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Odd-frequency pairing in the Kondo lattice

P. Coleman and E. Miranda
Serin Physics Laboratory, Rutgers University, P.O. Box 849, Piscataway, New Jersey 08855

A. Tsvelik
Department ofPhysics, Oxford University, I Keble Road, Oxford OXI 31tVP, United Kingdom

(Received 14 June 1993)

We discuss the possibility that heavy-fermion superconductors involve odd-frequency triplet pairing.
A key technical innovation here is a Majorana representation for the local moments which avoids the
use of a Gutzwiller projection. We employ the Kondo lattice model and develop a mean-field theory for
odd-frequency pairing that entails pairing between local moments and conduction electrons, as described
by a spinor order parameter. We confirm that the Meissner stiFness is positive and the state is stable. A
residual band of gapless quasiparticles whose spin and charge coherence factors vanish linearly in ener-

gy, decouples from the condensate. The unusual energy dependence of these coherence factors leads to a
T' NMR relaxation rate at a conduction electron site that coexists with a linear specific heat. Two
verifiable predictions of the theory are (i) that a Korringa relaxation will fail to develop in heavy-fermion
superconductors, even in the limit of strong pair breaking and severe gaplessness and (ii) that the hither-
to unmeasured NMR relaxation rate at the actinide or rare-earth site will become exponentially activat-
ed in the superconducting phase.

I. INTRODUCTION

Heavy-fermion superconductivity has attracted great
interest in recent years as a candidate for electronically
mediated pairing. ' Six heavy-fermion metals are super-
conducting at room pressure: CeCuzSi2, UBe», UPt3,
URuzSi2, UNi2A13, and UPdzA13. These metals contain
a dense array of magnetic rare-earth or actinide ions that
collectively participate in the formation of the supercon-
ducting state. Many properties set these systems apart
from traditional superconductors. In particular, power
laws in the specific heat, thermal conductivity, NMR re-
laxation rate, and acoustic attenuation all point to the ex-
istence of gap nodes, and have been interpreted in terms
of gap zeros along lines of the Fermi surface. Further-
more, each of these superconductors appears to coexist
with some measure of antiferromagnetic order.

Existing phenomenological models of heavy-fermion
superconductivity treat it as a pairing process involving
the performed heavy f quasiparticles. ' The strong
repulsive interactions between these f quasiparticles
favor the development of nodes in the pair wave function,
as suggested by the preponderance of power laws.
Theoretical work on heavy-fermion superconductivity
has focused largely on the possibility of momentum an-
isotropy in the gap function 6& as the origin of this node
formation. The simplest candidates for gap functions
with nodes are odd-parity triplet pairing, 5&= —6 &, or
even-parity d-wave pairing. Two points appear to favor
the latter possibility.

(1) d-wave pairing is favored by the antiferromagnetic
interactions that are characteristic to heavy-fermion com-
pounds. '

(2) lines of gap zeros inferred from many power-law
properties of the condensed state, e.g., T dependence of'

the NMR relaxation rate, T dependence of specific heat,
and thermal conductivity, effectively rule out triplet odd-
parity pairing. Simple symmetry arguments show that
odd-parity triplet would give rise to a gap vanishing at
points, rather than lines on the Fermi surface, in the pres-
ence of strong spin-orbit scattering. ' '

Unfortunately, there are several observations that do
not fit naturally into the d-wave scenario. One puzzling
observation is the persistence of the T NMR relaxation
rate in heavy-fermion superconductors with very large
densities of gapless excitations and correspondingly
"heavy" linear components to their specific heat. ' '
This gaplessness has been attributed to pair breaking by
resonantly scattering off nonmagnetic defects. ' Remark-
ably, this constant density of quasiparticle states does not
seem to give rise. to an observable Korringa NMR relaxa-
tion. In UPt3 and U& „Th Be&&, for example, ' ' the
linear specific heat is of the same order as the normal
phase value, yet there are more than two decades' ' of
T spin relaxation:

C, =y+BT linear term from pair breaking,

1 =?+DT -no linear term from pair breaking?
T]T

In conventional gapless superconductivity, spin
coherence factors are unity at the Fermi energy. The
robustness of the T NMR signal suggests vanishing
spin-coherence factors: a feature not easily accommodat-
ed by a conventional pairing hypothesis.

The d-wave scenario is also unable to explain the isot-
ropy of the H-T phase diagram of UPt3. ' ' UPt3 has
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three separate low-temperature flux phases that have been
interpreted in terms of anisotropic pairing. There is a
two-stage phase transition at zero field associated with
the symmetry-breaking effects of the weak heavy-fermion
antiferromagnetism, and perhaps also, a recently
discovered incommensurate charge-density wave. " The
d-wave scenario supposes a gap function that transforms
under a two-dimensional representation of the point
group: though this picture can account for the two-stage
transition, it predicts a two-phase flux lattice for all
orientations of the applied field.

Finally, of course, the d-wave pairing picture of
heavy-fermion superconductivity makes no reference to
the close link between heavy-fermion superconductivity
and magnetism. Typically, the entropy associated with
the superconducting phase,

SF (k, co)

F(k, co) = 'PF( —k, co} (S,P, T=+1),
TF(k, —co)

then the total antisymmetry of the pair wave function im-

plies that the combined product of all three parities must
equal —1:

SPT= —1 . (1.5)

Superconductors with an antisymmetric spin wave func-

tion, S = —1 are "singlet" superconductors,

temporal, and spin parity. Let (S,P, T=+1}be the pari-
ties of the pair wave function under the interchange of
spin, space, or time coordinates, respectively, i.e.,

(1.2)
F(K)=io'qFS(v) (F= F),— (1.6)

is a significant proportion of the R ln2 entropy associated
with the quenching of the low-lying doublets: in this
sense heavy-fermion superconductivity is a spin-ordering
process, involving the magnetic, rather than the charge
degrees of freedom of the f electrons. In most cases,
heavy-fermion superconductivity appears to coexist with
antiferromagnetic order. In the recently discovered 1-
2-3 compound UPd2A13, an ordered moment of 0.8@~
coexists with the superconductivity. In URu2Si2, there
is also evidence for a large moment —free order parameter
that breaks time-reversal and translation symmetries.
Unlike the well-known Chevrel phases, this moment
shares the same magnetic degrees of freedom that are in-

volved in pairing. It is rather difficult to account for
coexistent magnetism and superconductivity in terms of
two weakly coupled order parameters.

These difficulties motivate us to reconsider the way in
which heavy-fermion superconductors develop nodes in
the pair wave function. Past analyses of heavy-fermion
superconductivity have focused on the spatial anisotropy.
In this paper we explore a new avenue, examining the
possibility of pair condensation into a state where the
pair wave function has odd temporal parity. In this
hypothetical state, pairing is retarded and the pair wave
function contains a node in time.

Berezinskii first pointed out that a general pairing hy-
pothesis must consider the symmetry of the pair wave
function under frequency inversion. Let us denote the
pair wave function

[F(«)] p= ( q (~)qp( —«) } .

Here ( . ) denotes the time-ordered expectation value,
and we use a four-vector notation «=(k, co). Since the
Fermi operators anticommute, the pair wave function
satisfies

F(«.) = F(—«.), —

where [F ) &= [F]& denotes the wave function with

spin indices transposed. Now if we assume that the state
breaks neither time-reversal symmetry, nor spatial parity,
then the pair wave function must have distinct spatial,

whereas superconductors with a symmetric spin wave
function, S =+1 are "triplet"

+ 1 (triplet {S,P, T] =
{+, +, —

] ),P= ' —1 (singlet {S,P, T] = {—,—,—] ) .

(1.8)

Odd-frequency, even-parity, triplet pairing was first con-
sidered by Berezinskii in the context of He-3. A renais-
sance of interest in these types of states has been prompt-
ed by the work of Balatsky and Abrahams, who are the
first to discuss the possibility of odd-frequency, odd-

parity, singlet pairing. '

Historically, odd-frequency pairing has not enjoyed a
great deal of attention. One reason for this lack of atten-
tion is that the simplest odd-frequency paired state is un-

stable, with a negative Meissner phase stiffness. For ex-

ample, in the s-wave triplet state (S,P =+1) the momen-
tum dependence of the gap function vanishes, and the
London kernel is formally identical to s-wave singlet pair-
ing

~Ne T
m

Q2

n n

Since an odd gap function where 6„=—6 „must also

satisfy the analyticity requirement 6„=5 „,this implies

6„ is purely imaginary. Thus, 5„(0and the stiffness is

negative. The negative phase stiffness indicates that the
microscopic phase of the order parameter hkes to "coil
up. " In our simple model for odd-frequency pairing, the
condensation energy reaches a minimum in a staggered
phase configuration: loosely speaking, the Josephson
coupling of the phase at neighboring sites has the oppo-
site sign to conventional superconductors and the screen-

F(«)=i02o"F,(«) (F=+F ) .

