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Disordered bosons: Condensate and excitations
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The disordered Bose-Hubbard model is studied numerically within the Bogoliubov approximation.
First, the spatially varying condensate wave function in the presence of disorder is found by solving
a nonlinear Schrodinger equation. Using the Bogoliubov approximation to 6nd the excitations above
this condensate, we calculate the condensate fraction, super8uid density, and density of states for
a two-dimensional disordered system. These results are compared with experiments done with He

adsorbed in porous media.

I. INTRODUCTION

By definition, superfiuids are robust to the introduc-
tion of weak microscopic disorder. A fiowing superfiuid
is characterized by a macroscopic wave function whose
phase varies across the sample; as long as this conden-
sate wave function remains well defined, disorder can-
not lead to the degradation of currents for topological
reasons. %ith increasing disorder, however, the rigid-
ity of the superfluid towards phase variations is reduced.
For suKciently large disorder superfluidity is eventually
destroyed even at zero temperature, resulting in a Bose
insulator (the "Bose glass" ).2 s

Disordered Bose condensates can be realized experi-
mentally by superfluids in random media, such as 4He

films adsorbed on porous Vycor glass. The first few
monolayers of adsorbed 4He are not superfluid, even at
low temperatures, and form an "inert" insulating layer
of bosons localized by disorder. As the coverage is in-
creased, a transition &om this Bose insulator to a super-
fluid phase is observed. Crudely speaking, the first few
monolayers are comprised of bosons occupying nonover-
lapping localized states, which screen the microscopic dis-
order of the porous glass for subsequently added bosons.
Added bosons feel a smoother potential that is the sum
of the initial random potential plus a Hartree repulsion
&om the localized particles. When the disorder is sufB-
ciently well screened, condensation into an extended state
occurs.

Of course, this picture is an oversimplification: the
4He atoms in the "inert" layer are indistinguishable &om
those in the condensate, and the true many-body wave
functions must be completely symmetric with respect
to particle interchange. Exchange between the "inert"
and "condensed" bosons can be important, especially
near the insulator-superfluid transition. The compu-
tational problem with this scheme is that, unlike the
case of fermions, which by the exclusion principle must
populate orthogonal states, bosons actually prefer to be
in nonorthogonal states to optimize their effectively at-
tractive exchange interactions. The need to symmetrize
thwarts controlled general Hartree-Fock calculations.

We present here numerical calculations of the prop-

erties of highly disordered Bose condensates using the
Bogoliubov~a approximation, which has been formulated
for disordered systems by Lee and Gunni4 and consid-
ered in the weak disorder limit by Meng and Huang. is is

Although the Bogoliubov method is strictly valid only
in the limit of weak repulsive interactions, we will con-
sider strongly interacting systems as well (in the pres-
ence of arbitrary disorder) in an attempt to address
the qualitative features of Bose systems in random me-

dia in a quasianalytic fashion. Previous theoretical
approaches include numerical simulations, scaling
analysis, renormalization group calculations, and
perturbative methods.

In the Bogoliubov approximation the disordered po-
tential is screened by bosons occupying a delocalized con-
densate wave function which has larger amplitude where

the random potential is deep. This nonuniform conden-
sate is macroscopically occupied, and fluctuations into
and out of it are considered due to residual interactions.
These effects deplete the condensate nonuniformly, and
lead to a spectrum of collective, phononlike excitations.

The Bogoliubov scenario resembles the heuristic "inert
layer" picture discussed above, but is constructed in the
reverse order. First the condensate is determined, and
then the (possibly localized) noncondensate part of the
many-body wave function is considered. This localized,
uncondensed part of the ground state corresponds to the
"inert layer" discussed above, and can be crudely thought
of as the zero-temperature "normal" fluid excited from
the condensate by disorder rather than thermal fluctu-
ations (see Sec. VI for a more precise definition). The
advantage of the Bogoliubov approach is that exchange
between the "condensate" and the "normal" fluid is in-

cluded naturally. Its disadvantage is that interactions
within the normal fluid are essentially ignored.

The outline of this paper is as follows: In Sec. II,
we introduce the disordered Hubbard model for bosons
and in Sec. III we solve this model in the Hartree ap-
proximation. In Sec. IV we review the Bogoliubov ap-
proximation for disordered bosons. Sections V and VI
present calculations of the depletion of the condensate
and the reduction of the superfluid density due to dis-
order, respectively. Section VII reports calculations of
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the excitation spectrum and specific heat of the disor-
dered condensate. Finally, in Sec. VIII we summarize
our results and discuss experiments.

