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We determine the phase diagram of a quasi-one-dimensional superconductor (weakly coupled
chains system with an open Fermi surface) in a magnetic field. A field H(O, H, O) along the y
direction (perpendicular the direction 2: of highest conductivity) tends to confine the electronic
motion in the z direction. At low temperature, this efFect cannot be neglected and the Ginzburg-
Landau theory breaks down. We find that the usual Ginzburg-Landau regime is followed, when
the field is increased, by a cascade of superconducting phases separated by first-order transitions,
which ends with a strong reentrance of the superconducting phase where the chains interact by
Josephson coupling. This high-field superconductivity can survive even in the presence of Pauli
pair breaking because the quasi-one-dimensional Fermi surface allows one to construct a Larkin-
Ovchinnikov-Fulde-Ferrell state that can exist far above the Pauli-limited field. Moreover, elastic
scattering does not destroy the superconducting phases in clean materials with sufBciently large
anisotropy. We show that the superconducting state evolves from an Abrikosov vortex lattice in
weak field towards a Josephson vortex lattice in the reentrant phase. Between these two limits, the
order parameter and the current distribution show laminar-type symmetry. The relevance of our
results is discussed for quasi-one-dimensional organic superconductors and quasi-two-dimensional
superconductors.

I. INTRODUCTION

The microscopic justification of the Ginzburg-
Landau (GL) description of the mixed state of type-II
superconductors2 is based on a semiclassical approxima-
tion (known as the semiclassical phase integral or eikonal
approximation) which completely neglects the quantum
efFects of the magnetic field. s At low temperature (or
high magnetic field) and in sufFiciently clean materials
hu, )) k1rT, 5/7' (u, being the characteristic magnetic
frequency and r the elastic scattering time) these efFects
cannot be neglected so that it is necessary to use an exact
description of the magnetic field.

In isotropic superconductors with a closed Fermi sur-
face, the magnetic Geld leads to Landau level quantiza-
tion of the semiclassical orbits. Early studies of the in-
Quence of this quantization on the mixed state of type-II
superconductors have shown that de Haas-van Alphen-
like oscillations could occur in the superconducting tran-
sition temperature T, (H) in an external magnetic field. 4

More generally, the inclusion of Landau level quantiza-
tion in the BCS theory leads to quantum oscillations in
various physical quantities near H, (0)2. Experimental
evidence for the importance of Landau quantization was
found by Graebner and Robbins who observed de Haas-
van Alphen oscillations in the mixed state of the layered
dichalcogenide 2H-NbSe2. Moreover it has been recently
proposed by Tesanovic, Rasolt, and Xing~'8 that Landau
level quantization can lead to reentrant behavior at a very
high magnetic field (her, )) E~): when only one Lan-
dau level is occupied, the orbital &ustration of the order
parameter disappears so that superconductivity is only

limited by impurity scattering and a Pauli pair-breaking
effect. Unfortunately the very high fields needed restrict
considerably the possible candidates and makes the ex-
perimental observation of this reentrant behavior a diK-
cult challenge.

In quasi-one-dimensional (quasi-1D) conductors with
an open Fermi surface such as can be found experimen-
tally in weakly coupled chains systems, the magnetic field
does not quantize the semiclassical orbits which are open
but it induces a dimensional crossover. io ii This behav-
ior is at the origin of a very rich variety of phenom-
ena observed in organic quasi-one-dimensional conduc-
tors and in particular in the Bechgaard salts family: cas-
cade of spin-density-wave phases appearing for increasing
magnetic field, quantized Hall effect in a 3D conductor,
etc. The magnetic-Geld-induced dimensional crossover
is expected to have also spectacular consequences on the
phase diagram of a quasi-1D superconductor. This was
Grst recognized by Lebed' who predicted a reentrant be-
havior of the superconductivity at a very high magnetic
Geld in case of equal spin-triplet pairing. It was noted
by Lebed' that this reentrance should also be present
(but at a lower temperature) in case of singlet pair-
ing if the spatial dependence of the order parameter is
correctly chosen: this property results &om the quasi-
1D geometry of the Fermi surface which allows one
to construct a Larkin-Ovchinnikov-Fulde-Ferrell (LOFF)
state which can exist far above the Shandrasekhar-
Clogston (or Pauli) limit. More recently, it has been
shown that the theoretical phase diagram is richer that
the one originally proposed by Lebed' and exhibits a cas-
cade of first-order transitions between different supercon-
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ducting phases with a new structure of the order param-
eter due to commensurability effects between the peri-
odicity of the order parameter and the crystalline lattice
spacing.

In this paper, we present recent developments concern-
ing the study of superconductivity at a high magnetic
field in a quasi-1D conductor with the dispersion law

(h = kii = 1 in the following and the Fermi energy is
chosen as the origin of the energies):

E(k): v(~k
~

k~) + ty cos(kgb) y t cos(k c) (1)

where v is the Fermi velocity for the motion along the
chains and t&, t, are the coupling between chains sepa-
rated by the distances b, c. The use of a linearized dis-
persion law is justified when t„and t, are much smaller
than the Fermi energy. The magnetic Beld is assumed
to be along the y direction. We will consider both
cases T, « t, « t& and t, « T, « t& where T, is
the zero-field critical temperature. The former condi-
tion ensures that the smallest coherence length in the
system is always much larger than the spacing between
chains [(,(T) ) (,(0) )) c]. When quantum effects of
the field are not taken into account, the discrete as-
pect of the system does not play an important role in
this case: the superconductivity is well described by
the anisotropic GL theory. The superconducting state is
an anisotropic triangular Abrikosov vortex lattice, and
the normal state is restored by the orbital effects of
the field at H, 2(T) = Po/2x( {T)(,(T) (Po is the fiux
quantum). i7 In the other case, when t, « T„the chains
interact by Josephson coupling at low temperature so
that it is necessary to use the Lawrence-Doniach model
instead of the GL theory. The superconducting state is
an anisotropic triangular lattice of Josephson vortices.
At low temperature, vortices can fit between two chains
so that the critical temperature becomes limited only by
impurity scattering or the Pauli pair-breaking effect.

As discussed in Ref. 14 a simple semiclassical analy-
sis explains the origin of the reentrant behavior at a very
high magnetic field. For a magnetic field H(0, H, 0) along
the y direction, the semiclassical electronic trajectories
obtained &om the equation of motion dk/dt = ev x k
are of the form z = c(t, /u, ) cos(Gx), where G = eHc-
and v, = Gv. The field reduces the amplitude of the
electronic motion in the z direction. At very high field
(u, )) t, ), the amplitude of the trajectories becomes
smaller than the distance between chains, showing that
the electronic motion becomes localized in the (x, y)
planes. The magnetic field being parallel to the plane of
the electronic motion, time-reversal symmetry is restored
(if we ignore the Zeeman coupling) so that the orbital
&ustration of the order parameter vanishes [there is no
magnetic Bux through the 2D Cooper pairs located in the
(x, y) planes]. This magnetic-field-induced confinement
is important only when the magnetic length 2vr/G (the
spatial periodicity of the semiclassical motion) is much
smaller than the thermal length v/27rT so that quantum
efFects can. be ignored when cu && T.