In conventional superconductivity T=+1 so that the
spatial parity of singlet and triplet states is even and odd,
respectively. Berezinskii has argued that symmetry also
permits the possibility of odd-frequency pairing where
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(r (x)S~(x})=gAt~(x} (a,/=1, 2, 3} . (1.10}

Here S[xj ] denotes the local moment spin at site j; r[x]
is the conduction electron "isospin, "whose z component
describes the number density, and transverse components
describe the pairing

v3= —,'[p(x) —1],
r+(x) =Ptt(x}Ptt(x) . (1.12}

The quantity g defines the magnitude of the order param-
eter. At is an orthogonal matrix whose rows define an or-
thogonal triad of unit vectors d&,

d, (x)

A(x) = d2(x) (1.13)

d3(x)

ing currents vanish when the microscopic phase is stag-
gered.

We shall argue that the Kondo effect between a con-
duction sea and local moments in heavy-fermion metals
provides an ideal source of retarded scattering for odd-
frequency pairing. In the normal state, this retardation
generates resonant bound states between the conduction
electrons and local moments, quenching the moments
and forming the heavy quasiparticles. In the supercon-
ducting state, the resonant Kondo scattering acquires a
pairing component that results in even-parity, odd-
frequency triplet pairing of the conduction electrons.
This state develops a phase stiffness by the simultaneous
condensation of the local moments and the conduction
electron pair degrees of freedom. The equal time order
parameter is a matrix correlating these two degrees of
freedom:

1
oc T ~

cond

(1.16)

Unlike d-wave superconductivity, this power-law depen-
dence is a matrix element effect, and coexists with a con-
stant quasiparticle density of states and linear specific
heat. By contrast, our theory predicts a gap in the f-
electron excitation spectrum that would manifest itself as
an exponential nuclear relaxation rate at the "heavy-
fermion" actinide or rare-earth site

cc exp[ hs/T] . —1

1

(1.17)

NMR relaxation experiments on the rare-earth or ac-
tinide site have yet to be made, due to perceived
difficulties in resolving broadened nuclear line widths.
This pairing scenario predicts that in the superconduct-
ing state an exponential reduction in the NMR relaxation
rate at the heavy-fermion site will make it possible to
resolve the NMR line at low temperatures (Fig. 1).
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f-electron
T)-

particles transmits heat without passage of charge or
spin. Vanishing coherence factors are, of course, well
known in BCS superconductivity, where at the gap ener-

gy the charge coherence factor vanishes. The odd-
frequency character of the triplet superconductor shifts
the energy scale at which coherence factors vanish to
zero energy.

These unusual coherence factors lead to a T depen-
dence of the nuclear magnetic relaxation rate of the con-
duction electrons

p'2
4(ir) =imbed, 2' (d, =[d&+id2].o) . (1.14)

A "composite" order parameter of this form has been re-
cently suggested as an order parameter for odd-frequency
pairing in the context of the two-channel Kondo model,
by Emery and Kivelson. We shall show within our
model that a uniform pairing field configuration is unsta-
ble and that the Josephson coupling energy is minimized
for a staggered composite order parameter: in our simple
model the screening currents vanish when d

&
and 12 are

staggered commensurately with the lattice.
Within our theory, the microscopic manifestation of

this type of pairing is an anomalous self-energy in the
triplet channel with a pole at zero frequency:
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A spinless component of the conduction electron band
decouples from this singular pairing field, giving rise to
surfaces of gapless excitations. Spin and charge coher-
ence factors of these quasiparticles vanish linearly with
the energy on the Fermi surface,

~ re (r0=Ey+Eg } (1.15)

creating the unusual circumstance where a flow of quasi-

FIG. 1. Showing (a) conduction electron NMR relaxation
rate, and (b) f-spin relaxation rate computed using our toy mod-
el for a sequence of p/D values. Even though the model pre-
dicts a linear specific heat (Fig. 8), the coherence factors give
rise to a conduction electron NMR relaxation rate normally as-
sociated with lines, rather than surfaces of gapless excitations.
There is no Hebel-Slichter peak below the mean-field transition
temperature. By contrast, the relaxation rate at the heavy-
fermion site is entirely exponential, reflecting the "s-wave"
character of the odd-frequency paired state.
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S=f — f0
a 2 p '

aP
(1.18)

This approach requires a constraint nf = 1 to impose the
condition S =—„which is the origin of additional compli-
cations. In many practical applications, the constraint is
weakened, imposing it at the mean field or the Gaussian
level of approximation. Here, we employ real, or *'Ma-

jorana" fermions to represent spins. Perhaps the most
famous example of a Majorana ferrnion is a single Pauli
spin operator. Recall that

[o,o'bI ='25
b

so the fermions

1—o'

(1.19)

(1.20)

also satisfy a canonical anticornmutation algebra

I tl„rib ] =5,b. Indeed, for any such triplet of Majorana
fermions, it follows that the "spin operators"

S=-—qXq
2

(1.21)

simultaneously satisfy both the spin algebra, and the con-
straint S =

—,'. The generalization of this result to a lat-
tice of

stains
employs a vector of Majorana fermions

qJ. =(r)1 ) (o =1,2, 3) for each site j where

(1.22)

An essential part of our analysis is a second quantized
description of the local moments that avoids constraints.
Existing treatments factorize the spin variable in terms of
spin- —,

' ferrnions:

2N/2

l
S,~——g, xq, (1.25)

where the formal normalization factor associated with
the replication of states has been added.

Our basic model for a heavy-fermion system is an
S =

—, Kondo lattice with a single band interacting with
one local f moment SJ in each unit cell. In a real Kondo
lattice, the local moments are strongly spin-orbit coupled
into a state of definite J. We shall assume that the low-
lying spin excitations are described by a Kramers dou-
blet, where a low-energy S =

—,
' Kondo model becomes

more appropriate. For simplicity, we shall ignore the an-
isotropies that are necessarily present in a real heavy-
fermion system. In our model, the latent superconduct-
ing pairing is driven by the on-site Kondo interactions,
and the state that forms exhibits a coexistence of magne-
tism and superconductivity.

The simplified isotropic Kondo lattice model that we
shall use is then written

These complex fennions obey canonical commutation re-
lations [gl„gt. j

=5' 5bb. , opposite halves of the Brillouin
zone are related as complex conjugates: [th] =g'

1,.
Since the Fock space is spanned by 3N/2 complex Fermi
operators, it is 2 times larger than a Hilbert space of N
commuting spin- —,

' operators. The spin algebra and the
condition S =

—,
' are satisfied between all states of the

Pock space, thus the anticornrnuting representation repII;
cates the spin Hilbert space 2 ~ times. ' We may then
represent the partition function of an electronic system
containing N spins as an unconstrained trace over the in-
dependent Fermi fields

from which the spin operator at each site is constructed:
H =H, +g H;„,[j],

where

(1.26)

S, = ——q, xq, . (1.23)
k

(1.27)

These operators behave as independent spin- —,
' operators.

In particle physics, the earliest reference to this
method that we know is due to Martin, although earlier
references may exist. These results were later developed
by Casalbuoni and independently by Berezin and Mari-
nov. In condensed-matter physics, the same method
was independently developed under the name "Drone fer-
mion representation, " and early mention of this method
appears in Mattis' book on magnetisrn. First applica-
tion to the Kondo model was made by Spencer and
Doniach. The only application of this method to the
Kondo lattice model that we are aware of was made by
Vieira, who considered the interplay of the Kondo effect
and magnetism within this formalism.