II. THE BOSON HUBBARD MODEL

A simple model for disordered interacting bosons is the
Hubbard model for lattice bosons in a random potential:

t Q—btb, + ) V(i)btb;+ —) btbJb, b, ,

(i i) 2 2

where 6, (&,) creates (destroys) a boson at lattice site i.
The sum on (i, j) extends over all nearest-neighbor pairs
of lattice sites, U is the strength of the repulsive on-
site interaction, and t is a hopping matrix element. The
random potential V(i) is uniformly distributed between
—6 and A. The total number of bosons is N, and the
number of lattice sites is V; the mean density is then

—= X]v.
As a model for the behavior of He adsorbed in Vycor

on length scales less than the pore size (several hundred
A.ngstroms), each site could represent a surface location
of atomic dimension, connected to neighboring sites in a
two-dimensional network. We will consider (1) on two-
dimensional square lattices of up to 306 sites, with pe-
riodic boundary conditions. To study disordered Bose
condensates on longer length scales, the sites of model

(1) could themselves be used to represent pores in Vycor,
with a three-dimensional connectivity. Since 300 sites is
still quite a small three-dimensional lattice, we will only
report calculations in two dimensions.

III. THE HARTREE CONDENSATE

A simple variational ground state for (1) is the Har-
tree state

@(rl r2 "~ rN) —4'0(rl)00(r2) ' ' ' 40(rN)

where all bosons are condensed into the same real, nor-
malized single-particle wave function $0(i). The many-
body state (2) is explicitly symmetric under particle ex-
change, as be6ts a Bose state. For a translationally in-
variant system, the single-particle state $0(i) is indepen-
dent of i, and is simply the zero-momentum state. In a
disordered system, this will no longer be the case: $0(i)
will adjust to be larger at the minima of the random
potential and smaller at its maxima.

The expectation value of the Hamiltonian (1) in the
variational state (2) is

particle state $0 one must solve the discrete nonlinear
Schrodinger equation:

t—) P), (j) + V(i)P), (i) = (go+ ew)Px(i),
j=NN(i)

where the sum over j = NN(i) extends over the nearest
neighbors j of site i. The effective single-particle poten-
tial V(i) is given by

V(i) = V(i) + U&~$0(i) ~,

where $0(i) is the single-particle ground state of (4).
For convenience, p0 in Eq. (4) is chosen so that e0 = 0,

i.e. , so that the Hartree excitation energies eg are mea-
sured with respect to the energy required to add a par-
ticle to the condensate. The condensate $0(i) and the
V —1 excited states denoted by Pp(i) together form an
orthonormal basis for single-particle states. For conve-
nience, sums over A will always implicitly exclude the
condensate.

We solve (4) and (5) iteratively, as follows. Beginning
with a trial condensate $0(i) (either the zero-momentum
state or the exact state for t = 0), we compute the corre-

sponding screened potential V(i). The resulting single-
particle Schrodinger equation is solved numerically to ob-
tain a new set of single-particle eigenstates. An improved
trial condensate is then created by mixing the initial
guess with the lowest-energy eigenstate of the screened
potential. This procedure is repeated until (4) and (5)
are simultaneously satisfied. Simple linear interpolation
to obtain a new trial condensate converges very slowly, if
at all. More rapid, consistent convergence was obtained
with the Broyden mixing method commonly used in elec-
tronic structure calculations. Achieving convergence is

the biggest obstacle in our calculation, particularly for
large disorder, and limits the system sizes we can con-
sider.

The condensate wave function $0(i) accumulates at
the minima of the applied random potential, so that the
screened potential V(i) is smoother than V(i), with shal-

lower minima. These minima of the screened potential
are more uniform than those of the original potential,
with approximately the same depth. Roughly speaking,
variations in the condensate conspire to create a screened
potential which resembles the initial random potential,
but with its deepest minima lopped oK, as shown in
Fig. 1. As the density n (or the interaction strength U)
is increased, the minima of V(i) become shallower and
shallower, since the screening is then more e%cient. No
long-range correlations are introduced in the screening
process, as shown in Fig. 2.

To address the nature of the condensate and Hartree
excited states, we calculate the participation ratio

(4('8[4') = —tN ) @,(i)p, (j) + K) V(i)p', (i)
(i i) 2

+, ):0:(') (3)

To minimize (3) with respect to the (normalized) single-

(6)

of state A, which measures the number of sites at which

P~(i) is appreciable.
The condensate wave function $0(i) is always

extended, and "participates" in a finite fraction of the
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FIG. 1. The condensate wave function $0 is concentrated
at the minima of the "bare" potential V(i). The effec-
tive potential felt by the bosons is therefore increased in
the regions of high condensate density, so that the result-
ing self-consistently determined potential V(i) resembles the
original potential V(i) with its lowest values lopped olf. (Here
Un/t = 3.3 and 6/t = 10.0.)

lattice sites. The extended nature of the self-consistent
ground state of (4) is demanded by the following argu-
ment: Assume that the state Po(i) were localized. Then
for a nonvanishing density of bosons, macroscopically oc-
cupying this single-particle state as in (2) would confine
a macroscopic number of interacting particles to a finite
volume [the localization volume of Po(i)j. The interac-
tion energy of the resulting many-body state would then
vary as the square of the total particle number. In the
thermodynamic limit, however, the total energy should
be extensive. Thus the assumption of a localized $0(i)
yields a contradiction, and the condensate must be ex-
tended.