In the next section, we determine the transition tern-
perature T, (H) Our calculation goes bey. ond the eikonal

approximation and takes into account the quantum ef-
fects of the magnetic Beld. We first show that the BCS
theory reduces to the Lawrence-Doniach model or to the
anisotropic GL theory in the weak field limit where the
eikonal approximation is justified. The transition line
and the order parameter are then calculated numerically
for any value of the Beld. It is shown that the phase di-
agram depends strongly on the ratio t, /T, W.hen t,,/T,
decreases, the number of phases in the cascade of first-
order transitions decreases and the critical temperature
increases. For t, /T, & 1, the cascade disappears: the
reentrant phase follows directly the semiclassical regime.
The Pauli pair-breaking effect is discussed in detail. For
a sufficiently small ratio t, /T„the critical temperature
of the LOFF state (for singlet superconductivity) can be
in an experimentally accessible range for any value of
the field. For larger values of this ratio, the cascade ap-
pears at a very low temperature and only the reentrant
behavior is expected to be seen. We show that elastic
scattering does not destroy the superconducting phases
in clean materials with a suKciently large anisotropy. We
also show that the chains interact by Josephson coupling
in the very high-field limit (ur, )) t, ). Effects of fiuctu-
ations on the existence of a long-range order are brieQy
discussed. Finally, we present the evolution of the order
parameter from the Abrikosov Gaussian solution in weak
field towards an extended solution at high field.

In Sec. III, we determine the order parameter in the
vicinity of T, (H). We follow the original approach pro-
posed by Abrikosov ' and write the order parameter as
a linear combination of the solutions of the linearized gap
equation. This linear combination is chosen in such a way
that the order parameter describes an Abrikosov vortex
lattice in weak field {u, « T) and a Josephson vortex
lattice at very high field (ur )) t, ). The current distri-
bution is calculated in Sec. IV. At high field (u, )) T),
the superconducting state differs qualitatively from the
usual Abrikosov vortex lattice. In particular, the ampli-
tude of the order parameter and the current distribution
show a laminar structure.

In Sec. V, we discuss the case of the organic su-
perconductors (TMTSF) zX where TMTSF=tetramethyl
tetrathiafulvalene and X = C104, PF6. We brieBy com-
ment on the mechanisms which could be responsible for
superconductivity in these materials and on the relevance
of the model studied in Secs. II, III, and IV. We then dis-
cuss the expected phase diagram according to the value
of t . In Sec. VI, we explain why the results obtained
for a quasi-1D superconductor should also be valid for a
quasi-2D superconductor at high parallel magnetic field
and discuss the experimental consequences.

II. TRANSITION LiNE

In the absence of electron-electron interactions the sys-
tem is described by the Hamiltonian 'Ro ——E(k
—iV' —eA) obtained &om the dispersion law by the
Peierls substitution. A is the magnetic vector poten-
tial. In the gauge A(0, 0, Hx), the eigens—tates and the
corresponding eigenvalues are given by
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a g p q ik z+ikzbl+ik cm+ia~ sin(k c—Gal~c

ei, = v(o(k —k~) + t„cos(k„b)+ OIJ~'H,

where the integers t and m label the chains in the direc-
tions y and z. o = + (—) for g (j,) spin and the g factor
is assumed to be equal to 2. Each eigenstate is labeled
by the vector k, where k& and k, are restricted to the
first Brillouin zones ]

—~/b, x/b] and ]
—z/c, z/c] (note

that k is not the momentum). a = sgn(k ) refers to the

I

left/right sheet of the Fermi surface. The confinement of
the electrons in the z direction appears only through the
nondependence of e& on k, . Using this latter property,
it is possible to construct a set of eigenstates which are
localized in the z direction. The real space one-particle
Green's function also confirms the localized character of
the electrons in the z direction. Taking advantage of
the conservation of the transverse momenta k„and k
in the Landau gauge, we introduce a Green's function in
the mixed representation (z, k„,k, ) by taking the Fourier
transform with respect to y and z:

GI(ay ] k k q ia~ [sin(k c—Gz) —sin(k c—Ge')j & ik»(z —z') ga(k(g) g ) y) z) Qgn) —Q c S) ~n)

= ) p (k, )p (k, )'e '" *+'" ~ ) e*" ~ &G (k k v„)
n, n'

(4)

where u„=2m T(n + 1/2) is a Matsubara frequency and

G (k, k„,~„)is the two-dimensional Green's function:

G (k, k„,(o„)= [i(u„—v(nk —k~)

t„cos(k„—b) —0 IjriH]

The coelficients p„(k,) come from the Fourier expansion
of the periodic phase factor in (4):

2
ajar intc+ia ~ sin(A;, c—u)~c

p 2x

ink, cJ z
n )~c

where J„is the nth-order Bessel function.
The attractive electron-electron interaction Hamilto-

nian is described by the BCS model with coupling pa-
rameter A & 0:

W.;„=—— ) b )' J rdrg r(r)rgr(r)
a,a'=k, o l,m

"~—(r)'C(r)

where we note r = (x, l, m) and ir = —n, 0 = —o. The
(r)'s are fermionic operators for particles moving on

the sheet a of the Fermi surface. The interaction is ef-

fective only between particles whose energies are within
0 of the Fermi level.

We look for a BCS mean-6eld solution of the Hamilto-
nian 'Re + 'R; q with the order parameter

b (r) = A (Q& (r)Q& (r)) —
(g& (r)@& (r))

corresponding to singlet-spin pairing. It is well known
that 1D Buctuations cannot in principle be neglected in
quasi-1D superconductors due to interferences between
Cooper and Peierls channels at energies e ) ts (or
equivalently at length scales & v/t„). However, in the
"weak coupling limit" a mean-field (or ladder) approx-
imation becomes correct below the one-particle dimen-
sional crossover temperature where these two channels
decouple, the effects of 1D fiuctuations being then to
renormalize the transverse bandwidths t~ and t„and the
coupling parameter A. i 22 In the following, the different
parameters of the Hamiltonian have therefore to be un-

derstood as renorrnalized parameters. The transition line
is determined by the linearized gap equation

A 'b, (z, q, ) = dx'K(x, x', q. )b, (x', q.),
/~ —~'/&d

K(x, x', q, ) = T) ) &G( , xxk„, „k(d)G&( , x',x—k„,q, —k„—ur„)
~n a)ky ikz

T cos[2p~H(z —x')/v] 4t, . G, . c G
Jo sin —x —x sin q, ———x+ x

bcvz sinh[]x —x']2m T/v]
~

ur 2 2 2

The cutoff d is related to the energy O. A(x, q ) is the
Fourier transform of the order parameter with respect to
z. We have also used the fact that the highest T,(H) is
obtained for a uniform order parameter along the field.