The Majorana representation of spins provides a natu-
ral lattice generalization of anticommuting Pauli opera-
tors. On a lattice, we may represent Majorana fermions
in terms of a set of N/2 independent complex fermions
that span half the Brillouin zone (BZ):

describes the conduction band, and pl,
= ( Pl, t, pl, &

) is a
conduction electron spinor. The exchange interaction at
each site j is written in a tight-binding representation as

H;„,[j ]=J(pit cr pglp). S) . (1.28)

When written in terms of the Majorana fermions, this
term becomes

H;. Ij]=—
2P,[, n, ] 0, jl

(1.29)

jl J
P

= —2[o rl, N', . (1.30)

where we have used the result icr. (g Xg) =[g o ] —
—,
' to

simplify the interaction, absorbing the bilinear term as a
redefinition of the chemical potential. This simple form
of the interaction can be rewritten in a suggestive way, by
defining the composite spinor operator

1 ik.R. t —ik-R.
'+me '! .+ kE1/2 BZ

(1.24) The Kondo interaction is then the "square" of this opera-
tor:



49 ODD-FREQUENCY PAIRING IN THE KONDO LATTICE 8959

(1.31)

suggesting that in the lattice we should consider the pos-
sibility of states where the local moment and electron
spins condense together to develop a vacuum expectation
value of this spinor quantity:

This order parameter transforms as a spin- —,
' object, so

changes in its sign correspond to physical rotations of the
condensate by 2~. Defects in the spinor field are then
disclination lines or "Zz vortices, " around which the
phase of the spinor order parameter changes by m. (Fig.
2). The gauge equivalent integral of the vector potential
around a Z2 defect is

e A.dx =~ (1.33)

so the flux quantum of a "charge e" spinor is the same as
a charge "2e" scalar:

h4O= A.dx =—
m =

8 28
(1.34}

In our model there is a microscopic "Z2" gauge symme-
try

gJ ~k gJ ~ (1.35)

(p(x)S(x) ) =gV(x) tr V(x),

( Pt&(x)gt&S(x) }=g V (x)i cr 2rr V(x),
J2
2

(1.36)

0

h

e 2e

FIG. 2. Illustrating the elementary "Z2" vortex for a charge
e spinor order parameter. Around the vortex, the phase change
of the order parameter is m. The supercurrent around this vor-
tex can be removed by introducing a magnetic flux for which
e4/A=(e/h) f A dl=m; so the Sux quantum for a charge e

spinor is @=fin./e =h /2e, which corresponds to the flux quan-
tum of a charge 2e complex scalar order parameter.

V transforms in the same way as the Majorana fermions
and thus its phase is defined to within km. Physical
quantities involve the combinations of the square of V at
each site and are Z2 invariants. The three Zz invariant
quantities that this defines are just the components of the
matrix Af (x}:

Under a phase change of m in the spinor field, the axes of
the composite order parameter rotate through 2m..

The outline of this paper is as follows: Section II deals
with the development of a path-integral formulation of
the Kondo lattice, demonstrating how the simplest
decoupling procedure leads to an odd-frequency paired
state, Sec. III is a discussion of the quasiparticle excita-
tions and coherence factors, Sec. IV contains the calcula-
tion of the mean-field thermodynamics in this paired
state, Sec. V shows the computation of the Meissner
stiffness of this phase and the form of the Landau-
Ginzburg theory, Sec. VI demonstrates the effect of van-
ishing coherence factors on local magnetic and charge
responses, Sec. VII discusses the interplay with magne-
tism, and Sec. VIII contains a critique and a discussion of
possible application to the theory of heavy-fermion super-
conductivity.

Readers who are primarily interested in the physical
picture that emerges from this approach might find it
useful to proceed directly to Sec. VIII, which attempts to
place our results in a more general context, beyond the
narrow confines of the Kondo lattice model. Certain for-
mal arguments, not pertinent to the main flow of ideas,
have been reproduced in the appendices. In Appendix A,
we show how the Majorana representation is related to
the Abrikosov pseudofermion representation. In Appen-
dix B, we give some examples of the application of the
Majorana representation to simple spin models, showing
the relation to the Jordan-Wigner transformation in the
one-dimensional Heisenberg model.

II. PATH-INTEGRAL REPRESENTATION
OF THE KONDO LATTICE MODEL

To develop a "toy model" for the odd-paired state, we
focus our attention on a stripped-down Kondo lattice
model, with the Hamiltonian described in Eqs.
(1.26)—(1.29):

(2.1)

We have suppressed both the momentum dependence and
anisotropy of the coupling. In a real heavy-fermion sys-
tem, we envisage that the spin indices would refer to the
conserved pseudospin indices of the low-lying Kramers
doublets.

To illustrate the calculations in this section, we shall
use Feynman diagrams, as shown in Fig. 3. The bare
propagator for the conduction electrons is represented by
a solid arrow, the bare propagator for the Majorana fer-
mions by a dashed line, without an arrow:

CR K
=(vP(a)g ( —a) }o=fi'

'n
(2.2)

The product form of the exchange interaction [Eq. (1.31)]
clearly suggests a decoupling in terms of the spinor vari-
able,
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a ~ b

denotes the triplet of isospin operators. Note the
definition of v.2. The factorized interaction can also be
written

H;„,[j ]= ,'[%—,(~ g, )V, +VJ(a g~)pj]

+V~V /J, (2.9)

where

(2.10)

M( ~ b)2 ap

FIG. 3. (i) Bare Majorana and conduction propagators, (ii)
interaction between local moment and conduction electrons.

denotes the spin operator in the Balian-Werthamer nota-
tion.

We are particularly interested in expanding around
static mean-field configurations where the amplitude of
V is constant:

V)
V=

jl
(2.3)

V V

2 2 iJL

where Z is the four-component "unit" spinor

(2.11)

corresponding to the bound state of an electron and a lo-
cal moment.

With this point in mind, we now write the partition
function as a path integral, Z = f~exp( —f~g(r)dr),
where

X(&)=gita,q„+ g q&a,q, +H, +gH;„,[J]
ke —,BZ

(2.4)

and we have factorized the interaction in terms of a Auc-

tuating two-component spinor Vt=( V&, V& ):

H;., [J]=adjt(~ rl, )V + V'(rr rl )y +2I VJ I'/'~ (2.5)

i o zfj'—
(2.6)

For later purposes, it is particularly useful for us to intro-
duce a Balian-Werthamer four-spinor notation, defining

Zl=
ZJ

l CT 2ZJ

ZJ

ZJ $

Z '$

ZJ

(2.12)

This choice of mean-field theory is equivalent to a resum-
mation of the interaction lines in the pairing channel be-
tween the conduction and Majorana fermions, leading to
a saddle-point condition for the anomalous average of
Majorana and conduction electrons, as illustrated di-
agrammatically in Fig. 4(a). The development of this
anomalous average leads to self-energy insertions in the
conduction electron lines [Fig 4(b)]. Fro.m this diagram,
it is evident that the conduction electron self-energies are
bilinear forms in the spinor V. , and are hence invariant
under the Z2 gauge symmetry.

We can actually find a class of degenerate mean-field
solutions by arbitrarily reversing the sign of V ~m V.

(mj =+) at any site. For each choice of sign, there are
2 equivalent ways of choosing the independent Ma-
jorana creation operators in momentum space (r) ~=rl~),

V.

—i 0.2V*

VJ)

VJ. )

jl
V*(

The lower two entries of each spinor are the time-
reversed pairs of the upper two entries. In terms of these
spinors, the conduction electron Hamiltonian is

H, = g 4'tq(eq —p)r3%„,
k&2 Bz

where

(r, , r2, r3) =

(2.7)

(2.8)

FIG. 4. Diagrammatic illustration of the pairing equations
showing (i) the spinor vertex between conduction and Majorana
spins, (ii) the self-consistent equation for the conventional and
anomalous conduction electron propagators.



49 ODD-FREQUENCY PAIRING IN THE KONDO LATTICE 8961

there are thus 2 =2 ~ independent degenerate
saddle-point solutions for each static solution [V j.
Each saddle point is physically identical, so we may ab-
sorb the 2 normalization in the partition function by
restricting our attention to one representative saddle
point:

Z= g Z[[rn]]=Z[[ m]]~ (2.13)

8/ =Q RJ,
i(8 /2)~3-

J.
—e J. 7

(2.14}

the origin of momentum space is shifted by to k=Q/2.
Thus, the conduction electron dispersion transforms
ek~ek Q&2. In a Nambu notation, the kinetic energy
transforms as ek~ek Q&2, , or more explicitly3'

In this way, we fix the gauge for the local Zz invariance.
A crucial part of our approach is the stabilization of

the odd-frequency paired state through the introduction
of a staggered pairing field. Rather than working directly
with a staggered order parameter, we may considerably
simplify our calculations by making a gauge transforma-
tion that absorbs the staggered phase of the order param-
eter into a redefinition of the conduction electrons. Un-
der the gauge transformation

i(8./2) i(8 /2)z3-
z =e ' Z =e

comes diagonal in particle-hole space greatly simplifying
our work.

