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the hard c-ore boson model: A quantum Monte Carlo study
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Quantum Monte Carlo simulations are used to investigate the two-dimensional superfiuid proper-
ties of the hard-core boson model, which show a strong dependence on particle density and disorder.
We obtain further evidence that a half-filled clean system becomes supernuid via a finite-temperature
Kosterlitz-Thouless transition. The relationship between low-temperature super6uid density and
particle density is symmetric and appears parabolic about the half-filling point. Disorder appears
to break the super8uid phase up into two distinct localized states, depending on the particle den-

sity. We find that these results strongly correlate with the results of several experiments on high-T,
superconductors.

Quantum systems of interacting bosons in clean or dis-
ordered media have been used to study a variety of in-
teresting problems, including the superfiuidity of He,
superconductor-insulator transitions in thin films, and
vortex dynamics in type-II superconductors. Recently,
the relation between superconducting transition temper-
ature (T,) and carrier density (b) in various copper-oxide
superconductors was found to obey a universal bell-shape
curve. This finding also shows that the super6uid-
like condensation of charged bosons (local Cooper pairs)
is crucial for high-T, superconductivity, based on some
common features of copper oxides: the extremely short
coherence length implying pointlike Cooper pairs, and
the layered structure which confines the carriers mainly
to two-dimensional (2D) Cu02 layers. From the analysis
of muon-spin-relaxation (y,SR) and transport measure-
ments, Schneider and Keller argued that such conden-
sation of extreme type-II superconductors belongs to the
classical XY universality class in three dimensions, and
Zhang and Sato surmized that the bosons involved are
actually bipolarons. In this model, Cooper-pair bosons
whose binding energy is much larger than condensation
energy are assumed to exist below T, (onset), and super-
conductivity appears via the phase coherence of preex-
isting bosons.

Here, within the boson framework, we propose a quan-
tum XY universality class in two dimensions. We ex-
amine a 2D lattice boson Hubbard mode14 specified by
hard-core repulsive interactions and random potentials.
The phase diagram depends on the temperature, par-
ticle density, and also on the degree of disorder. First
and foremost, when the particle density is varied, the
phase diagram should be perfectly symmetric about the
half-filling level, because of the particle-hole symmetry.
Second, the hard-core Bose gas has mathematical anal-
ogy to the quantum spin problem. From previous stud-
ies of a spin-1/2 XY model, one may expect that,
for a clean boson system, the Kosterlitz-Thouless (KT)
transition takes place and 2D superBuidity arises below
a finite critical temperature TET. Also, regarding dif-
ferent bosonic systems, there are early numerical works
suggesting a KT transition in a Coulomb gas model

and in a soft-core model. Third, at suKciently strong
disorder, dense Bose gas is expected to exhibit a local-
ized phase called the Bose glass. 4'is Through a quan-
turn Monte Carlo (MC) simulation, this paper provides
further support for the superfiuid KT transition of the
hard-core boson model in the half-filling case, and sheds
light on density-modulation and localization effects in 2D
superfiuidity. Our simulation results strongly correlate
with recent experimental data in copper-oxide supercon-
ductors, including the T, vs b' relationship and the nature
of superconducting phase transition.

The Hamiltonian of hard-core bosons is expressed as

N

Hbo, o„=——) (a;ai + a~a;) + ) v;n; + HHC (1)
( ) i=1

for a square lattice of size LxL. Here the first sum is
the kinetic energy of bosons, where the hopping constant
t = 5 /2m&a with effective mass m& and lattice spacing
a. The second part represents the potential energy &om
on-site disorders with a uniform distribution v 6 [

—b, , b,j.
The hard-core interaction HHg inhibits the double oc-
cupancy of bosons at each site. This interacting Bose
gas can be transforxned into an equivalent spin-1/2 XY
system in a randomly varying magnetic field, such that
Hboson ~ Hspin = t P(i 'l(Sq S' + S' S') +P' viSq

setting at = S + iS", a = S —iS", and n = S' + 1/2
with the spin-1/2 operator S = (S,S",S').s

To simulate the equilibrium state of such a quan-
tum system e%ciently, we use the path-integral approach
based on the Suzuki-Trotter transformation. ' The 2D
bosonic system (under periodic boundary conditions) is
transformed to a 3D (torus with space and imaginary-
tixne dimensions) classical system of boson world lines.
Possible paths of the world lines are topologically char-
acterized by particle number and winding number, where
the winding number (W) is defined by counting how
many times the world lines wind around the torus in
space directions. For the microcanonical ensemble of
bosons (fixed particle density nb), we carried out MC
sampling of the world lines, by utilizing an algorithm
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previously developed for the spin model. ( See Ref. 7 for
details of the simulation method, and Ref. 14 for some
technical remarks, re-.pectively. ) The superfluid density
n, corresponds to the kee energy change due to twisting
the phase of order parameter along one lattice boundary,
and this quantity can be computed directly from winding
number fluctuations

n, = (k~T/t)(W2) (2)

in the path-integral representation. For the MC sam-
pling, together with conventional local moves of world
lines, we also made global update of winding number
W, such that all the transitions to diferent val-
ues of W are allowed. In contrast, most previous spin
simulationss were limited to a fixed condition of W = 0
while the particle number was variable. Since the present
W-variable algorithm is ergodic regarding winding num-
ber, we can evaluate n, exactly for a finite-size lattice.
This computational approach is complementary to ear-
lier quantum MC studies ' and exact diagonalization
study on the similar model.