This argument does not preclude a condensate wave

function $0(i) which is "lumpy" —i.e., one which is
a (nodeless) superposition of well-separated, localized
states. Strictly speaking, such a lumpy state is extended
and the resulting Hartree state (2) is still a Bose con-
densate. %e will see below that these lumpy conden-
sates (found for strong disorder and weak repulsion) are
particularly susceptible to depletion from scattering out
of the condensate, and have substantially reduced super-
Buid densities. An alternative, and perhaps better, varia-
tional state could be constructed by instead placing a few

particles in each of a large number of localized states. As
these localized states overlap (they need not be orthogo-
nal), however, it becomes difficult to calculate the energy
and other properties of the properly symmetrized state.
Unfortunately, the numerical tricks which enable eKcient
calculation with determinants fail for permanents.

It is well known that all eigenstates of a generic random
potential in one and two dimensions are localized. How
then can the condensate $0 always be extended? The
loophole that permits this is that the screened potential
V(i) is not generic, but has been tailored to the problem
at hand specifically to produce an extended ground state.
The condensate is not a "typical" state, but one whose

peaks and valleys have been fed back into the disordered
potential itself via (5). The extended nature of the con-
densate does not violate any accepted lore of localization.

An analysis of the participation ratio for (two-
dimensional) systems ranging from V = 72 to V = 306
suggests that for small disorder, all states are extended
(i.e. , have a localization length larger than our largest
system). Figure 3 shows that the participation ratio
scales with the size of the system. For sufBciently strong
disorder, we find that the participation ratios of the
Hartree excited states become independent of system
size, indicating that they have all become localized. Only
the condensate remains extended. It is interesting that
the use of the self-consistent potential V(i) converts the
state of lowest energy (which in a typical single-particle
localization problem would be the most localized state)
to the unique extended state.
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FIG. 2. The autocorrelation function of the screened po-
tential. Note that the screened potential does not develop
any long-range correlations. (V = 210 sites and Un/t = 3.3.)

FIG. 3. An example of the participation ratio for the
Hartree quasiparticle states Pq as a function of their energy
eq for several system sizes. (Un/t = 3.3 and 6/t = 10.0.)
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IV. THE BOGOLIUBOV APPROXIMATION

Given the self-consistent Hartree condensate, Po(i), we
can proceed with the Bogoliubov approximation. Follow-
ing Lee and Gunn, we expand the boson field operator
b; in the complete set of operators bo and (bp):

b; = 4o(i)bo+). A(i)4

Although interactions and the disordered potential will
both deplete the condensate, in the Bogoliubov approxi-
mation this depletion is assumed to be small enough that
the single-particle state Po(i) is still occupied by a macro-
scopic number JVo bosons. To order 1/JVo we can then

replace the creation and annihilation operators bo and bo

for this state by gAp. The total number of bosons in the
system is the sum of those in the condensate and those
not in the condensate:

JV = JVp + ) bt„bp

we will push the Bogoliubov approximation to its limits,
and hope that the qualitative results are representative
of disordered Bose condensates.

The quadratic Hamiltonian (10) can be diagonalized by
canonical transformation to a set of quasiparticle creation
and annihilation operators p~ and p such that

[&B ~„'I = ~~&,'

where u„ is the quasiparticle excitation energy. This
transformation is accomplished by taking linear combi-
nations of creation and annihilation operators:

g„' = ) (u, ibg + i,fbi)

Like the index A labeling the Hartree states, the index p
labeling quasiparticle states runs from 1 to V —1.

To satisfy (12), the coefficients u„p, v„p must obey the
generalized eigenvalue equation

Expanding to first order in the depletion of the conden-
sate, we then find (14)

bo ——QJV() ——MA' — ) b~tbi, + . (9) where

Inserting (7) and (9) into the disordered Hubbard
model (1), and retaining all terms second order in b&~

and bp, yields

) Spy (be~bi, + bq~, bp + bq~bt„, +

blab),

)
AA'

(10)

The first line of (10) specifies the single-particle and self-
interaction energies of the condensate, and the energy ~~

for adding a particle in the excited state A. The second
line involves the inner product

S„„=) y~(i)!y, (i)!'y„,(i)

of states A and A' weighted by the condensate density,
which gives the amplitude for (a) single-particle scatter-
ing by the condensate and (b) pair scattering into and out
of the condensate. Since the condensate is nonuniform,
these scattering processes will generally not conserve mo-
mentum.