The lowest-energy mean-field solution is obtained for a
uniformly staggered phase, where VJ =V is a constant.
With this choice, the admixture between conduction elec-
trons and local moments is described by the mean-field
Hamiltonian

H;„= g [(Ilk(gZ. r/k)V+ V (rik.~)+k] . (2.20)

kc2 BZ1

In the diagrammatic approach, mixing between the con-
duction and spin degrees of freedom introduces vertices
into the propagators

P O

= [cr'.V]
(2.21)

Sa
kE' —BZ co=i@)1

n

%t(~)[a)—ek —pkr3 —X(~)]%(x) .

(2.22}

We may "integrate out" the Majorana fermion degrees of
freedom, introducing self-energy diagrams into the con-
duction electron propagators. An incoming electron
which scatters into an intermediate neutral spin state can
emerge as a hole, generating both normal and anomalous
self-energies, as illustrated in Fig. 4(b}. The effective ac-
tion for the conduction electrons contains this self-
energy:

which may be compactly written

(M )r3 4 ((2kr3

where

~k T[ek —Q/2 ek+Q/2] ~

( k p 2 [ek—Q/2+ek+Q/2]

6—k —Q/2

(2.15)

(2.16)

(2.17}

The matrix self-energy X()() describes the resonant
scattering through zero-energy spin states and contains
normal and anomalous components. We represent the
resonant scattering by the diagram

1 o' [VVt] o' . (2.23)
l CO~

The matrix V V can be rewritten

The transformed conduction electron Hamiltonian is
then

VVt= V p, (2.24)

H, = g %k[1k—(Mkr3]%'k,

k62 BZ

(2.18)
(2.25)

where we have suppressed the tildes on the electron
operators. The corresponding matrix propagator for the
noninteracting conduction electrons is then

is a projection operator of special significance. By taking
the trace of p with the matrices 1 and o' r, we may ex-
pand it in the form

= ( %(a )0' (a ) ) ()
= [ico„Zk+Pkr3]—

p= ,'[1+d,bo'r -], (2.26)

(2.19}
where d,b =Tr[po'3r ]= ,'Z cr'sr Z—Thecolum. ns of
the matrix d define a triad of orthogonal unit vectors

where a bald line is used to indicate the matrix character
of the propagator. For a simple bipartite tight-binding
lattice, with a commensurate staggered phase,
Q=(m, m, m ), then, pk=p and Zk=ek Q/2 With this
gauge choice, the canductian electron kinetic energy be-

[d~], =d,), (X=1,2, 3)

d'+id =z (io2cr)z,

d =z cTz
(2.27}
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that determine the spatial orientation of the order param-
eter. Inserting Eq. (2.26) into Eq. (2.24), we find that the
resulting conduction electron self-energy is proportional
to 1/co,

p 2

X(ic)= P,
CO

where the projection operator

P=(1—p)= —,'[3—d, o'sr ] (P =P) .

(2.28)

(2.29)

The anisotropic component of the self-energy —X'"(s)
=(V /4co)d, bo'Sr contains "anomalous" components,
and may be expanded as

7+X'"(co)=—
—,
' [B~(co) cr]r3+[5, (co) o ]

7
+[6(co) o ]

2
(2.30)

We interpret the quantities

B(co)=b(co)d

h(co)=b( co)(d' +id )

p'2
b, (co)= 2' (2.31)

(2.32)

as resonant exchange and triplet pairing fields, respective-
ly. Unlike earlier realizations of odd-frequency pair-
ing, ' ' here the gap function diverges at zero frequency.
Such resonant contributions to the self-energy are well-
known within mean-Geld treatments of the Kondo lattice,
but here the resonant scattering acquires additional, an-
isotropic pairing terms associated with the pair conden-
sate.

The projective form of the pairing self-energy means
that only those components of the conduction sea with
the same symmetry as the condensate experience the res-
onance scattering. This leaves behind a residual gapless
band of unscattered electrons. This is seen by decompos-
ing the conduction electron operators into four Majorana
components

The vector components of the conduction sea have Y = 1

whilst the "scalar" components of the conduction sea
have Y=O. By substituting into the mean-field Hamil-
tonian, we see that only the vector components of the
conduction electrons couple to the resonant scattering
potential:

H;„= g i V—[Pti, re, H—c ]. ..
kE2 BZ

(2.37)

Clearly, it is the Y=1 electrons that are condensing:
these are the electrons with the symmetry of the conden-
sate. We will see shortly that the residual conduction sea
that is left behind by this condensation process contains
only neutral, spinless excitations, formed from the "sca-
lar" component of the conduction sea.

Further insight into the meaning of the order-
parameter matrix Af, =V V is gained by making the
identification

(2.38)

or

V, = ——(~ g~)%~
J

(2.39)

inside the path integral. The expectation value of the ma-
trix JR is then the irreducible part of the corresponding
product of operators. In particular,

J2
(V,r'o'V, ) = (e, 'T (cr'7J, )0(cr'7/ )e. , )' (2.40)

where "I"denotes the irreducible part. Using the identi-

ty (o r)J )cr(cr ri, ) = [ i ri X ri —cr /2] it fo—llows that

(V, r'o "V, ) =J (r'[x, ]S [x,]),
where S(x )—=S, is the local moment at site j and

out the Y =1 and 0 components, respectively:

(vector) X=1: P= ,'+—Y,Y2= ,'[3—d—,bo'gr ],
(2.36)

(scalar) 7=0: p= —,
' —

Y& Y2= ,'[1—+d,bo'r ] .

The "scalar" component of PI, r'[x] =
—,
' %t(x)g%(x) (2.42)

so

p 1 t y 1
z, P~+P „z, = —Z 0„

qOtyO

(2.33)

(2.34)

is the conduction electron "isospin. " This order parame-
ter represents a bound state between the local moments
and the conduction electron charge and pair degrees of
freedom. The composite order parameter

projects out the scalar component of the conduction sea.
The remaining "vector" components of the conduction
electron are projected out by the operator P= 1 —p.

Projectors P and p select states of the conduction sea
where the spin and charge degrees of freedom are locked
together to form a hybrid "superspin"

F'=( —,
' )[o'—d,br" ] . (2.35)

Since Y,=—,
'o. and Y,= —

—,'d -~ are independent spin- —,
'

degrees of freedom, we may confirm that P and p project

d, (x)=d (x)—id (x)

2J (fi(x)ft(x)S(x) )
p2

(2.43)

represents the development of a joint correlation between
the conduction electron singlet pair density and the local
moment spin density. Clearly, this state breaks (i) elec-
tron gauge symmetry, (ii) spin rotation symmetry and (iii)
time-reversal symmetry. Despite these features it does
not necessarily follow that the state formed has either an
ordered moment, or an equal-time pairing field.
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III. EXCITATION SPECTRUM AND QUASIPARTICLES

Let us now examine the nature of the excitation spec-
trum in this odd-paired state. Let us begin by rewriting
the mean-field Hamiltonian in terms of the Majorana
components [Eq. (2.32)], then

) [4~ 4~+4~ f~]
ke —BZ1

2

b 1 ik-R.
g

—ik.R.
X [~ave '+~ abc& ke1g2BZ

(3.6)

where 6 —V /D and m'=(D/hg)m and m is the
conduction-band mass at the band edge. Just above the

gap, the quasiparticles have almost no conduction char-
acter: correlation functions of the local moments are
then determined through the relation

where

nz=i [/|ted +P'tg (H. c—. )]

(3.1)

(3.2)

(2} A neutral Majorana band, located around k=0.
These are the residual "scalar" excitations that do not
condense into the odd-frequency paired state.