Figure 1 shows the numerical results of a clean half-
filled system (6 = 0, nb = 1/2) with difFerent size lat-
tices (L = 4, 6, 8). The temperature dependence of 2D
superfiuid density is shown in Fig. 1(a). For T ( TKT =
0.40(5) t/k~, n, (T) grows remarkably and becomes al-
most independent of the lattice size, while, for T ) TKT,
it is suppressed with increasing size. At low tempera-
tures, n, reaches 0.27(1) for the L = 8 lattice, compared
to 0.28 given by the exact diagonalization of the much
smaller (L = 4) lattice. is Thus, even at the ground state,
the superfiuid fraction is at most n, /nt, —0.54 in the
thermodynamic limit, and the normal-fiuid component
remains large. This i'ndicates a strong renormalization
eKect due to quantum fluctuations, while the thermal
fluctuations cause the vortex-antivortex pairs to unbind
at high temperatures. The value of TKT is quite consis-
tent with the KT universal jump condition, which sat-
isfies n, (TKT) = 2k~TKT/7rt denoted as a dotted line
in Fig. 1(a). Moreover, to get a clearer sign of the KT
transition, we calculated the temperature derivative of
n, using the fluctuation formula
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quantum fluctuations are rather significant at low tem-
peratures.

Figure 2 shows how the superfluid density depends on
the Bose particle density and the degree of disorder (b, ),
at low temperature T = 0.25t/k~. Note that the rela-
tionship between the superfiuid density n, and the dop-
ing density np is approximated well, although not ex-
actly, by the parabolic form n oc (nt, —np)(1 —nb —np)
with some constant no. Here no ——0.06, 0.13, 0.13, and
0.15 for various degrees of disorder 6 = 0, 1.0, 1.25, and
1.75, respectively. In comparison, in a one-dimensional
(1D) pure system, the exact result n, = sin(xns)/x is
obtained. i" The symmetry about half filling is rigorous
in both clean and disordered systems, since the model
involves the particle-hole symmetry due to hard-core in-
teractions. In the presence of disorder the parabola seems
to be preserved, and in addition the onset of superfluidity
can be found at a common value of np 0.1, despite large

8(Pn, )/BP = (W )(E) —(W E),
C„

0.6—

where E is the total energy and P = 1/k~T As seen.
in Fig. 1(c), the peak value of B(Pn, )/BP grows rapidly
near T = TKT, as the lattice size increases. In sufB-
ciently large lattices, Eq. (3) reduces to the energy dif-
ference AE between periodic and antiperiodic boundary
conditions. It should be noted that, for the classical XY
model, an analogously divergent sign of AE was used
as a decisive evidence for the KT transition. On the
other hand, the peak value of specific heat tends to sat-
urate at C„=0.62(1) just above TKT with the increase
in size, as shown in Fig. 1(c). Although it is well known
that &ee Bose gas in two dimensions never condenses
at finite temperatures, these numerical observations def-
initely support the view that the hard-core nature of in-
teractions between bosons leads to the superfluid phase
through the finite-temperature KT transition, while the
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FIG. l. (a) Two-dimensional superfiuid density n„(b)
temperature derivative of n„and (c) specific heat C„,as
a function of temperature T, for a clean half-6lled system.
The symbols denote the cases for difFerent lattice sizes I = 4
(circles), 6 (triangles), and 8 (squares). The solid curves rep-
resent spline 6ts to the calculated data. The dotted line in
(a) corresponds to the universal jump condition of the Koster-
litz- Thouless transition.
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reduction of maximum n, at the half filling. Since the
transition temperature TKy is generally proportional to
n, (T = 0) in the 2D system, the above parabolic property
implies that the relation between T, and particle density
takes a universal form, which is accompanied with a com-
mon ofFset density in the disordered case.

The disorder always localizes bosons to suppress the
superfiuidity. Nevertheless the disorder-induced localiza-
tion appears to differ qualitatively between dense and
dilute Bose systems in two dimensions. Figure 3 shows
the dependence of n, on disorder (6) at a fixed low
temperature. The superfiuidity of the moderately dense

PARTICLE DENSITY nb

FIG. 2. Low-temperature super8uid density as a func-
tion of boson particle density, for different degrees of dis-

order. This simulation was performed at low temperature
T = 0.25 t/k~ on an 8 x 8 lattice. Each value denotes the ther-
mal and sample averages over 6ve different disordered states.
The degrees of disorder are denoted by circles for the clean
system (b, = 0), triangles (b, = 1.0), squares (b, = 1.25), snd
crosses (b, = 1.75). The solid lines represent parabolic fits to
the calculated data.

