 10.16D/d, (6.5)

where H,
~~

= j,d/2 is the field of full penetration and

f(z & 1) = zs/3, f(z & 1) = z —2/3. For a strip in

perpendicular ac field one has

P~ „——xa ppH u) „x0.449, (6.6) PNLg = 4mavppH, gH g. (H /H, g), (6.10)

= 1.108m&& ——8.89 D/(2ad), (6.7)

where H, & =j,d/m and g(z) = (2/z) ln cosh z —tanh z
with g(z « 1) = zs/6 and g(z » 1) = 1, yielding

with D = p/pp. The xnaxixnum linear ac loss per
unit length, P~~

= 8.47ppH2Da/d and P~
6.27ppH Da/d, is thus largest for longitudinal fields and
thin wide 61ms with large resistivity.

The maximum ac loss per cycle, (27r/~)P, in both
geometries approximately equals the field energy (of den-
sity ppH2/2) times 27r times the area 2ad or xa, re-
spectively. Thus, the ratio of the losses per cycle in the
two strip geometries roughly equals the ratio of the cross
section 2ad to the circular area vra . The enhancement
factor sa2/2ad = era/2d for perpendicular geoinetry is
caused by the stray Geld, which is concentrated in a cir-
cular tube of radius a around the strip. This factor occurs
also in the theory of vibrating superconducting strips or
reeds, where it enhances the line tension of a strip with
strongly pinned Bux lines, as discussed in Refs. 38,43,44.

PNx, L
-- (a ur/3)IJoH /H & H, for H

(6.11)

Thus, at small ac amplitudes H and low &equencies one
has for a strip (and disk) the linear losses P~~ adhu H
and P~ a u H, whereas the hysteresis losses at small
H are PNLI~ ad~H and PNI, & a ~H

The susceptibility p" P/(H2 ur) in the linear case is
independent of the ac amplitude H but has a maximum
at a &equency (6.5) or (6.7). As opposed to this, the non-
linear p" of the Bean model is independent of cu but is
maxim~~ at an ampler«de H = H
0.67j,d or H = H~m~x ——2.46H~~ ——0.78j d for the
strip. The corresponding losses are PNj.

~~

= ~a~ ~ppj
and PNp~ ——1.436a d vppj . Interestingly, if nonlin-
ear susceptibilities pNx are defined by (6.2) and (6.3)
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(with H = H /2) then their maximum values are
y 'q" ' pNi II

3/47r = 0.2387 and yNi z
0.23646632... . This result was obtained also in Ref. 50.
The maximum nonlinear p" are smaller than the max-
imum linear p", which are also very close in both ge-
ometries,

p~~
—0.417 and p& „——0.435. For recent

discussions of the transition &om linear to nonlinear flux
diffusion in HTSC's see Refs. 51—53.

VII. SUMMARY AND DISCUSSION

j(z t) = f (&/«)/« (7.1)

The sheet current J(y) in a conducting thin strip in
perpendicular magnetic field H (t) follows from the inte-
grodifferential equation (3.3) if the (in general nonlinear)
resistivity p = p(J) is independent of frequency, and f'rom

the integral equation (3.6) if p = p, (u) is linear and ar-
bitrarily dispersive and complex. The sheet current J(r)
in a disk obeys Eq. (3.19), which will be solved in a forth-
coming paper (Part II). As examples, Ohmic strips in a
longitudinal and perpendicular time-dependent field are
discussed in detail. The fundamental relaxation time of
an Ohmic strip is 7rj ——0.249ad/D (4.4).

After a sudden change of the applied field, the pene-
tration of current and field in longitudinal geometry is
diffusive, but in perpendicular geometry it has features
which are distinct &om diffusion. At short times or large
frequencies the current densities j(z, t) (2.10) (Fig. 1)
and j(z, u) (2.14) (Fig. 4) for longitudinal geometry, and
the sheet currents J(y, t) (Fig. 8) and J(y, u) (Fig. 9)
which solve Eqs. (3.3) or (3.6) for perpendicular geome-

try, scale near the surfaces or near the edges of the strip
as follows,

ular geometry proves the nondiffusive character of the
initial penetration of the sheet current J(y, t) from the
edges: its maximum initially penetrates with constant ve-
locity v = 0.123a/w = 0.77D/d and its height decreases

t ~ . This initial penetration velocity is independent
of the width and shape of the flat conductor but is a
universal feature of thin edges with constant thickness.