A. Ginsburg-Landau regime (u, « T)

In the weak field regime (u, « T), the magnetic
length 2'/G is much larger than the thermal length
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v/2nT. Since v/2mT acts as a cutofF, it is possible to
replace sin[G(z —z')/2] by G(z —z')/2 in the kernel K
of the linearized gap equation. This approximation is
strictly equivalent to the eikonal approximation where
the Green's functions are modified by the magnetic field
only through the introduction of a phase factor equal to
the circulation of the vector potential. The kernel K is
then given by

T cos [2y,~H (z —z') /v]
bcv2 sinh[~z —z']2mT/v]

2tz IxJp (z —z)
v

T* C

7~2/(3) t,
4T

When T, « t„T'is of the order of T2/t, Contrary
to the isotropic case where the crossover temperature is
determined by the Fermi energy (T' T2/E~), 7 T' is
determined by t and can be in an experimentally acces-
sible range if the anisotropy is large enough. This result
is very important in view of the search for quantum ef-

0

fects near H, 2' (0) (the upper critical field calculated in
the eikonal approximation) and will be further discussed
in the next section.

c G
x sin q, ———(z+z')

2 2

The resulting integral equation can be converted into a
second-order differential equation if we expand the gap
E(z', q, ) and the argument of the Bessel function in sec-
ond order in x —z':

025—v + t, 1 —cos(q, c —2Gz) 6
Bz

16~2

7((3) '
( T, )

T.' 1 ——a, (12)

where ((2) is Riemann's zeta function. This differential
equation is very similar to the diffusion equation of the
cooperon which has been previously studied in the con-
text of Anderson localization and can be justified in the
same way. 22 Equation (12) is the linearized gap equation
in the Lawrence-Doniach model. When T, ((t„it can
be further simplified by replacing the periodic potential
in the lhs by a set of decoupled harmonic potentials lo-
cated at points q, c/2G+ nor/G. A possible set of de-
generate solutions corresponding to the highest T, (H) is
defined by

B. Quantum regime (pi, )& T)

&~(z) = e* *&~(z)

where Aq(z) has the periodicity vr/G and —G & Q & G.
If we Fourier expand the periodic function Aq(z),

( ) ) ~Q i2lGz

l

(17)

the linearized gap equation becomes a matrix equation
for the coefficients 6&&.

2! ) 2l, 2I' 2l' t

Q . Q Q

ll

In the quantum regime (pi, )) T), the eikonal approxi-
mation for the Green's functions breaks down and one has
to solve the integral equation (9) with the exact form of
the kernel (10). T,(H) is clearly independent of q, (which
only shifts the origin of the z axis by q, c/2G) allowing
one to set q, = 0. Using K(z, z') = K(z+z/G, z'+sr/G),
the solution of (9) can be written without any loss of gen-
erality as a Bloch function:

( qc farl
A„(z,q, ) = fp z — ' —n

2G G)
~2l, 2l' ) KN 2l, N 2l'K(q —+ NG—) .

N

(19)

where fp is a Gaussian function. The preceding result
can be put in a more standard form by introducing the
quantum number q,

' = q, + n27r/c (which varies between
—oo and oo). The solutions b, (z, q,') are then Gaussian
functions centered at q,'c/2G = q,'/2eH. The critical
temperature is given by

K(q ) is the two-dimensional part of the kernel:

K(q ) = T) ) G~(k, k„,~„)
a,k,k„

xGl (q —k, —ky, —Id„)

7~2((3) t,pi,

16' 2 T,
(14) = —N(0) ) ln + IIi

2
I

'ilT ) I 2)
Thus in the weak field regime (pi « T), quantum ef-
fects of the magnetic field can be ignored and the BCS
theory reduces to the Lawrence-Doniach model or, when
T « t, to the anisotropic GL theory. 24 Equation (12)
is correct as long as the magnetic length 2vr/G is much
larger than the thermal length v/2mT. When T, « t„
we can use (14) to define a crossover temperature T* be-
tween a semiclassical GL regime and a quantum regime:

1 ClVQ~ + 2P~H(
(2 4ivrT )

(20)

where N(0) = 1/7rvbc is the density of states per spin at
the Fermi energy and p is the exponential of the Euler
constant. 4' is the digamma function. The coefficients
KN, N, are defined by
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K~, ~, = ) p„+,(k, )p~ „(—k, )p„+(k, )*
Ic,ng, n2

xp~ „(—k, )'

1 .
(iv iv )

du &2t—Jiv alii(u)
c p 27l'

I 4i~ )

0.4

0.3-

x Jiv, ~

'
sin(u)

~c
(21)

0.1-

&X

(a)

U

~ 0.5

0

0 10
H (Tesla)

15 20

0.15
(b)

The last expression is obtained using the definition (6)
of the coefficients p„(k,) where the Bessel functions are

written as J„(z)= (2n') f e'"" """(")due
We first consider the case without Pauli pair break-

ing. It then follows Rom (19) and (20) that the matrix
eleements A2& 2&, present the usual logarithmic divergence

K(0) ln(20'/xT) if Q + NG can be equal to zero.
Since —G & Q & G this can be realized only for Q = 0
or Q = G. Therefore the highest T,(H) will be obtained
for these two values of Q. The results of the numerical
calculation of T,(H) are shown in Figs. 1—3 which corre-
spond to difFerent values of the ratio t, /T, . In the weak
field regime (ur, « T), all the values of Q between —G
and G correspond to the same T,(H). In the quantum
regime (u, )) T), this degeneracy is lifted: the high-

est T,(H) is always obtained for Q = 0 or Q = G (in

agreement with the preceding considerations), the last
phase (very high field) corresponding to Q = 0. These

1 2

H (Tesla)

FIG. 2. Critical temperature T,(H)/T, vs magnetic Beld

(t, = 10 K and T, = 1.5 K). The solid (dashed) line cor-
responds to q = 0 (Q = G) in the absence of the Pauli
pair-breaking effect. The long-dashed lines correspond to the
LOFF state.

two alternating solutions are characterized by a differ-
ent structure of the order parameter. This means that
successive phases are separated by first-order transitions.
The phase diagram. proposed by Lebed' corresponds to
the solution Q = O.i As can be seen from Figs. 1 and 2,
the phase diagram depends strongly on the ratio t, /T, .
When the anisotropy increases, the number of phases in
the quantum regime decreases and the temperature in
the low-temperature region increases in agreement with
(15). When the Josephson limit is reached (t, T,~

C

the cascade of first-order transitions between the semi-
classical regime and the reentrant phase disappears ~Fi .
3).

ears ~ ig.

We now consider the effect of Pauli pair-breaking by
taking into account the Zeeman term. Accordin to

&9 a( ) and (20) the matrix elements A2i 2il will present
logarithmic divergences for Q = +2IJIsH/v or Q
k(G —2pgH/v). The shift +2p~H/v of the value of
Q displaces the Fermi surfaces of spin t and $ relative
to each other and compensates partially the Pauli pair-
breaking effect as is the case in a LOFF stateis (note that
the order parameter remains uniform along the magnetic-

0 0.1.

o0. 05

2 3

H (Tesla)
g 0.5

FIG. 1. Critical temperature T (H)/T, vs magnetic field

(t = 20 K and T = 1.5 K). (a) The solutions q = 0
(solid line) and Q = G (dashed line) alternate for increas-
ing magnetic 6eld. Each phase is labeled by an even inte-
ger N (see Sec. III). When the Pauli pair-breaking effect is
taken into account T,(H) is strongly reduced but the reen-
trance at very high Seld is not suppressed (long-dashed line).
(b) The low-temperature region in the absence of the Pauli
pair-breaking effect.