To gain more insight into these excitations, let us con-
sider the conduction electron propagator

is the total charge operator. Let us consider the special
case of @=0, when the spectrum of the zeroth com-
ponent remains unrenormalized. In this special case, the
Hamiltonian can be written in terms of quasiparticle
operators as follows:

'(co)= [co—
Zg

—pgr3 —X(~)] . (3.7}

We may align the spin reference frame axes to be parallel
with the vectors d by choosing

H =Ho+H

H =

ep vouwo

kG —BZ1

2

EkQ ka ~ka
k, a =(1,2, 3)

(3.3)
0 0 (3.8}

so that (d', d, d )=(x,y, z), and d,b=5,b. With this
choice of reference frame, then

The first term describes a gapless "Majorana" conduction
band that spans the half of the Brillouin zone where

ek & 0. The second term describes a gapped band with ex-
citation energies

(3.9)

It is useful to define "up-" and "down-" spin projection
operators:

E~=—kQ(eg/2) + V (3.4)
Pt =—,'[1+cr3r3],

P) =1 Pt =
—,'[1 —cr3r3] . — (3.10)

H—
k- —g/2, a =(1,2, 3)

a +'"+Q ' „'. „., (3.5)m*

This band spans the entire Brillouin zone, since it incorp-
orates three Majorana conduction and three Majorana
spin fermions. The basic character of the quasiparticle
spectrum is unchanged when we consider finite deviations
from particle-hole symmetry @&40. There are two im-

portant features (Fig. 5).
(1) A threefold degenerate gapful excitation centered

around k= —Q/2. These excitations are formed by the
condensation of the "vector" ( Y=1}component of the
conduction sea with the spins. In the vicinity of the gap

det[Gt '(k, co})=[(co—Fq —b, ) —p~ —h~],

det[Gg '(k, co)]=[(co—Fq
—2b,„) —p2] .

(3.12)

We can use these operators to project out the "up" and
"down" electron propagators (G P = O'P, ):

Gt =[(co Zq 6)+—pr3+—6 r, ]

Gg =[(co—
Zq

—2h )+pr3]
[5 =b, (co)] .

(3.11}

It is also useful to evaluate the determinants

Charged quasiparticles

&e)S )e&

«IQ le&

Zeros of these functions determine the quasiparticle exci-
tation energies co& through det[6 ' (k, co&~ ) ]=0 (Fig. 6).

The "down" propagator contains no pairing terms, and
describes a gapful band of quasiparticles with excitation
energiesLI Neutral Singlets

co&= +'1/ [(Zz—p)/2] + V
2

(3.13)

'"""'1111111111111111111iiilllllllllllllii

FIG. 5. Schematic illustration of the quasiparticle excitation
spectrum. The gapful spin excitations are separated from the
gapless band of neutral singlet Majorana excitations by half the
Brillouin zone.

This spectrum closely resembles the large-N solution to
the particle-hole symmetric Kondo model, with a hybrid-
ization gap 2h .

The "up" electron propagator describes a band of
odd-frequency paired electrons. The poles of this propa-
gator
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It is convenient to split the Hamiltonian into "up-" and
"down-" spin parts H =H&+H&, where

i =X [(&k &8'kg4ki+ V[kkgr)kt+«c. )]]
k

1
9kl ~—['9k+ ~ '9k ]

(3.18)

describes the hybridized band of unpaired "down" elec-
trons, and

Ht = g AkhkAk,
kF2 BZ1

V

2

E'kl $73

h (3.19)

7r/'2

FIG. 6. Quasiparticle spectrum within mean-field theory for
p/D=6. Bold line, gapped "up" excitations; dashed line,

gapped "down" excitations; dotted line, neutral singlet Majora-
na band. Inset, density of states for up electron bands.

V V

3'

describes the paired "up" electrons. In terms of the
quasiparticle operators

(co Zk 5—) p—r3 b—, r, —
Gt(co) =

[(a)—Zk
—b, )

—
}M,

—b, ]
(3.14) g ~ka~ kau ka

k
(3.20)

e+(COk) = [a)k —4(COk)]

+sgn(cok)Q[b, (cok)+p ], (3.15)

which defines two branches of the "up" quasiparticle ex-
citation spectrum. The ( —) branch is gapful with a gap
2bg -(2V /D)(1 p /D ) ', wh—ere D is the conduction
electron half-bandwidth. The (+) branch is gapless, cor-
responding to the Majorana component of the conduc-
tion sea that decouples from the resonant scattering
center. The quasiparticle density of states corresponding
to these two branches is

Ng(co)= Z~'(co),

at co =cok are determined by the cubic equation
det[G

&
'(k, cok)]=0 [see Eq. (3.12)]. Solving for the con-

duction electron energy as a function of cilk, Ek=e+(co„),
we find

—krak ~kook ' (3.22}

Eliminating Zk and substituting back into Eq. (3.22) then
gives

Gt '(k, cok) =0, (3.23}

where only positive energies enter into the Hamiltonian.
Here a=0, 3 denotes the gapless and gapful excitation
branch, respectively. The quasiparticle operators for the
gapless "up" electrons can be constructed from a general-
ized Bogoliubov transformation

uko=V Zk(ukpkt+vkp k&)+V'(I —Zk)rik . (3.21)

The eigenvector pk containing the Bogoliubov coefficients
satisfies

de~(co)
Z+'(co)=

dQ)
=, 1+ 1+

Ql+(p/b, )

(3.16) where G& '(v) is taken from Eq. (3.11). Diagonalizing
this eigenvalue equation gives uk=u2(coko), v„=v (coko),
where

At low energies
—1

cok[+ ] E'k 1 + p (3.17) v (co)=—1—1

+g2+ z

(3.24}

giving an enhanced density of states N* (0)=p/2Z
2 2

+ O~

where Zo = [1+p, /V ], at the Fermi surface.
Let us explicitly construct these gapless quasiparticles.

where the energies are given by Eq. (3.15). Zk
=Z+(cok+) takes the form given in Eq. (3.16). Energy,
rather than momentum-dependent Bogoliubov
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coeScients, is a characteristic of odd-frequency pairing.
Let us now consider the charge and spin coherence fac-

tors of these gapless excitations. In BCS superconduc-
tors, the Bogoliubov quasiparticles contain an equal
weight of "electron" and "hole" at the gap energy, which
leads to a vanishing of the charge coherence factor. A
similar phenomenon occurs in odd-frequency pairing, but
in this case it occurs at zero energy. We see from the dis-
cussion above that at the Fermi energy u (0)
=U (0)=1/~2, and so the gapless quasiparticles are a
precise linear combination of "up electron" and "down
hole:"

Away from the Fermi surface, the spin-charge coherence
factor grows linearly with energy

Pq
k ', ' k+ =(co„++co„)0 k k +2+p2

(co+, co «b, s) . (3.28)

(In the special case of particle-hole symmetry, these
coherence factors vanish throughout the gap. } In a simi-
lar fashion, we may examine quasiparticle components of
the charge and spin given by

ak 0 +Zo/2(1(„ (+1(' k t )+V (1—Zo )'ilk (3.25) , ' =km (k ', ' k+)

The equal weight of particles with opposite spin and
charge quantum numbers implies that the spin and
charge coherence factors will vanish at low energies,
leading to neutral, spinless excitations.

To see this in detail, note first that within the gapless
"up" band only the conduction charge and spin operators
contain diagonal matrix elements. Suppose we attempt to
excite quasiparticles out of the ground state by coupling
to a charge or spin excitation; the relevant diagonal ma-
trix elements are then

(3.26)

where k*=kkq/2 and ~k*) =at~ ~0) denotes the state

with one quasiparticle added to the mean-field ground
state. In terms of the Bogoliubov coefficients this is

~

~

Pqk, k+)=QZvvZv [vvv —vvv ], (327)
Oq

where u+ =u(co„y) and Uz =v(co„y) are the Bogoliubov

factors in the gapless band (+}. On the Fermi surface,
since u =U = I/v 2, this coherence factor Uanishes

—Zk[uk Vk ]

=Z(cok)
"[[7/b, (tok }+@

2Pcok
(cok«h ) .

p+V
(3.29)

From these results, we conclude that there is no way to
couple via charge or spin probes to the quasiparticle exci-
tations at the Fermi surface. These gapless excitations
are devoid of charge or spin quantum numbers on the
Fermi surface. This dramatic effect is a direct conse-
quence of the resonant pairing and the pole in the gap
function. So long as this pole is maintained, the coher-
ence factors will identically vanish on the Fermi surface.
Note, however, that these quasiparticles can still carry
entropy, and in this sense can be regarded as thermal
quasiparticles.