To arrive at (10) terms cubic and higher order in field

operators b~ and b& have been discarded. This is equiv-
alent to the random phase approximation, and includes
interactions between the noncondensate bosons and the
condensate while neglecting interactions among the un-
condensed bosons. These approximations are controlled
in the dilute, weakly interacting limit in which the con-
densate fraction JVq/A is close to unity (see Sec. V). Here

Agw:—e) h»~ + UJV S»~)

(Summation over the repeated index A' is implied. ) Note
that if (") is a solution with excitation energy u (corre-

sponding to pt), then (") is a solution with —ur (corre-
sponding to p). The orthonormality conditions

UN2
&~ = &v' —

2 ).IA(i) I'

+ Q (ex& + UXSww )v„),v„),
AA'p,

—UNS~~ u„),v„~ (17)

The last line gives the zero-point contribution of the
quasiparticle modes.

V. THE CONDENSATE FRACTION

The ground-state wave function IG) in the Bogoliubov
approximation is the state annihilated by all of the quasi-

are automatically satisfied by normalized solutions of
(14), and guarantee that the quasiparticle operators pt

obey Bose commutation relations: [p~, p„,] = 8»i and

[~~ ~~ I
= o.

The ground-state energy E~ in the Bogoliubov approx-
imation is
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particle destruction operators p„:

IG) = (bo) 'IIgp exp[—Mp~ b&b&, ]lvac), (18)

where lvac) is the state with no bosons and Mgp is de-
Gned implicitly by

vip Mpp vga

(GII,'~~ IG) = (Glb,'IG) (Gl~~ IG)

(20)

Figure 4 shows the condensate fraction, Ap/A, as a
function of disorder for several values of the interaction
strength. The calculation is done by averaging over seven
realizations of disorder on L x L„ lattices where L ranges
from 8 to 18. We then extrapolate to the thermody-
namic limit. Even in the absence of disorder, particles
are scattered out of the condensate as a result of their
mutual interactions, and A'p/Af is less than unity. For
weak disorder, the number of bosons in the condensate
stays roughly Bxed, while the condensate wave function
itself is distorted to accommodate the random potential.

This insensitivity of the condensate fraction to weak
disorder is a crude criterion for superfluidity, although
the proper quantity to consider is the superfluid den-
sity (see below). Figure 4 shows that as the interaction

The number of particles in the condensate, JVp, is de-
termined by calculating the mean number of bosons not
in the condensate (P& bt&bp) and subtracting it from the
total particle number [see Eq. (8)].

In a translationally invariant system, the condensate
fraction measures the occupation of the zero-momentum
state. In a disordered system, the proper de6nition of
the condensate fraction is the largest eigenvalue of the
one-particle density matrix. The condensate density is
then given by the square of the off-diagonal long-range
order parameter:

strength Un/t increases, the system becomes more ro-
bust to the addition of disorder, so that larger values of
6 are required to further deplete the condensate beyond
the effect of interactions alone.

At large values of disorder, the condensate fraction
drops to zero. As the condensate fraction becomes small,
the approximation of truncating the Bogoliubov Hamil-
tonian (10) at quadratic order becomes worse and worse,
and our calculations cannot be considered quantitative.
Nevertheless, our calculation suggests that for sufBciently
high disorder the condensate is destroyed, and a "Bose
glass" is reached. Although the logic leading to it breaks
down for JVp = 0 the Bogoliubov ground state (18) with
vanishing condensate density is a potentially useful vari-

ational state for the Bose glass.
In the Hartree calculation of Sec. II, the applied ran-

dom potential V(i) is screened by A'Ulgo(i) I, which is
equivalent to assuming that all of the bosons are in the
condensate. As the condensate is depleted, does this esti-
mate of the screened potential continue to hold? To check
this, we compare the ground-state expectation value of
the boson density at site i, (Glb;b, lG), with the density
obtained in the Hartree approximation, JVlgo(i)l . As

Fig. 5 shows, the density in the Bogoliubov approxi-
mation faithfully tracks the density in the Hartree ap-
proximation. Even when the condensate is significantly
depleted, the particles scattered from it remain in their
original vicinity, and continue to screen the initial ran-
dom potential as if they had remained in the condensate.