(half-filled) system is insensitive to weak disorder. At
stronger disorder b, & 2.5, the superfiuidity disappears,
but the size dependence is very weak even when the disor-
der is rather strong. This result is consistent with earlier
studies ' which support the existense of the Bose glass
phase for dense systems. In contrast, the dilute system
at 1/8 filling (ns = 1/8) is rather sensitive even to weak
disorder. Here n, is rapidly suppressed as the lattice size
is increased. This size dependence implies that the cor-
relation length of superfiuidity is smaller than the lattice
size L = 8. The insets of the 6gure show the spatial dis-
tribution of boson density in each case. For the dilute
region in the vicinity of np ——no, most bosons appear to
form a superfiuid cluster, as depicted in the upper inset.
The size of the cluster is comparable to the localization
length (i of the Anderson transition. For instance, using

(i = a/ln(b, /t) in the limit of strong disorder, (i 5a
for 6 = 1.25. This observation indicates that the 2D
weak localization is dominant at densities below no. On
the other hand, for a half-filled system with strong dis-
order, such clusters assemble into a percolative network,
as shown in the lower inset. This behavior is supposed
to be associated with critical Quctuations in the vicin-
ity of the Bose glass transition point. Here, when the
glass correlation length, larger than the Anderson's lo-
calization length, exceeds the lattice size, the superflu-
idity disappears. By varying the particle density under
the hard-core condition, we have thus obtained a possible
tuning from Anderson glass to Bose glass in two dimen-
sions. It is interesting that the similar tuning was previ-
ously observed in 1D disordered soft-core boson system
(n&=0.625) by varying the strength of on-site repulsion
from zero (free) to strong (hard-core) couplings. is

We made a semiquantitative comparison of these nu-

merical results with several results related to high-T, su-

perconductors. Hereafter we assume bosons to have a lin-

ear size equal to the coherence length on the Cu02 plane,
a = f s 10 A. Recently Matsuda et aL2o carried out
transport measurements which provided unequivocal evi-
dence of the KT transition in a one-unit-cell(12 A.)-thick
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FIG. 3. Localization in dense (nq = 1/2)
and dilute (ng = 1/8) Bose systems. The
curves show the low-temperature supernuid
density as a function of disorder strength, at
a fixed temperature T = 0.25 t/kz The sym-.
bols correspond to lattice sizes L = 4 (black
circles), 8 (black squares) for the dense sys-
tem, and L = 4 (circles), 6 (triangles), 8
(squares) for the dilute system The tw.o
insets represent the density distribution of
bosons on the 8 x 8 lattice. The upper
and lower insets correspond to the cases of
(nq = 1/8, b = 1.0) aud (nq = 1/2, 4 = 2.5),
respectively.
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YBa2Cus07 (YBCO) film with a maximum value of
TKT ——30 K. The three-dimensional interlayer coupling,
thus, is not a necessary condition for 6nite-T supercon-
ductivity, although the interlayer coupling plays an ad-
ditional role in elevating the T,. By comparing the ex-
perimental and numerically determined values of TKT in
the clean half-filled system (2mb( ~kIsTKT/5 0.4), we

estimate the boson mass as m& ——2m,' „,-„5.9m„
which is comparable to the value of m,' „,„2.5m,
given by Schlesinger et al. 22 from in&ared measurements
of YBCO.

In high-T, superconductors, chemical doping not only
results in carrier-density modulation, but also introduces
some degree of microscopic disorder in the superconduc-
tive Cu02 plane, although the latter eEect has not been
well elucidated experimentally. One remarkable feature
commonly observed in experimental data is that the rela-
tionship between the transition temperature T, and the
hole density b (per unit cell) follows a common bell-

type curve: T, (b) rises above b tr„q 0.05, reaches a
maximum at bT ( ) 0.18, and falls down to zero
at b',„s 0.3. In addition, the T;b curve is symmet-
ric about h = bT ( „),possibly implying some hidden
symmetry. These experimental features strongly corre-
late with the results presented in Fig. 2. Furthermore we

theoretically obtained the universal parabolic curve, sim-

ilar to the ansatz proposed in Ref. 2. By simply assuming
that the boson particle density scales with hole density
as nq = (b/2)(( ab/l b) with a unit cell size l b 4 A,
we get ng 0.16, 0.56, and 0.94 for b g, t, bT

~ ~, and
b,„~,respectively. This is also consistent with the com-
putational results. Thus, the existence of parabolic sym-
metry and the consistency of characteristic values of m&
and b strongly suggest that superconductivity within in-
dividual Cu02 layers is caused by 2D superQuidity of
local bosons moving in somewhat disordered media.

To summarize, our quantum Monte Carlo simulations
have provided further support that the 2D hard-core Bose
gas undergoes a KT transition to become super8uid,
and that the low-temperature superfluid density shows
a paraboliclike dependence on particle density. In disor-
dered systems, we have shown that the bosons localize

differently in the dense and dilute cases. The computa-
tional results correlate with the T, vs b relationship for
high-T, superconductors and may partially illustrate the
nature of the superconducting transition.
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