It is particularly instructive to examine the local con-
duction electron propagator and the pair wave function
in this simple mean-field theory. The local propagator
for the paired "up" electrons is

D
Gt(co)=g Gt(k, co)=p J deGt(e, co) . (3.30)

k
—D

Carrying out the integral over the conduction electron
energies we find

1
Im[Gt(co —i5)]=

7TP

1 (icosi &b, ),
'

1 5(co)7 i+[[i,1 31+sgn(co)
2 +h(co) +[L[,

(3.31)

Loosely speaking, the electrons are normal outside the gap region and become paired at energies less than the gap 5 .
The spectral function can be rewritten in terms of the energy-dependent Bogoliubov coefficients derived in Eq. (3.24):

2
Q~ Q~V~

2
Q~V~ V ~

1
Im[Gt (co i 5) ]=—

7TP
(3.32)

where the coe%cients u and v are evaluated in the gapless band.
Finally, we may construct the pair wave function from the off-diagonal components of this spectral function
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( (
.

)~ (
.

) ) ~f D dco 1 b, (co)sgn(co)
D 17 ICOn

—
CO Qg(co)2+p2

Ddt' 1 &(co)
I con p

[co„+co ] V g(co) +p
(3.33)

thereby explicitly displaying the odd-frequency character
of the pairing.

IV. MEAN-FIELD THERMODYNAMICS

Next we discuss the mean-field thermodynamics. The
mean-field free energy per site is written in terms of the
conduction electron propagators as

FM„= ——g Tr in[9 (Ic)]
—1

K

where F (z) =p8[e (z)]/m and we have used the nota-
tion b,„:b, (ico—„}.Carrying out the Matsubara sums then
yields

1 ~ f dco
h

pco

J 4' 2

(4.1)
+F')' (co+) ', (4.8)

where the determinant can be expanded in terms of the
"up" and "down" components of the propagator [Eq.
(3.11)]:

det[Q '(~)]=det[G& '(Ic)]det[G& '(~)] . (4.2)

Differentiating with respect to the order parameter yields
the mean-field equation

T 1 i co„—I& 2(ico„—Z&
—2b „)—+—Q +

det[G& '(a)] det[G& '(Ic)]
=0,

(4.3)

8[z]=ln z —D
—D —z

(4.5}

The energy integrals can then be performed by closing
the contour around the poles in the Green's functions,
which are located at

e) (co)=co—6 +asgn(co)Qh +p
E} (co}=co 2b, +ap- (a =+ ) (4.6)

for the up and down electrons, respectively. Carrying out
the complex integral then gives

1 czA„
. F) (ico„)J 2+(a2+ p2)

AT ~ 1

l COn
n

+F~ (ico„) ', (4.7)

where the denominators in these equations are given in
Eq. (3.12). For a constant conduction electron density of
states p, we may replace

] ~p f dE[ ] =p f 8[z][ ], (4.4)
D dz

k
—D 2&l

where the contour integral proceeds clockwise around
the branch cut in the function

where co+ =co+ i 5 .The functions F"~( co)

ImF (co—+) count the number of up and down excita-
tion branches at frequency co. Ignoring the small
differences between the up- and down-spin excitation
gaps,

()(D —Icol) (cr =la=+),F" (co+)=
6(D —

co~ )
—8(b, —

~co~ ) (otherwise),

(4.9)

for the gapless and gapful branches, respectively. This
simple mean-field theory then gives rise to a phase transi-
tion at a temperature

l
T, -D exp

3/2Jp
1= Tg exp

6Jp
(4.10)

where Tz=D exp[ —1/(2Jp)] is the single-ion Kondo
temperature. At p=0, the gapless excitation branch of
the spectrum does not contribute to the mean-field equa-
tion. At finite p, the gapless branch develops a small
linear coherence factor, and we see that this has the effect
of suppressing the transition temperature. For all values
of p, however, the form of the mean-field 5 ( T) quite
closely resembles that of a singlet BCS superconductor.

It is clear that there are several weaknesses to the
theory from these results. First, note that the mean-field
transition occurs from a state where the local moments
are unquenched, directly into a heavy-fermion supercon-
ductor, without any intermediate heavy Fermi-liquid
phase. Though we presume that key aspects of the
heavy-fermion phase might be recovered by including the
self-energy effects of fluctuations on the conduction elec-
trons, this has yet to be established. The precise relation
between the single-ion Kondo temperature and T, is also
not reliably predicted by the mean-field theory. Our
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(4.11)

so that

path-integral approach amounts to a "Hartree" decou-
pling of the interaction. Had we chosen a more conven-
tional diagrammatic approach, carrying out a "Hartree-
Fock" decoupling of the original Hamiltonian, writing

jfV.

jl

5 I I I ~
)

I I I I
i

I ~ I I
f

I2.

8,/D=5/B

'3 &.5

i —fz—AX ri.erg~
—i—tjF~riXri nP/~ — V V (4.12)

then the mean-field Hamiltonian would have become

(4.13)

0.5—

r
r'

/
/

r
.r'

so that for this scheme, T, = Tz, to logarithmic accura-
cy. The path-integral approach recovers the "Fock" con-
tributions to the pairing as a leading-order component of
the random-phase-approximation (RPA) fluctuation
corrections to the mean-field transition temperature (Fig.
7). Since fluctuation effects will suppress T, in either
scheme, the particular choice of mean-field theory is
somewhat arbitrary, and will not matter at the next level
of approximation.

If we take our mean-field theory literally, we see that
from the point of view of the original conduction band,
the transition into the odd-frequency state can occur for
an arbitrarily weak-coupling constant, taking advantage
of the Kondo effect to produce a logarithmic divergence
in the pairing channel. Past treatment of odd-frequency
pairing required a finite coupling constant: here, the I/co
divergence in the gap function provides an infinitely
strong pairing field that moves the critical coupling to
zero again. Significant pair breaking effects will, of
course, come from the fiuctuations. In the one-impurity
problem, there are infrared divergences in the Gaussian
fiuctuations that suppress the mean-field transition tem-

0 0.05
I i s I a I

O. i 0.15
~ i I I I

0.2 0.25

perature to zero. However (unlike the large-N approach),
in the lattice model there is no continuous gauge symme-
try so the development of a gap in the spectrum will cut
off the one-impurity infrared divergences, preserving a
finite-temperature transition.

Finally, we note that expanding the free energy at low
temperatures yields a linear specific heat proportional to
the density of states in the gapless band:

Hk E
3 2 V

+ka 1 1

3 2 26 D

2

(4.14)

Depending on the ratio (p/D), this linear specific heat
can range from a value characteristic of the free conduc-
tion band, (i/, /D)-0, to a value more characteristic of a
heavy-fermion metal -1/b, for (p/D)-1 (Fig. 8). The
quantity (i//D) is a measure of the particle-hole asym-
metry. In a more realistic band structure, this quantity is
replaced by the average of the particle-hole asymmetry
over the Brillouin zone

FIG. 8. Temperature dependence of the speci6c heat, calcu-
lated at low temperatures for a variety of Iji, /D. Note that as
p/D increases, the gapless band becomes "heavy. "

(4.15)

In general, this ratio can be significant even when close to
half filling.

V. RIGIDITY
OF THE ODD-FREQUENCY PAIRED STATE

FICx. 7. Illustrating the distinction between (i) the
Hartree/RPA decoupling scheme used and (ii) a Hartree-Fock
decoupling procedure. The "Fock" part of the vertex equation
is absent from the Hartree approximation, but is reincorporated
as a leading term in the RPA.

One of the key issues associated with odd frequency
pairing, is whether it leads to a real superconducting
Meissner e8'ect. Past attempts to construct an odd-
frequency paired state within an Eliashberg formalism
have experienced diSculty in producing a state with a
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positive phase stiffness and a finite London penetration
depth. To begin our discussion, we first discuss the form
of the long-wavelength effective action.

A. Long-wavelength action

1,1, 1
iP —i2$(0 /2)

0 0 0

The gauge-invariant form of the free energy is then

(5.8)

1
z (x)=g (x) (5.1}

where

e [is(x) s]— Zt Z $

Z*
.