VI. SUPERFLUID DENSITY

The superfluid density of a Bose condensate dis-
tinguishes between the low-frequency, long-wavelength
transverse and longitudinal responses of the system.
(This quantity should not be confused with the conden-
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FIG. 4. The condensate fraction JVO/JV vs disorder 4/t for
several interaction strengths, extrapolated to V ~ oo.

FIG. 5. The density (Gln;IG) of the Bogoliubov ground
state and the density Aflgo(i)l of the Hartree state. Note
that despite the large depletion of the condensate in the Bo-
goliubov state, the total density is well approximated by the
density of the completely condensed state. (Un/t = 3.3.)
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sate fraction discussed above, which is a ground-state ex-
pectation value that measures the degree of off-diagonal
long-range order. ) A longitudinal probe corresponds to
boosting the system, and the entire fluid responds. A
low-frequency transverse probe corresponds to a slow ro-
tation of the system, which only couples to the normal
fluid, leaving the superfluid untouched. The superfluid
density is defined simply as the difference between the
longitudinal and transverse response. In principle, a
Bose system can be superfluid without possessing true
o8'-diagonal long-range order, the canonical example be-
ing the two-dimensional Bose liquid at nonzero tempera-
ture below the Kosterlitz- Thouless transition, which has
only algebraic correlations.

The zero-temperature, zero-frequency, current-current
response tensor y, z (q, w = 0) is given by the Kubo
formula:

). (G~ J, (q)~m)(m~ 1;(q)~G)

m m

The sum extends over all intermediate excited states m,
and the lattice current operator J(q) is defined by

2(q) =24) sin(k;+ —')bi4644~

where bi, = g, e' "b, In pr.inciple the direct evaluation
of y,~ is straightforward given a complete knowledge of
the excited states ~m).

In the continuum, the longitudinal response in the
long-wavelength limit is required by the the f-sum rule
to satisfy

lim y (qx) = 2tJV, —
q —+0

i.e. , the entire fluid participates in longitudinal flow. On
a lattice, the f-sum rule is modified so that

lim ii„(qx) = 242K,4 = —2i A —)——(n4)), (24)
q~oo - 4t

k

response, per unit volume:

(26)

The longitudinal and transverse response functions

(qx) and y (qy) can be easily calculated numerically
in the Bogoliubov approximation. The excited states

~m) entering (21) are then all one- and two-quasiparticle
states. Because the Bogoliubov approximation does not
conserve particle number, the lattice f-sum rule (24)
is not satisfied. Explicit evaluation of (21) shows that
lim~~ y (qx) tends to the number of bosons in the
condensate, AI), rather than the total particle number. ~s

[Note that JVp is not the same as JV,tr in (24).]
The normal fluid density, obtained by explicit calcula-

tion in the Bogoliubov approximation of the transverse
response function y, (qy), appears to be more trustwor-
thy. JV„vanishes in the translationally invariant case

[V(i) = 0], as expected. We therefore follow Ref. 15 and

adopt (26) as our operational definition of the superfluid
density in the Bogoliubov approximation.

Figure 6 shows the transverse response function for a
12 x 13 lattice averaged over six realizations of various
weak disorder. Such small systems were used because
the evaluation of the response tensor g,~ (q, u = 0) in
the presence of disorder requires four nested sums over
quasiparticle states for each q and is computationally
very expensive. Figure 7 shows JV,tr and JV„ for the same
systems. Af, tr is calculated by explicitly evaluating the
right-hand side of (24), whereas Af„ is obtained from ex-
trapolating the transverse response from Fig. 6 to q = 0.
The difference between JV,tr and N„ is JV, . For weak
disorder (6/t ( 5), the fluctuations from realization to
realization are small. With increasing disorder, however,
these fluctuations become quite large, as seen by the error
bars in Fig. 6 which represent sample-to-sample fluctu-
ations. Note that the zero-frequency transverse response
shows little dependence on momentum in this approxi-
mation.

An alternative defi. nition of superfluid density is as a

where ck is the tight-binding dispersion given below in

(30). (This sum rule holds in the presence of arbitrary
disorder. ) Equation (24) implicitly defines A(, (r. Even
though A', tr g JV, the longitudinal response of a lattice
system still corresponds to the entire fluid.