The magnetic moment and the ac susceptibility p(u)
are obtained by calculating the complex ac sheet cur-
rent from (3.19) or by Fourier-transforming the real
magnetic moment which relaxes after a sudden field
change. Real and imaginary parts of the ac suscepti-
bility look qualitatively similar in both geometries but
have different asymptotic behavior at large ~, namely,

p~~ (1 —i)/~is (2.19) and IJ~ [x/2 —i ln(16~~)j/~
(5.7). This means that with increasing frequency the
negative phase arctan(y, "/p') of p, (ur) = y,

' —ip"go, es
to 7r/4 for longitudinal ac field, but is greater than m/4
and increases logarithmically for perpendicular ac field.
Analytic expressions which approximate p~ in the en-
tire frequency range are given by (5.8) and (5.9). The
ac losses are discussed for linear (Ohmic) and nonlin-
ear (Bean model) response in both geometries. At large
&equencies the Ohmic strip screens the applied ac field
almost completely, and the losses are given by (2.29) if
the skin depth 8 « d is small, and by (2.31) if b & d. The
corresponding losses for strips with ac transport currents
are given by Eqs. (2.28) and (2.30). The explicit results
for the disk will be given in a forthcoming paper.

The present theory in principle allows one to obtain
for a strip or disk, by a one-dimensional numerical in-

tegration, the nonlinear relaxation (creep) of the sheet
current, and the ac response for general complex resistiv-
ity p, (u), like (1.10) or (1.15). An efficient integration
method is outlined in Sec. III. There remains the chal-

lenging task to solve the linear response equations (4.2)
or (5.1) analytically.

i(z, ~) = f2((v ~)V~, (7.2)
ACKNOWLEDGMENTS

J(y, t) = f.(~/t)/«

J(y, ur) = f4(rI(u)~iu,

(7.3)

(7.4)

Helpful discussions with Misha Indenbom and Yury
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where ( = d/2 —
~z~, q = a —

~y~, and fi, f2, fs, and f4
are universal functions (which in this notation depend on

d, a, or D = p/po). Therefore, the corresponding curves
in Figs. 1, 4, 8, and 9 for (reduced) t « 1 or cu » 1

collapse into one cume near x = 1 or y = 1. These
universal functions have the following features: fi is a
Gaussian centered at the surface; f2 is an exponential
with complex argument and phase m /4 at the surface; fs
has a maximum fs ——2 787H r ~ at rt/t . = 0.123a/w
and at the edge is fs(0) = 2.51H r ~; the real part of f4
has a maximum f4 „——3.363H r at rI/t = 0.074a/7.
and at the edge one has f4(0) = 3.15(1 +i)H 7

(mi) ~ fs(0). These maxima in the sheet current (and
parallel field component H„) near the edges of a thin
61m should be observable by magneto-optics or by Hall
probes.

The different scaling for longitudinal and perpendic-

APPENDIX

f(y) = du
'

g(u)
~y —u

(A1)

(all the integrals have to be taken in the sense of Cauchy's
principal value) then one has

7r2 i u —y (1 —y2)
(A2)

The integral equation (3.3) or its integral kernel (3.7)
may be inverted in the following way. In general, if two
functions f(y) and g(y) are defined in the interval —1 &

y & 1 and are related by
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1

h(y) = g(u) inly —urdu,
—1

(A3)

then obviously h'(y) = f(y) (A3). Therefore, Eq. (A2) is
solved by (A2) with f(y) replaced by h'(y). In particular,
if f( y) —= f(y) is even then g(—y) = —g(y) and thus

This inversion follows by conformal mapping; see also
Ref. 54. If further

With (A4) and (A5), Eq. (3.3) can be solved for J(y, t),

J(»t) = —.
vrz

&
u —y El —y2)

8 J(u, t)x —2z.H (t) + — ' du .
By r(u)

Using the formula &om Ref. 41,

1

h(y) = —h( —y) = g(u) ln du,
0 y+u

which is solved by

(A4)

one can rewrite (A7) in the form

(AS)

1 '
2y f 1 —u2&

g(y) = — &, I I, I
I'(u)du.

o us y2 ql —yz) (A5)

Thus, the inverse of the integral kernel K(y, u) (3.7) is

J(y, t) = II (t)

1 ' (1 —u')'i' 8 J(u, t)
~2

o u2 y2 cpu r(u)
(A9)

2y/7r' f1 —u' ) '~ 8
u2 y2 (I y2)

A6
which is Eq. (3.17).
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