H (Tesla)

FIG. 3. Critical temperature T,(H)/T, vs magnetic field
near the Josephson limit (t = 5 K and T = 1.5 K). See the
caption of Fig. 2 for the meaning of the different lines.
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field direction). Since the logarithmic divergences survive
for n = + or o. = —in (20), one-half of the phase space
is again available for pairing. The existence of a LOFF
state (for every value of the field) is due to the quasi-
10 structure of the Fermi surface. As can be seen from
Figs. 1—3, the reentrance of the superconducting phase is
not destroyed by the Pauli pair-breaking effect although
T, (H) is considerably reduced compared with its value
in the absence of Zeeman splitting. When the anisotropy
is too small, the low-temperature region is destroyed by
Pauli pair breaking as shown in Fig. 1 [in fact, the low-
temperature region still exists but at a very low temper-
ature (in the range of the mK) which cannot be seen in
Fig. 1]. When the anisotropy is sufficiently large, the
low-temperature region survives as can be seen in Figs.
2 and 3. In the Josephson limit (t, T,), the last phase
(very high field) corresponds to a slow decrease of T, (H)
rather than to a real reentrant phase (Fig. 3): in this
case, the transition between the semiclassical and quan-
tum regimes is characterized by a sudden change in the
slope of T,(H). It should be noted that the transition line
obtained in the absence of Pauli pair breaking is not only
of academic interest. For example, for triplet equal spin
pairing, there is no effect of Zeeman splitting. The triplet
state can be easily incorporated in the present theory if
we describe the electron-electron interaction by two con-
stants gq and g2 corresponding to backward and forward
scattering of two particles on opposite sides of the Fermi
surface. Then the singlet transition temperature corre-
sponds to the one calculated in the presence of Pauli pair
breaking with A = —(gi + g2)/2, while the triplet tran-
sition temperature corresponds to the one calculated in
the absence of Pauli pair breaking with A = (gi —g2)/2.
Moreover, most of the type-II superconductors are not
Pauli limited and we expect that Pauli pair breaking will

be inefficient close to Hfz' 1(0) (obviously, our numerical
calculations correspond to the Pauli limited case).

Before concluding on the possible existence of high-
Geld superconductivity in quasi-1D conductors, it is nec-
essary to consider the effect of impurity scattering. In a
magnetic field, the superconducting state is not formed
&om time-reversal pairs and is expected to be sensitive
to impurities. To leading order in 1/E~~ (w being the
elastic scattering time), impurity scattering is taken into
account by including self-energy and vertex corrections
into the kernel K defined by (10). Following such a
procedure, we find that the effect of impurity scattering
is weak, i.e., iT, "(H) —T, (H) [ « T, (H) where T~"(H)
is the critical temperature in the presence of disorder if

We have introduced

1n(2pO /7r T,)
1n[2pA/~T, (H)]

' (24)

fp(z —z„)= ) e 'q*"Dq(z).
Q

where T,(H) is the critical temperature without Pauli
pair breaking. V, which comes &om vertex corrections
in the linearized gap equation, tends to reduce the dif-
ference T (H) —T, "(H). For the low-temperature re-
gions (T & ~, & t, ) shown in Figs. 1(b) and 2, V
is in the range 0.3—0.6 for a cutoff 0 in the range 30—
300 K. According to (22), impurity scattering does not
affect the critical temperature in the reentrant phase
when Pauli pair breaking is neglected since V ~ 1 when
T,(H) i T, This. is a direct consequence of Anderson's
theorem which states that the critical temperature is in-
dependent of a (weak) disorder for a system with time-
reversal symmetry. When the Zeeman term is taken
into account, the reentrant phase becomes sensitive to the
presence of disorder [Eq.(23)] since time-reversal symme-
try is broken in this case whatever the value of the mag-
netic field. Obviously, inequalities (22) and (23) impose
to consider clean superconducting materials with a criti-
cal temperature not too small. This latter condition will
be an advantage to materials with a large anisotropy. To
illustrate this point further, let us assume that 1/w 100
mK, a condition which is realized in the organic conduc-
tors (TMTSF)2C104 and (TMTSF) 2PFs. Using inequal-
ities (22) and (23) (which we rewrite as n « 1, which de-
fines n), we can test the stability of the superconducting
phase. For T, = 1.5 K and t, = 5 K (Fig. 3), the efFect of
disorder can be neglected. The reentrant phases shown
in Figs. 1(a) and 2 are not destroyed by impurity scat-
tering (ri « 1). On the other hand, the low-temperature
region shown in Fig. 1(b) is likely to be affected by dis-
order since a 0.5—0.75. The low-temperature region of
the LOFF state shown in Fig. 2 could also be affected by
disorder since n 0.55—0.6. Thus, although inequalities
(22) and (23) are quite restrictive, high-field supercon-
ductivity remains possible in clean materials which are
sufBciently anisotropic.

The periodic part Aq(z) of the order parameter is
shown for increasing values of the magnetic field in Fig. 4
which corresponds to T,(H) shown in Fig. 1. In the GL
regime, Aq(z) is localized around the points x„=n7r/G
Using the degeneracy of T, (H) with respect to Q, it is
possible to recover the Abrikosov Gaussian solution:

when Pauli pair breaking is not considered, and

vi, f vi T.(H)'
1 —— — 1 + — '2 « 1, (23)

16~T,(H) ( 2 ) ( 2 ) p~~H2

for the LOFF state when Pauli pair breaking is taken into
account. In the last equation, we assumed T (( p~H.
In (22) and (23), T,(H) is the critical temperature calcu-
lated with and without Pauli pair breaking, respectively. 2vrH( (T, H)(, (T, H) Pp, (26)

In the quantum regime where the degeneracy of T, (H)
with respect to Q is lifted, b,q(z) becomes extended.
This suggests that the usual vortex lattice structure is
strongly modified when u, )) T. At very high field (~, ))
t ), b.q(z) becomes almost uniform.

The phase diagram shown in Figs. 1—3 can be ex-
plained qualitatively by a criterion of the type (we only
consider the case T, « t )
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FIG. 4. Periodic part b,q(z)
of the order parameter for dif-
ferent values of the magnetic
field. Solid line: b g=o(z)
[4q 0(z) is real]. Dashed
and long-dashed lines: real and
imaginary parts of b.g=z(z).

xG/ & xG/ &

H=4 T, Q=G H=5. 8 T, Q=O

Q(x) Q(x)

0
~ rPr

W

xG/ & xG/ K

where ( (T, H) and (,(T, H) are characteristic lengths to
be determined. In the GL regime ( (T, H) = (,(T) and

(,(T, H) = (,(T) are the usual cohereace lengths and
we recover the result of the GL theory. In the quantum
regime, these temperature depeadent coherence lengths
are not relevant any more and have to be replaced by
magnetic-field dependent lengths: ( (T, H) = ( (H)
and (,(T, H) = (,(H). According to the semiclassi-
cal analysis presented in the Introduction, we expect
( (H) to be roughly constant and (,(H) to decrease
like 1/H by analogy with the transverse magnetic leagth

c(t, /ur, ). (,(H) can be interpreted as the size of
the Cooper pairs in the z direction. The magnetic
fiux H( (T, K)(,(T, K) then becomes field iadependent:
the dimensioaal crossover compensates the breakdowa of
time-reversal symmetry and freezes the orbital mecha-
nism of destruction of the superconductivity. In this
picture, the reentrant phase (very high field ~, )& t, )
where the orbital frustration of the order parameter van-
ishes can be interpreted as the limit where the size of the
Cooper pair in the z direction becomes smaller than the
spacing between chains: (,(T, H) « c.