The transverse response of a Bose liquid is only due
to the "normal fluid, " since the superfluid component
of the system can only participate in irrotational (i.e. ,

longitudinal) flow. Thus we can define the number of
bosons in the normal fiuid, JV„, by

lim y (qy) = —2tA
q~o

0.15
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] 0.05—
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/2. /t = 10.0
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This definition also holds in the continuum, with t re-
placed by h/2m,

In a nonsuperfluid system, the long-wavelength longi-
tudinal and transverse responses are identical. Super-
Buidity occurs when the two responses become different.
The superfluid (number) density n, is then defined by
the difference between the longitudinal and transverse

z 4/t = 3.0

0.00
~ ~ ~ ~ 6/t = 0.0

I I

2 3 4 5

FIG. 6. The transverse component of the current-current
response function for the 12 x 13 lattice. (U /t =n3.3.)
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excited state. Thus we have taken the energy ep —i of the
first Hartree excited state in the absence of a twist to be
the energy for introducing a 2' phase twist across the
sample. In our problem, the superfIuid density can then
be computed by
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FIG. 7. Af, rr/N and Af„/JV' vs disorder for the 12 x 13 lat-
tice. Af, = JV,s —JV„. (Un/t = 3.3.)

stifFness to variations in the phase of the condensate wave
function. Such a phase variation imposes a superfluid
velocity on the system,

(27)

where 8 is the phase of the condensate wave function.
The total energy of the system increases due to the ki-
netic energy of the superflow, and is directly proportional
to the density of superfluid. The superfluid density is
then defined by

h2

; (V'8)'. (28)

It is easy to estimate the superfluid density in this
manner using the energy of the Hartree state (2). [In
principle, one should also include the change in the zero-
point energy of the quasiparticles (17), but this calcula-
tion is also costly. ] To impose a twist in boundary con-
ditions, we should change the hopping matrix elements
t,~ to t;~e'+'&, where A,~ is a vector potential whose sum
along a path spanning the sample is 0. We should then
solve the corresponding new nonlinear Schrodinger equa-
tion, and compare the resulting condensate energies. Un-
fortunately, for 8 g n7r this requires solving a complex
nonlinear Schrodinger equation.

For 8 = tr, the Schrodinger equation (4) remains real,
but a new problem arises. Consider first the uniform case
with V(i) = 0. With a tr phase twist, the ground-state
manifold of (4) is doubly degenerate, and is spanned by
the uniformly left- and right-moving condensates. This
degeneracy &ustrates our iterative convergence scheme,
since linear combinations of these two degenerate solu-
tions have spatially varying densities, driving even the
Broyden method away Rom convergence. This problem
persists in the disordered case.

To avoid these complications, we note that for a phase
difference of 0 = 2m the Schrodinger equation is un-
changed. In the course of increasing the phase difference
&om 0 to 2m, the ground state is deformed into the first
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FIG. 8. The superBuid fraction as obtained through the
twist method for several interaction strengths, extrapolated
to Vmoo.

[Strictly speaking, A', tr should be used in place of A in

(29), since without disorder the normal fluid density van-

ishes, while the longitudinal response is given by N, tr.
This correction is comparable in magnitude to the alter-
ation of the zero-point motion of the quasiparticle energy,
which we have also neglected in obtaining (29).]

Figure 8 shows the superfluid fraction obtained using

(29) and again extrapolating to the thermodynamic limit

by averaging over seven realizations for system sizes from
I = 8 to 18. For weak disorder, when the direct eval-

uation of the response function permits reliable extrap-
olation to q = 0, the two calculations agree. As the
disorder grows, however, the fluctuations in the response
function (21) from sample to sample increase, and be-

yond 6/t 10 the direct calculation of y,J is no longer
feasible because of the large number of samples required
to obtain a reasonable statistical average.

As shown in Fig. 8, systems with larger interaction
are more robust to the addition of disorder and thus re-
quire larger 6 to reduce the superfluid density. (This
was also the case with the condensate fraction; compare
with Fig. 4.) In fact, the superfluid fraction remains sub-

stantial even when the Bogoliubov approximation begins
to break down, i.e., when the condensate fraction be-
comes small. Note that the superfluid response involves
both the bosons in the condensate and those that have
been scattered out of it by interactions —when the con-
densate is accelerated, some of these scattered bosons
accompany it. In the absence of disorder (and neglecting
lattice effects s) all bosons participate, and p, = p, even
though the condensate can be substantially depleted. As
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Un/t is increased for fixed disorder, the condensate frac-
tion Alp/N is reduced (because of increased scattering
out of the condensate), while the superfluid fraction p, /p
is increased (because of decreased sensitivity to disorder
when interactions are strong). [ )

(E;~n ')'
Pp = (34)

The corresponding "participation ratio" specifying the
degree of delocalization of this density fluctuation is then

VII. EXCITATION SPECTRUM

At long wavelengths, the collective excitations of a uni-
form Bose condensate are phonons with a linear disper-
sion, u = ek. For wavelengths comparable to the inter-
particle spacing, strongly interacting Bose fluids exhibit
a roton minimum, and for even shorter wavelengths the
collective excitations become ill de6ned, merging with
the multiparticle continuum.