'
0'S=
2

(5.2)

is an SU(2) rotation matrix. The rate of rotation is given
by Vg =gro, where

ro =g Vg —
frogs (5.3)

is decomposed in terms of its components mz(x) along the
principal axes dz of the order parameter. The leading
quadratic terms in the gradient expansion of the free en-

ergy about the uniform mean-field theory are then

F= Q frogd x
13

(5.4)

Here the stiffnesses p& for slow twists about each princi-
pal axis are analogous to the moments of inertia of a top.

To include the effects of an external magnetic field, we
introduce a finite vector potential by an appeal to gauge
invariance. Our original model is gauge invariant under
the transformation

P(x)~e'~'"'1((x),

z(x) e'~'"'z(x), (5.5)

In general, the mean-field free energy will depend on
gradients of the order-parameter field, and the form of
the applied vector potential. Let us now consider slow
deformations of the order parameter

2
2F=— d x P~coi+P, co3

— A +1 3 2 2e B
Po

(5.9)

In terms of the vector 8'=—d3 =z oz, this action can also
be written

BF=—f d x p (Vh'} +p, F03
— A +

0

(5.10)

'2
e 1 2e

VP ——A —+ —V8 — A
4

2

(5.11)

and hence the coupling between physical rotations and
the vector potential is a charge 2e coupling, as in conven-
tional superconductivity. Note finally that if we include
spin anisotropy into the original Hamiltonian, then this
will tend to align the order parameter, for example,
through the inclusion of a term of the form

The term p, is the Meissner stiffness of the superconduc-
tor, whereas the term p can be regarded as a "spin
stiffness" of the triplet paired state. It is at first surpris-
ing that a charge le spinor order parameter can give rise
to a charge 2e coupling between gradients of the phase
and the vector potential. We can resolve this apparent
paradox by noting that z (x) is also a spin- —,

' object, thus a
change in phase of z(x) of P corresponds to a rotation
through an angle 8=2m. A rotation of the physical order
parameter through 2m corresponds to a sign change in
z(x)~ —z(x) and so z(x) must be continuous up to a
sign +1. The gauge-invariant coupling between P and A
is then

A(x) ~ A(x)+ —VP(x),
e

F, = — f d x(d3 z) (5.12)

so that

ip(x)o 3
g (x)~g (x)e (5.6)

On length scales l & l„ the system behaves as a conven-
tional Landau-Ginzburg theory.

B. Computation of the Meissner stifFness

This means that the long-wavelength action must be in-

variant under the transformation

c03~co3 +2VQ(x )
(5.7)

To compute the Meissner and spin stiffnesses in this
gradient expansion, we consider a configuration with a
uniform rotation about the principal axes d,

—A(x)~ —A(x)+V/(x) . [iso.R.S i 0 0
Z~ =e ZJ (5.13}

In other words, a uniform vector potential A is
equivalent to a uniform rotation rate —(2e/fi) A about
the d 3 axis. That rotations about the d 3 axis are
equivalent to gauge transformations can be understood
by noting that multiplication of a unit spinor by a phase
factor e'~ is equivalent to rotating its principal axes
through an angle 2P:

.=Zq+h (k},

h(k) = co„V„Z~S'+—Sco„co V„„F„.—
(5.14)

We may absorb this uniform rotation into a gauge trans-
formation of the conduction electrons through the re-
placement of the conduction electron kinetic energy by
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'(K)~ —9' '(K)+h (K) . (5.15)

The free energy of the system in the presence of a uni-
form twist can be calculated from the trace of the con-
duction electron propagator as follows:

F [m, ]—F[0]=——g Tr[ ln[ —0 '(K)+h (K)]2.
—ln[ —9' '(K)]j

= ——g Tr t in[1 —Q(K)h (K) ] ] .T
2 ~

Expanding the logarithm to quadratic order gives

2

F[~]—F [o1=
2

(5.16)

(5.17)
T VZgp'= —g Tr[Q(K)]+V'8&Tr[Q(K)cT Q(K)o'] .

K

The first term in p' can be integrated by parts to yield

Here we have expanded the kinetic energy to quadratic
order in the twist. The effect of the twist in the phase can
then be included into the electronic Green's function by

tween the conduction electron bandwidth and the Kondo
temperature

T~«A«D . (5.22)

(5.23)

where the contour integral proceeds clockwise around
the branch cut in the function
e[z]=ln[(z D)/( D——z—)]. The frequency sums can
then be performed by closing the contour around the
poles in the Green's functions, which are located at

eg (co)=a)—b, +asgn(co)Qh +p (a=+) .

Carrying out the contour integral in z =e then gives

pvFT ah„
24 ( g2 ++2)3/2

(5.24)

With this choice, we are able to replace the density of
states by its value at the Fermi surface: the energy in-
tegral is then carried out in the same fashion as Sec. IV,
replacing

]~pf de[ ] =p f . 8[z]I
k

p'= —g (Vz&) Tr[Q(K)o'Q(K)cr' l(K) ]-g T

K

(5.18) U2

g f ImIS[e (co+i5)]]th[Pco/2]

for the stiffness about the d, axis. For our simple model,
p'=p =p, and in the special case where p=0 all three
stiffnesses are equal. We shall explicitly focus on the
stiffness about the & =d3 axis, which is associated with
the London kernel

2Q„„=4ep35„„.
(5.19)

We can separate the trace into "up" and "down" com-
ponents. The "down" component is unpaired and explic-
itly vanishes. The "up" component gives

T 2 2h„
p = ——gv„4 „[(ia)„—b,„—Zq) —6„—IM ]

ah
X

( g2 + 2)3/2
(5.25)

Ne
Q =4e p3= f death

4m o 2

+2

( g2 ++2
)3/2

V2
(5.26)

where we have set N/m =2pvF/3. By making the low-
temperature expansion

These two poles cancel one another's contributions, ex-
cept in the gap region ~ro~ & b, , where the gapless excita-
tion branch contributes a finite amount to the stiffness.
Our final result for the London stiffness is then

(vq= VFg) . (5.20)

In a conventional BCS theory, it is sufficient to impose
a low-energy cutoff on the frequency sum,

CO rr'T2
th =sgn(a))+ (5') +O(T ),

2 3
(5.27)

ia)„i &A, (5.21)
the temperature dependence of the Meissner stiffness and
penetration depth become

after which the conduction electron bandwidth can be
taken to infinity. We are unable to take this continuum
limit, for we must maintain the value of the excitation
gap of the unpaired down electrons hg V /D this
means that we must maintain a finite band electron
cutoff. [In other words, the number of electrons per local
moment -N(0)D must remain finite. ] Since our mean-
field theory will not be accurate at frequency scales that
are large compared with the Kondo temperature, we
shall choose a frequency cutoff that is intermediate be-

1 1
1 ~ 7TT

X'(T) (V )'

where 4mQ(T)=[A, I (T)] defines the London penetra-
tion depth and

(5.28)

F(x)=2x 1— 1

+I+4x
(5.29)

This T variation of the penetration depth is similar to
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that expected for point nodes in a conventional pairing
scenario. In the special case of p=O, the Meissner
stiffness is simply

~2 +2N2
(5.30)

m 4V m 4D

where we have set hg = V /D. The stiffness of the order
parameter is thus finite, but suppressed by a factor of
Z =hg /D compared with a conventional metal. Loosely
speaking, we may consider this to be an effect of the con-
densation of heavy fermions, whose effective mass is
enhanced by a factor m "/m -1/Z, and whose rigidity is
then depressed by the factor m /m *—Z.

The staggered phase of the order parameter plays a
critical role in developing this finite stiffness. This point
is illustrated in Fig. 9. The "uniform" odd-frequency
triplet state (Q=O) is unstable and its energy may be
monotonically reduced by twisting the order parameter
until the stable minimum at Q=(rr, m, n) is reached.

The "spin stiffness" p =p& 2 for twisting the order pa-
rameter about the dt axes can be calculated in a similar
fashion. When p=O, the system is particle-hole sym-
metric, and p =p3 as given above. Like the superfluid
stiffness p„contributions to the stiffness come predom-
inantly from the neutral excitation band inside the gap,
though the formal expression for p@0 is more complicat-
ed, and shall not be given here.