C. Very high-Beld limit au && t,

The relation ( (T, H) « c suggests that the chains
interact by Josephson coupling when ~ && t . This
becomes clear if we consider the linearized gap equa-

tioa. Ia the very high-field limit, the hopping between
chains is of order t, /ur, « 1 and can be treated pertu-
batively. To first order in (t, /ur, )2, the linearized gap
equation in real space is represented by the diagrams of
Fig. 5. Figure 5(a) corresponds to the propagation of an
electron-electron pair in the plane z = mc and is the only
contribution when the magaetic field is infinite. Figure
5(b) describes a finite extension of the Cooper pair in
the z direction [one of the electroas hops to the plane
z = (m 6 1)c and comes back to the plane z = mc] and
contribute to the reduction of the transition temperature.
Figure 5(c) corresponds to the Josephson tunneling of a
pair from the plane z = mc to the plane z = (m 6 l)c.
This Josephson coupling results only from the magnetic-
field-induced dimensional crossover and is realized when
u, &) t„orequivalently 2z/G « r~ or c(t, /ur, ) && c
where r~ = v/t, is the Josephson length for the hopping
in the z direction. By analogy with the case of weakly
coupled superconducting planes (the quantum effects of
the magnetic field being neglected) where the minimum
of the free energy corresponds to a triangular lattice of
Josephson vortices at low temperature, we expect that
the superconducting state will also be a triangular lattice
of Josephson vortices in this high-6eld limit u » t .

The linearized gap equation can be solved if we retain
only terms of order t2/oi2 We first cons. ider the case
without Pauli pair breaking. The coefficients Ag7
b, 2i are of higher order for ~2l~ ) 2 and can be neglected.
Noting that L2 ——L& ——A 2 and A2 0:—A0, 2 ——Ao
the linearized gap equation can be written as
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a) a(x, m) d(x', m)

The critical temperature T,(H) is determined by

(A
' —Ap p)(A

' —A2 2) —2Ap 2
——0. (31)

h,(x,m) h, (x', m)

A2p 2 is of order t4/~4 and can be neglected The highest

critical temperature is then determined by A —Ap p
——

0. Using A = N(0) ln(2pB/7rT, ), one obtains

b)

h(x, m) h, (x', m)

T(H) =T, 1 ——' ln
Tc

(32)

a result which agrees with the one derived by Burlachkov,
Gor'kov, and Lebed'. The relation between Ap and A2
is obtained &om

C) a(x, m) b, (x', m+1)

—Ap 2hp+ (A
' —A2, 2)b2 ——0.

To leading order in t2/u2, one obtains

22p~, t,
7l T 4(d 27CT

(34)

FIG. 5. Diagrammatic representation of the linearized gap
equation to first order in t, /u, . The solid lines represent an
electron propagating in a plane z = mc. The hopping between
planes (of order t, /u, ) is represented by dashed lines.

A similar procedure can be followed when Pauli pair
breaking is considered. The only change is that Q =
2p~H/v is finite. When ur, &) T, the 2D susceptibilities
are given by

( W-' —A, , —2Ap21 (dpi (0l
Ap2 ~ A22 A2, —2) (+2) I 0)

(»)

Ap p = Kp pK(0) + Ky y [K(G) + K(—G)],
A2 2

——Kp, pK(2G) + Ky y[K(G) + K(3G)],
Ap 2 = Kp 2 [K(0) + K(2G)] + Kz yK(G),

A2 2
——0, (28)

where

To leading order in t, /ur„ the coefficients K~, ~, are
obtained by expanding the Bessel functions J„(z)in

powers of z: Jp(z) = 1 —z2/4 + O(z4), J„gp(z)
(z/2)" /n! + O(z"+2). One then obtains

K(Q) = —N(0) ln
2 7cTpgH

(35)

C 40'
K(Q + nG) = —N(0) ln for n g 0,

2 nod~ 4/lay H + nod~

7rT2
T (H) =

4 fp~H

From A —Az p
——0, we then obtain

(36)

where we have assumed ~4p~H + nu,
~

)& T in the last
expression. We lrst calculate the critical temperature
T2 (H) corresponding to isolated (z, y) planes in the
presence of Pauli pair breaking. This temperature is ob-
tained from A ~ —c K(Q) = 0, which leads to

Kpp = — 1 ——
c Cd C

t2
Kg g — )2')

t
4ccd

(29)

K(0) = cN(0) ln
&2pnl

7rT )
20

K(nG) = cN(0) ln for n j 0.
ncuc

(30)

For ur, )& T, the 2D susceptibilities K(nG) are given by

(H) )
td C

16pz~Hz )
This expression is correct only for ~4p~H +u,

~
&& T, (H),

a condition which will be verified in most cases at low

temperature.
In this quasi-2D regime, it is necessary to consider the

effect of thermodynamical fluctuations on the validity of
the mean-field description. The problem of fluctuations
is very similar to the one encountered in weakly cou-
pled superconducting planes in parallel field described
by the Lawrence-Doniach remodel: in the very high-field
limit (a, )) t ), our system can be viewed as a set of
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anisotropic superconducting planes with a magnetic-field
dependent Josephson coupling. Taking into account only
the small (Gaussian) fluctuations of the phase of the or-
der parameter, Efetov has shown that a strong paral-
lel magnetic field suppresses long-range order in a set
of weakly coupled planes described by the Lawrence-
Doniach model: although the phase coherence between
planes is absent, the superconductivity inside the planes
survives (Kosterlitz-Thouless transition). so However a
complete description should also take into account the
role of topological excitations (vortices) (Ref. 17) and
the electromagnetic coupling between planes so that it
is diKcult to answer the question of the existence of a
long-range order or of a Kosterlitz-Thouless transition.

) ~ ) ~ ) ~
G( )

i»»2n'(a —
~&& )+iq, c(»»»+a)

Q q —~ 2 2' fL=—OOr 1Vc

x

by�(z,

q, ) . (4o)

After summation over n, only the contribution Q = 0

(Q = G) for N/2 odd (even) subsists:

aq)v(z, m) = ) C(n, )e'"*~~ b, q(z, q, )e'q*'
2qrr Nc

gQ i(Q+2lG)e
2l

l

D~ and restoring the q, dependence, we can write the
order parameter as

III. ORDER PARAMETER IN THE ORDERED
PHASE

OO

x ) 1 —i(—1)~ b,
P=—OO

(41)

&(* ) = ). G( '. )
*'*' +'f q

g 21f 2eH)
r Nc

) ) G( )
iq» (na+s)+in2ma

tL= —OO ~gr r flic

q, cixf, z —n
G 2G)

where

G ifn, is odd,
iC if n, is even.