In the Bogoliubov approximation for lattice bosons
without disorder, the quasiparticle spectrum can be
solved analytically. The tight-binding dispersion is

ei, = —2t[cos(k ) + cos(k„) —2], (30)

and quasiparticle dispersion is

2Un~& + ~„'. (31)

q„' = ) (U„,bt + V„;b,).

Adding an excitation in state p to the ground state, there
is amplitude U~,. to create a particle at site i and V„; to
create a "hole" there. The net particle density at site i in
the one-quasiparticle state pt IG) differs from the density
of the ground state itself by

bn„, = (GIp„n, ptIG) —{GIn,IG)
= IU .-I'+ I& *I'

A linear phonon dispersion holds for wavelengths that are
long enough that (a) ei, is much less than t, so that the
tight-binding dispersion is nearly quadratic (ei, = tk2),
and (b) ei, is much less than 2Un, so that the first term
in the square-root in (31) dominates. The speed of sound
c is then /2Unt.

The Bogoliubov approximation is too crude to cap-
ture the roton minimum found in real strongly interacting
Bose fluids, and for higher momenta the excitation energy
(31) rises monotonically. At short wavelengths pair scat-
tering can be neglected, and the quasi-particles behave
as free particles with a Hartree energy uHF ——tk + Un.

When disorder is introduced, translational invariance
is destroyed, and momentum is no longer a good quantum
number. Are the excitations created by p~ localized?
Even if the Hartree states P& are localized, the quasipar-
ticle states created by p~ need not be the condensate
is extended, and can mediate nonlocal scattering via the
inner product Spy~ in the Bogoliubov Hamiltonian (10).

Since the quasiparticle operators p~ do not simply add
a boson, but superpose a particle and a "hole" (a particle
supplied by the condensate), the participation ratio used
for the Hartree excitations [Eq. (6)] is inappropriate.
Transforming (13) to the site basis, the quasiparticles
are created by

C(T)
kg

2 g(~)etar/kiiT d~

(kgT) [e ~"& —1]'

To infer the behavior of the specific heat at low tem-
peratures, it is useful to introduce the "integrated density
of states"

g(~')d(u' = ) O((u —~„), (36)

where 8(tu) is the Heaviside step function. N(u) gives
the number of states with energy less than or equal to

As a monotonic function of ~, N(~) is easier to fit
than the spiky g(ur) for finite systems. If N(~)
then C(T) T* for low temperatures. For a linear
phonon dispersion ~ = ek in a d-dimensional box of lin-

ear dimension L, the integrated density of states varies
as N(w) (Lu/c)", so that the specific heat of a uniform
Bose condensate varies as T" at low temperatures.

For the 6nite L x L„ lattices we consider, the mo-
menta k are restricted to a discrete set of allowed values.
Only a limited number of these values satisfy the condi-
tion that ei, be much smaller than both t and 2Un (or
equivalently, that cu be much smaller than both v 2Unt
and 2Un) needed for (30) and (31) to yield the correct
linear dispersion in the absence of disorder. To obtain
enough states to permit a 6t to the density of states in
this regime, we are forced to work with large Un even
though the Bogoliubov approximation is uncontrolled in

For an extended excitation, the participation ratio (34)
should scale linearly with the volume of the system; for
a localized excitation, the participation ratio should be-
come independent of the volume for systems larger than
the localization length. Unfortunately, we could not per-
form a reliable scaling analysis with the small systems
available to us, and we therefore could not infer the na-
ture of the excitations created by p~. On general grounds,
however, we expect the nature of the excitations in a dis-
ordered Bose condensate to be given by the localization
problem for phonons. Thus in two dimensions, all ex-
citations should be localized with a frequency dependent
localization length ((w) exp[A/u ) for arbitrary disor-
der. (In three dimensions, a mobility edge separates the
extended low-energy phonons from higher-energy local-
ized modes. )

Within the Bogoliubov approximation (10), the excited
states of the system are independent bosons created by

If we assume that the temperature is low enoughP'
that thermal fluctuations do not change the excitation
spectrum appreciably, but merely excite the quasiparticle
states according to the Bose-Einstein distribution, the

specific heat is then completely determined by the density
of quasiparticle states per unit energy. For a density of
states g(~), the specific heat is
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N(u)) = A~+ B(u, (37)

this limit. The condition that ei, is much less than t
guarantees that we avoid the van Hove singularity at the
center of the tight-binding band. [The van Hove singular-
ity can also be pushed to higher energy by the judicious
addition of further range hopping matrix elements which
cancel the k terms in (30) and prolong the k depen-
dence of ei, .]