(38)

(39)

fo is the Gaussian function introduced in the preced-
ing section. q,

' p] —oo, oo[ is the momentum in an ex-
tended zone scheme. q, E] —n/c, m/c] is the momentiiiii
in a reduced zone scheme. The constant a = 0 (1/2)
for N/2 odd (even) ensures that the vortex cores lie be-
tween two planes. Using relation (25) between fs and

Following the original work of Abrikosov, ' we write
the order parameter for T & T,(H) as a linear combi-
nation of the solutions of the linearized gap equation.
According to the preceding section, the order parame-
ter evolves &om a triangular Abrikosov vortex lattice in
weak field u, « T (in this section we neglect the Zeeman
splitting) to a triangular Josephson vortex lattice in very
high field u, » t, . Consequently, it has to keep the same
triangular symmetry throughout all the phase diagram.
We therefore expect that it is possible to describe all the
phase diagram with the same kind of linear combination.
In the following we first construct the Abrikosov vortex
lattice using the functions bq(z, q, ) introduced in the
preceding section. We require the vortex lattice to have
periodicity a, = Nc (N integer) in the z direction so that
the vortex cores can lie between two planes (which will
obviously minimize the free energy). N has to be even
in the case of a triangular lattice. We then show that
the obtained solution can be naturally extended to the
description of the quantum regime and in particular of
the Josephson vortex lattice when u, )& t, .

The order parameter describing the Abrikosov vortex
lattice can be written as

3 St,
NqR - —+

2 Vruc
(43)

The periodicity a, = Nc is not determined by the co-
herence length anymore but by the transverse magnetic
length c(t, /cu ) This result has t.o be compared with
the case of isotropic superconductors where the size of
the vortex lattice in high field is determined by the mag-
netic length 1/geH. Since N 1/H, a is roughly a
constant function of the field. It is interesting to note

In deriving (40) and (41), we have included some nurner-
ical factors in the constant C. Thus we eventually come
to the important result that the Abrikosov vortex lat-
tice with periodicity a, = Nc can be constructed only
with b,q o and Aq ~, the value of Q depending on the
parity of N/2. Solution (41) is naturally extended to
the quantum regime where the best solutions also corre-
spond to Q = 0 and Q = G. As will be shown latter,
it describes correctly the Josephson vortex lattice in the
limit u, » t, It can b. e seen that ~hq )v(z, m)

~

has pe-
riodicity a = 2z/NG in the z direction. We have the
usual relation Ha a, = 2go showing that there are two
flux quanta in the unit cell (a, a, ) (which contains two
vortices in the GL regime).

In order to know completely the order parameter, we
have to determine the value of N. In the GL regime,
the periodicity is given by the coherence lengths. We
have a /a, = i/3( /(, = ~31' where I' = v y 2/t, c is the
anisotropy factor, which leads to

27rt.
NGi, (42)

6ld~

In the quantum regime, we assume that each phase tran-
sition when the field is increased corresponds to a de-
crease of N by two units, the last phase (Josephson vor-
tex lattice) corresponding to N = 2. The cascade of
phase transitions is then due to commensurability e8ects
between the crystalline lattice spacing c and the period-
icity a of the order parameter. As in the GL regime, the
phases Q = 0 (Q = G) correspond to N/2 odd (even).
Using the fact that the maxima in T,(H) are determined
by the extrema of Js(4t, /~, ), we obtain
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(p) t, 7((3)
T. 8~3~

'

(p) 3 t,' 7~2((3)
&R (44)

that the characteristic length a appears in the linearized
gap equation. As can be seen &om Fig. 4, the number of
nodes in Aq p(x) is equal to NqR/2 —1 [the same kind of
observation can be made for Eq G. (z)]. a = 2)r/N@RG
is then the mean distance between two nodes.

The transition between the GL regime and quantum
regime is reached for 2m. /G v/2)rT. When T, « t„
the corresponding periodicities are given by

%'hen T « t„wealways have NGL « N&R. N cannot(o) (o)

be a monotonic decreasing function of the 6eld but has to
increase strongly at the transition between the GL and
quantum regimes. With the parameters used to obtain
Fig. 1, NCI, 6 at the end of the GL regime, while
it is possible to distinguish 21 phases in the quantum
regime. This increase of N corresponds to a change in the
structure of the order parameter as will be shown below.
Close to the Josephson limit T, t„the cascade of phase
transitions disappears and we have NG& NR 2.(o) (o)

Before representing graphically the order parameter,
we calculate the current distribution. We also show that
the order parameter defined by (41) corresponds to a
Josephson vortex lattice when ~, &) t, .

IV. CURRENT DISTRIBUTION IN THE ORDERED PHASE

A. General expressions

Once the order parameter is known, we can calculate the correction to the Green's function to lowest order (in the
intermediate calculations, we do not take into account the y direction which does not play any role):

dG (z, m;z', m', z„)= —c ) f dzidzgG (z, m;zq, mq, z„)Aqz(z&,m~)
7%1 )mg

x¹(z2, m2,'xl, ml, —(d )Qq N(z2, m2)G (z2, m2', z, m, (d ),
and the current distribution

j (x, m) = ev) aT ) h'G (z, m;z, m, (d„),
a ~)2 )~

j,(z, m, m+1) =— (46)

Here j,(x, m, m+ 1) is the current at point z between the chains m and m+ 1. In the GL regime, these expressions
can be approximated by the ones obtained in the Lawrence-Doniach model as Eq. (9) could be approximated by Eq.
(12) in the preceding section:

7((3) evj (x, m) = —iraq N(x, m)8 b,q N(z, m) + c.c.

7((3) et, ~2j,(x, m, m+ 1) = '
~Aq N(z, m)kq, N(z, m+ l)~ sin[pq N(z, m+ 1) —pq N(x, m) —2GZ], (47)

where pq N(x, m) is the phase of Aq N(x, m). In the quantum regime ((d. )) T), a somewhat lengthy calculation leads
to the following expressions for the Fourier transform j(q = pNG, (b = P2n. /Nc) (P = 1, ..., N and p are integers) of
the current:

8C Q Q
.
(N +N )P

~*(p ) = —
Nb ). ).&N'+N'PN+N', N+N'e
Nba

N1)N1 N2)N2

' JpN N N +N +N 2—SlnP—
(dc

and

t'' "JN, —2—sin u+P — JN, ~

—2—sin u
(dc N ) ( (dc )

(48)
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j(P ) N. ~) /3 ) ) g, )v N+N,',N+N, '

p=+ Ng)N~ Ng)N2

J&N N N +N +N +f3 2—slnP—
( (u, N)

,(„„„„„„,„,„' "J~, —2—'sin u+P —J~, —2—*sin(u)
~c N ) ( (dc )

(49)

where we use the notation ( . ) = —.The2K
0

constant ( appearing in (41) has been set equal to 1.
The functions I"N M and g„~are defined by

der t2/~2. The order parameter is given by

b,q p)v 2(z, m) = Ap[1 —i(—1) ]

r 0
1

F~,M = ~
—.

v

..(„'.)» I'.
I

ifz =y= 0,
ifz =y ($0),
if z = 0 and y g 0,
ify=0andzg0,
if z g y and z, y P 0,

(50)

+262 cos(2Gz) [1 + i(—1) ] . (52)

In order to obtain the expression of the current to leading
order in t2/A&2, we have to expand the Bessel functions
appearing in (48) and (49) with respect to t2/u2. The
different contributions to j (p, P) are

where z = Nor, —vq—and y = —Mar, —vq, and

)
1 if p and P are even,

gp, p = i if p and P are odd,
I 0 otherwise.

AMPLITUDE

The general expressions (41), (48), and (49) of the or-
der parameter and the current distribution can be calcu-
lated numerically for any value of the magnetic field. The
order parameter and the current distribution are shown
in Fig. 6 for a weak magnetic field (u, « T) [Figs. 6—10
correspond to T,(H) shown in Fig. 1]. Aq)v(z, m) is
obtained from (41) and N is determined by (42). The
current distribution is obtained from (47). The super-
conducting state is a triangular Abrikosov vortex lattice.

In the high-field limit u, » T, th order parameter
and the current distribution are shown in Figs. 7—10. The
periodicity N is obtained from (43) and the current dis-
tribution is given by (48) and (49). The superconducting
state differs qualitatively from the Abrikosov vortex lat-
tice shown in Fig. 6. The amplitude of b,q ~(z, m) and
the current distribution show a symmetry of laminar type
consistent with the localized character of the electronic
motion in the z direction. An important aspect of the su-
perconducting state in the quantum regime is that each
chain carries a nonzero total current (except in the last
phase). As shown in Fig. 10, the last phase (N = 2)
corresponds to a 3osephson vortex lattice.

B. Very high-field limit au && t,

PHASE
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CURRENT
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6 t t t
tt ~
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tttff $$ttt ttttt tt offt—t ~ +t~tt )t Jt ~ ~ t

t f $t ~ t ~ +tet f
ft Tltt»t ~ ff Tl

JLttt ttitf Jl
fQ ll; ~ t tt:fQ ll

$t ~ ts ~ t~t f
tomtit f )tat ~ v
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Yt t
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~ t t
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'+ t t.f1
it f.

f2~tt

The general expressions for the order parameter and
the current distribution can be simplified iu the very
high-field limit u » t if we retain only terms of or-

FIG. 6. Phase q = 0, N = 10 (H = 0.13 T). On the mid-
dle Sgure, the distance between two horizontal dotted lines
corresponds to 2.5m.
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FIG. 7. Phase Q = 0, N = 26 (H = 0.48 T).
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FIG. 8. Phase Q = G, N = 8 (H = 1.7 T). FIG. 10. Phase Q = 0, N = 2 (H = 5.8 T).
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N,' = 2p, N, = N, = N,' = 0 ~ jf'l(p, 1)

e= —4ip —Ap62F2 p,bc

N2 = 2p, Ni ——N2 ——N,' = 0 w j (p, 1)

e= —4ip —Ap62F2 p,
bc

The difFerent contributions to j,(p, P) are

Ni ——p, N2 ——N,' = N,' = 0 w j,' (p, 1)
.(~)

N2 ——p, Ni ——N,' = N2 = 0 m j, (p, 1)

et 2

+p+1,p
VbQJ~

et 2

&pFx,p,
vb(uc

(57)

where p = +1. The total contribution is then given by

Ni ——2p, N2 ——Ni = N2 = 0 m j (p, 1) t2j,(p, 1) = 2eN(0) c—'b z ln (58)

e t2
= ip ——ApF2 p,

bc ~2

N2 ——2p, Ni ——N,' = N2 = 0 m j (p, 1)

&om which we deduce

t2j,(x, m) = 4eN(0)c 'Ao —ln '
(—1) cos(2Gx) . (59)

e t,= ip ——'ApF2 p,
bc u)2

Equations (52), (56), and (59) are characteristic of a tri-
angular lattice of Josephson vortices.

Ni ——p, N2 ——N,' = N2 = 0 w j (p, 1)(5) V. BECHGAARD SALTS AT HIGH MAGNETIC
FIELD

e t,2= —2ip ——'ApFg p )
bc (u2

N2 ——p, N, = N,' = N,' = 0 +j '
(p, 1)

e t2= —2ip ——'ApFg p,
bc ~2

(53)

where p = +1. The total contribution is given by

Se t2j (p, 1) = ip bob2+2, 0 b—o
—' F2,0

C

2
2 t.+&p, Fi,p

24)
(54)

j (p, 1) = 4ipeN(0)G ' b.Din
C

(55)

The current along the chains is then given by

2

j (x, m) = —4eN(0)G —'bzln (—1) sin(2Gx) .
(d 7i T

(56)

Using the definition of Fi o, E2 o and relation (34) be-
tween Ep and A2, the preceding expression is written
as

The phase diagram of the Bechgaard salts
(TMTSF)qX (where X = C104, PFs) has the unique fea-
ture that it presents three different ground states [metal-
lic, superconducting, and spin-density wave (SDW)j as a
function of pressure and magnetic field. ss A great deal
of theoretical effort has been devoted to an explanation
of this phase diagram based on the g-ology model.
Many of the data observed in these materials seem to
show that the intrachain interactions are repulsive and
indicate that the superconductivity is not of conventional
type: the sensitivity of the superconducting critical tem-
perature to pressure, the existence of antiferromagnetic
fluctuations above this temperature, the existence of a
cascade of magnetic-field-induced SDW phases well de-
scribed in the repulsive Hubbard model by a mean-field
theory ("standard model" ) (see Refs. 22 and 34 for a
more detailed discussion). Although difFerent mecha-
nism. s have been proposed, such as for example exchange
of spin Huctuations or coherent tunneling of correlated
pairs of particles, the problem of the origin of the su-
perconductivity in these salts has not received a definite
answer yet.

Whatever the mechanism responsible for superconduc-
tivity in the Bechgaard salts, the theory we have devel-
oped in the preceding sections (which assumes attractive
intrachain interactions) is probably not the right starting
point in the case of the Bechgaard salts. However, we
claim that our results are valid (at least from a qualitative
point of view) independently of the microscopic origin of
the superconductivity. The existence of superconductiv-
ity at high magnetic field in a quasi-10 superconduc-
tor is due only to the magnetic-field-induced dimensional
crossover and does not rely on a particular model of su-
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where E~ is the Fermi energy and o. a coeKcient which

perconductivity. This is, for example, obvious for the
reentrant phase which results from the 2D localization
of the one-particle quantum states. We therefore expect
that the phase diagrams shown in Figs. 1—3 are qualita-
tively correct in the case of the Bechgaard salts.

The alignment of the field along the y direction is cru-
cial in the case of the Bechgaard salts. First the value
of t„is much too large to see any quantum eÃects, at
realistic values of temperature and field, for a magnetic
field along the z direction. Moreover, a field in the z
direction would induce a cascade of SDW phases which
would prevent the existence of a superconducting phase
at high magnetic field. For a field along the y direction,
this situation does not occur because the deviation to
the perfect nesting in the y direction, which is not af-
fected by the field, is large enough to suppress the SDW
phases. Let us also mention that there is no contradic-
tion between the absence of electron-hole nesting and the
possibility to construct a LOFF state. For example the
electron-hole nesting is destroyed by the additional term
t„'cos(2k„b)in the dispersion law E(k) describing second-
neighbor interaction between chains. On the other hand,
this additional term does not acct the LOFF state which
can be constructed as long as the use of a linearized dis-
persion law is justified, independently of its electron-hole
nesting properties. It should be also noted that a pre-
cise alignment of the field along the y direction is re-
quired. A component of the field H or H, along the x
or z directions would create an additional Hux through
the Cooper pairs and decrease the critical temperature
T,(H). The eff'ect of a nonzero H or H, will be small
if H « H,*2(0) and H, « H;2(0), where H, 2(0) and

H;2(0) are the critical fields calculated in the eikonal ap-
proximation. Since H;2(0) « H,*2(0), the strongest con-
straint comes from the component H, For a field. H 10
T, using H;2(0) 0.02 T,ss we obtain 60 H, /H « 1'.
In the case of a triclinic structure (which is the case in
the Bechgaard salts), the field has to be along the b' axis,
which is in the most conducting plane and perpendicular
to the chains axis. This will ensure that H = H, = 0.