In the presence of disorder, the low-energy integrated
density of states will deviate from its pure ~" form. The
integrated density of states divided by u2 is shown for
increasing disorder in Fig. 9. Each panel shows N(~)/A&2
for one realization of disorder. The low-energy end of
the spectrum (well below the van Hove singularity, and
in the range which had a linear dispersion in the absence
of disorder) is well fit by

~ A
oB

ii ~
I

10
6/t

15 20

where A and B depend on both b, /t and Un/t.
Figure 10 shows the parameters A and 8 vs disorder

for Un/t = 3.3. (Qualitatively similar behavior is found

FIG. 10. Coefficients of the linear and quadratic parts of
the integrated density of states N(u) = Au+ B~ vs disorder
(210-site system). As disorder is increased, the linear term

develops, indicative of a glassy system.
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for Un/t = 5.0 and 7.0.) For weak disorder the inte-

grated density of states remains nearly quadratic in u,
consistent with the low-energy excitations being weakly
perturbed phonons. As disorder increases, however, a
linear contribution to N(u) emerges, corresponding to a
constant density of states g(u). By the time the conden-
sate is nearly completely depleted, the linear contribution
to N(u) dominates.

VIII. CONCLUDING REMARKS
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FIG. 9. N(ur)/~ vs u for Un/t = 3.3 and (a) E/t = 0.0,
(b) 4/t = 10.0, (c) b, /t = 18.0. As disorder increases,
N(cu)/u diverges, indicating a deviation from the form
N((u) cu (V = 210 sites. ).

Gillis et al. ii have measured the low-temperature (150
mK —1 K) heat capacity of thin He films adsorbed in
porous Vycor glass. At low coverages, they 6nd that the
heat capacity is linear, with no evidence of a superQuid
transition. This phase is identified with the insulating
state of bosons localized by disorder, the "Bose glass. "
Above a critical coverage (corresponding to several mono-

layers), the low-temperature phase is a superfluid, with
a heat capacity that varies as T2.

Although the 4He is adsorbed as a few-monolayer
film in the Vycor, the pores are connected to form a
three-dimensional network. For suKciently long wave-

lengths, three-dimensional behavior is expected. Why
does the specific heat of the superfluid vary as T rather
than T, as expected for a three-dimensional condensate?
The explanation is that for excitations with wavelengths
less than the typical pore size Az „(several hundred

Angstroms), the connectivity of the porous network is
unimportant, and the density of states for phononlike
excitations will be that of a two-dimensional super6uid.
Thus above a crossover temperature kJBT hc/A~ „,
the specific heat should vary as T, until the roton contri-
bution becomes appreciable. For an upper bound on T
we can use the bulk speed of sound c 3 x 10 cm/sec,
which gives a crossover temperature of 30 mK. This is
surely an overestimate, since at the coverages studied by
Gillis et al. the pores are not close to being 6lled and the
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compressibility is therefore much less than in bulk. An
alternative estimate using the speed of sound in thin He
films adsorbed on graphite gives a crossover temperature
of 1 mK.

How big a linear specific heat does one expect in the
Bose glass'? If one assumes a constant density of bosonic
excitations in the Bose glass (as we found for the strongly
disordered superfiuid), then the observed linear specific
heat translates to roughly one mode per particle per 10
peV. This energy scale is comparable to the quantum
confinement energy of a He atom trapped in a pore sev-
eral hundred Angstroms in diameter.

We have presented numerical solutions of the disor-
dered Bose Hubbard model in the Bogoliubov approxi-
mation. This approximation correctly captures the long-
wavelength properties of the clean Bose condensate, and
is equivalent to the random phase approximation. It rep-
resents an expansion about the weakly disordered and
weakly interacting limit, with a small parameter given
by the depletion of the condensate. We find that weak
disorder hardly sects the condensate fraction or the
superfluid density. Instead, the condensate distorts to
screen the imposed random potential. Interactions help
stabilize the condensate, and prevent its collapse into a
macroscopically occupied localized state.

For strong disorder the condensate fraction and super-
fluid density are reduced, and ultimately vanish for suK-

ciently large disorder (although the Bogoliubov approx-
imation is no longer controlled by this point). Our cal-
culation therefore cannot access the critical properties of
the superfluid-insulator transition. The Bogoliubov cal-

culation, however, does suggest a promising variational
state for the Bose glass: Eq. (18) with JVo ——0.

The clean Bose condensate has a linear low-energy den-

sity of states in two dimensions, which implies a low-

temperature specific heat that varies as T, as observed.
We find that with increasing disorder a constant density
of states appears at low energy. This constant density
of states dominates as the condensate fraction and su-

perfluid density become small, and leads to a linear low-

temperature specific heat. With our small sample sizes,
we could not determine the extent to which these excita-
tions are localized.
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