The expected phase diagram depends strongly on the
ratio t, /T, There are tw. o different opinions in the lit-
erature concerning the value of t, . According to many
authors, tb = t„/2 and t, = t, /2 are in the ranges 200—
300 K, and 5—10 K, respectively, which corresponds to
Figs. 1 and 2. With these values of t„the reentrant be-
havior and also the cascade if t, is not too large ( 5 K)
could be observed experimentally (here we assume sin-

glet pairing). Note that in order to observe the cascade
when t, 5 K, a very clean sample (1/r & 100 mK) is
necessary as discussed in Sec. II. The second opinion is
that tp and t are strongly reduced due to 1D fluctuations
according to

depends on the interaction constants. Using the estima-
tions of Bourbonnais et al. obtained from the NMR re-
laxation rate, tq 30 K, we obtain t,=0.5—1.5 K (i.e. ,

t, =l—3 K). This value is close to the Josephson limit

(t, T, ) and we expect in this case a slow decrease of
T,(H) at high magnetic field as shown on Fig. 3 (long-
dashed lines).

VI. QUASI-2D SUPERCONDUCTORS

In the preceding considerations (Secs. II, III, and IV),
the anisotropy of the (z, y) planes does not seem to play
a crucial role so that we may wonder whether a quasi-
2D superconductor at high parallel magnetic field will

present a similar phase diagram. An answer to this ques-
tion can be given &om semiclassical arguments. Consider
a set of weakly coupled superconducting planes described
by the dispersion law:

E(k) = v(kii —k~) + t, cos(k, c), (61)

where v is the Fermi velocity for the motion in the (z, y)
planes, c the distance between planes, and k~~

=
~k~~~

H

I

(&)

kx

FIG. 11. Fermi surface of a quasi-2D conductor and its
projection in the (k, k„)plane. The semiclassical orbits in

reciprocal space are obtained by taking the intersection be-
tween the Fermi surface and the planes perpendicular to the
magnetic field. These orbits can be open (a) or closed (b).
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pling between planes t, = t, /2 6 K, which corre-
sponds to the Josephson limit depicted in Fig. 3. Be-
cause of its high purity, impurity scattering should be
inefficient in these materials. The low T,-(P I)-phase
(T, 1.3 K) also appears very attractive, since the cas-
cade is expected to be seen with such a low critical tem-
perature. Unfortunately, the purity in this phase is not
as high as in the P H-phase44 so that impurity scatter-
ing will certainly destroy the superconducting phase at
high magnetic field. Let us also mention the case of ar-
ti6cial structures made of superconducting layers alter-
nating with insulating layers. The possibility to choose
the ratio t, /T, by varying the widths of the insulating
layers could make these artificial structures candidates
for high-field superconductivity, although the rather bad
purity of these materials could be a serious limitation.

VII. CONCLUSION

We have shown that in quasi-1D and quasi-2D super-
conductors, the quantum effects of the field lead to an
unusual behavior at high magnetic 6eld. Because of a
magnetic-field-induced confinement of the electrons, su-
perconductivity can survive at a high magnetic field con-
trary to the predictions of the GL theory. In the high-
Geld regime, the superconducting state shows a kind of
symmetry of a laminar type. We have shown that Pauli
pair breaking and elastic scattering do not destroy this
high-6eld superconductivity in clean materials with large
anisotropy. A very important result is that the temper-
ature and magnetic 6eld scales are determined by the
coupling between chains or planes. This means that the
temperature and magnetic field ranges where high-6eld
superconductivity is expected can be experimentally ac-
cessible if the appropriate material is chosen. Quasi-ID
and quasi-2D organic superconductors have been pro-
posed as possible candidates for the observation of su-
perconductivity at high magnetic 6eld.

The critical field H,2(T) in the b direction has been
recently measured by Lee et al. in the Bechgaard salt
(TMTSF)2C104. An upward curvature in H,2(T) is
observed below T /2 and down to 100 mK. We may
wonder whether this unexpected curvature is a signature
of the magnetic-6eld-induced dimensional crossover.
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[k~~
——(k, k„)].The coupling &, between pl»es is as-

sumed to be much smaller than the Fermi energy so that
the Fermi surface is open in the k, direction. The semi-
classical orbits k(t) in reciprocal space are obtained by
taking the intersection between the Fermi surface and
the planes perpendicular to the magnetic field. For a
field H(O, H, O) parallel to the y axis, these orbits can
be either open or closed (Fig. 11). Elementary geomet-
ric considerations show that the amplitudes are between
2t, /v and 2/t, t~~/v for the open orbits, and between

0 and 2/t, t~~/v for the closed orbits. Here t~~ vk~
is the hopping integral in the (x, y) plane. It follows
that the amplitudes of the real space orbits r(t) are be-
tween 2ct, /u, and 2cgt, t~~/u, for the open orbits, and

between 0 and 2cgt, t~~/u, for the closed orbits, where
u, = eHcv. Since all the orbits are localized in the z
direction, the one-particle Green's function will be local-
ized in this direction4o. The presence of open orbits in
the x direction ensures that the electrons are not localized
in this direction. The behaviors of the Green's functions
in quasi-1D and quasi-2D conductors are then very sim-
ilar. In particular, the particles will have a 2D motion
confined in the (x, y) planes at very high magnetic field
~, && t, .4 As long as only orbital effects are considered,
there will be a strong reentrance of the superconduct-
ing phase. We expect that the system will evolve &om
the GL regime to this reentrant phase through a cascade
of first-order transitions due to commensurability effects
between the crystalline lattice spacing and the periodic-
ity of the order parameter, as it is the case in a quasi-1D
superconductor.

Although orbital effects of the Geld are similar in quasi-
1D and quasi-2D systems, these two kinds of systems
differ concerning the effect of Pauli pair-breaking. With
the dispersion law (61), it is not possible to construct
a LOFF state which would compensate signi6cantly the
Pauli pair-breaking effect as it is the case for the quasi-
1D dispersion law (1). Except in very special cases [i.e. ,
when E(kll) +p&H = E(qll k ) p~H on a sig—»ficant
part of the Fermi surface], the superconducting phase will
be destroyed for a field of the order of the Pauli limited
6eld. Therefore, the observation of quantum effects will

be possible only near H,2' (0) and in superconducting
materials which are not Pauli limited.

The possibility to observe quantum effects in quasi-
2D superconductors certainly enlarges the number of ma-
terials which could exhibit high-field superconductivity.
It should be remembered that these materials have to
be clean and sufBciently anisotropic as discussed in Sec.
II. Moreover, a too high zero-6eld critical temperature
(like, for example, in high-T, superconductors) would be
a drawback because the quantum effects would then ap-
pear at very high field. The quasi-2D organic supercon-
ductor P-(BEDT-TTF)21s in the high-T, (P H) phase-
(T, 10 K) (Ref. 42) appears as a possible candidate for
high-field superconductivity. This material has a cou-
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