C. Collective modes

To end our discussion on the long-wavelength proper-
ties, we should like to briefly mention the collective
modes of the condensate. Let us generalize the effective
action to incorporate the leading-order time dependence
of the pairing field

S = —f dt d'x Iy (t),&)'—p (P'n)')1

+ y co — V0 28
'2

28
p Q)3 A

2

+ (E/c) 8—

Po
(5.31)

U2 -U2 -v2 TK
spin phase I D

(5.32)

Of course, phase modes are gauged away as fluctuations
of the electromagnetic field, converting the phase mode
into a longitudinal plasmon mode as part of the Meissner
effect, following the well-known Anderson-Higgs mecha-
nism. The spin-wave mode cannot be gauged away in
this fashion and is unscreened, leading to gapless collec-
tive spin modes in the superconducting state that coexist
with the superconductivity. From the velocity of the
spin-wave excitations, we can see that these modes cross
into the bottom of the quasiparticle continuum at a wave
vector

where y denotes the magnetic or spin susceptibility and

y denotes the charge susceptibility. An applied vector
potential is gauge equivalent to a rotation about the d
axis, and must be included with the kinetic terms to
maintain the gauge invariance, as explained above. The
spin and charge susceptibilities are given by y=g =p.
In the absence of a coupling to the electromagnetic field,
this action would give rise to a collective phase mode,
and a spin-wave mode, with velocities

q, —Qbs/Da (5.33)

-0.6

-07—

Q = (Q.Q, Q)

I
I I where a is the lattice parameter. This is much smaller

than the size of the Brillouin zone so long-wavelength
fluctuations of the order parameter will not lead to a
dramatic reduction in its magnitude. The length scale

g-a QD/b, (5.34)

& -0.8—
thus plays the role of the coherence length for the odd-
frequency paired state. On length scales shorter than g,
and frequencies greater than

co Ag (5.35)
—0.9—

FIG. 9. Mean-field free energy of the odd-frequency paired
state plotted as a function of the "twist" wave vector of the trip-
let pairing field d, (R)=e'o ad, (0). The uniform state (Q =0) is
unstable with respect to the state with a staggered phase

(Q =~).

this system will behave much in the way of a single Kon-
do impurity. The development of coherence on longer
length scales provides a vital cutoff to the infrared fluc-

tuations that destroy the condensate in a single-impurity
model. 4'4'

VI. EFFECT OF COHERENCE FACTORS
ON LOCAL RESPONSE FUNCTIONS

The unusual nature of the coherence factors in the
quasiparticle excitations have interesting consequences
for the low-frequency response of the conduction elec-
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a, ( T)=A,
&
lim

x' (~)
co~0 CO

(6.3)

(b)=A, 12im
T1 co~0

g'+ (~)

(co}=Tr[(1—bb )y'(to) ]

trons. Of particular interest here are the local dynamical
spin and charge susceptibilities

y'(co) = —i f dt( [p, (t),p, (0)])e'"', (6.1)
0

g',b(t0)= i—f dt([S, (t),Sb(0)])e' '. (6.2)
0

These functions are directly related to the ultrasonic at-
tenuation, a, ( T), and the NMR relaxation rate, 1/T„
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associated with the conduction electrons. Let us focus on
contributions to these response functions derived from
the gapless excitations in the "up-" spin band of our toy
model.

The imaginary part of the local spin or charge response
function of these excitations is given by

FIG. 10. Local dynamic spin susceptibility of the odd-
frequency state for various values of p/D. Inset details midgap
response that grows quadratically with the frequency, due to
linear spin coherence factors.

4y' (co}

[f«~, }—f (E~, )]

ventional superconductor, where gapless excitations car-
ry charge and spin, these matrix elements would be unity
at the Fermi energy, and this kind of quadratic behavior
can only be produced by a linear density of states. A
quadratic growth of the dynamic spin and charge suscep-
tibility results in characteristic T response of the NMR
relaxation rate (Fig. 1)

X5[(Eq Eq ) —co] .— (6.4)

The low-energy form of this response function is given by

(The only component of the susceptibility matrix which
couples to the low-energy quasiparticles is y' .) Since the
coherence factors grow linearly in the energy

~

~

~ ~k — ', ' k+ -QZ, Zz(co„++co„) 2
. (6.5)

1

T1T D
T

TK

T
TK

and a T response of the ultrasonic attenuation rate

(6.8)

(6.9}

y'(~) 4g'(~)

EN*E+ Z E+ N'E Z E
(6.6)

f(E )
—f(E+) (E+ +E )p

p'2

where E+ =E+co/2. The density of states of the quasi-
particles is N'(E}=(p/2)Z '(E), thus at low tempera-
tures and frequencies

2 2 ~2+ (2~T)2g'(~)/~=4+ (~)/~=
4 V' (6.7)

This quadratic temperature and frequency dependence of
the local charge and spin responses results from the
unique energy dependence of the spin and charge matrix
elements, and the neutrality and spinless character of ex-
citations at the Fermi surface (Fig. 10). In a more con-

This property of the odd-frequency paired state is of par-
ticular interest because power-law behavior of the above
variety is observed in heavy-fermion systems. Conven-
tionally, it is ascribed to d-wave pairing and gaps vanish-
ing along lines of the Fermi surface. Our odd-paired
state offers the interesting alternative description of this
as a matrix element effect.

Let us now consider the detailed predictions of our
model for the NMR relaxation rate. In general, there are
two spin relaxation processes in heavy-fermion com-
pounds: a relaxation rate associated with the conduction
electrons

—+i ~

(1 ~ ~
XCOnd

m
T1 T coIId v~O V

(6.10)
y,,„+d(v) = i f dt exp( ——ia)t)( [S, (t),S,+(0)]),

0

and a relaxation rate associated with the local moments,
given by
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yI +"(v)=A,2lim
v—+0 V

(6.11)
gf +(v)= —i f exp( —icot)& [Sf (t) Sf (0)])

0

where S, and SI refer to a conduction or f spin at a given
site. Existing NMR relaxation experiments have focused
exclusively on relaxation at a nucleus in the surrounding
conduction sea, on the assumption that the NMR relaxa-
tion rate at an actinide ur rare-earth nucleus will be too
large to resolve the broadened linewidth. In our model,
these two relaxation rates difkr qualitatively: the relaxa-
tion associated with the conduction states gives a T
response, whereas the relaxation associated with the
heavy-fermion site vanishes exponentially at low temper-
atures, predicting that the nuclear line will narrow
sufBciently to be resolved in the superconducting phase.
Here we specifically calculate these two relaxation rates.

Let us first examine the gapless spin relaxation associ-
ated with the conduction electrons: this is determined by
the z component of the dynamical spin susceptibility

At low energies, the energy dependence of the magnet-
ic relaxation is governed by the linear energy dependence
of the spin coherence factors. The low-energy imaginary
part of the susceptibility is hence quadratic in the exter-
nal frequency,

g'„(co) 7Tp

48 D

2 2

(6.17}

This, in turn, leads to an NMR relaxation rate that is
proportional to T:

r

1 &np
TT '48 D

27TT

TK
(6.18)

3 f ~—(ri

+inst

)
1 ~ 2

f "II ~ 2

we can define

(6.19)

Let us now examine the spin relaxation rate of the f
spins. Writing

S+ g2 3ft

y'„(i co„)= (S,'(i co„)S,'( ico„—) )

=1 (p, (ico„)p, ( ico„—)) .
0=+

(6.12)

G'(co)=( f(co)f (co) ) =f,p'(co),

G (co) = (ri (co)ri (
—co) ) =f,p (co) .

dN
(6.20)

We may now write

g'„(iv„)
Then at the mean-field level, the local dynamical suscep-
tibility of the f spins is

Tp g Tr[ Qt (i v„+ico„)r3Qt(i co„)r3], (6.13)
lN

yt +(v)= 2T g G—(co)G (co+v) .
v= I co

tt

(6.21)

where we have used the summations over momentum to
replace the "up" conduction propagators by the corre-
sponding local propagator [Eq. (3.31)]

—g Q„t(co+i5)1

P g

lim
v~0

Xy +"(v) —2' cop co p N
c} (co)

(6.22)

Carrying out the sum over Matsubara frequencies, we
then find that

where

E =sgn(co)Qh„+p

pt (co)=(lip)Im[Ft (co+i5}] .

a( —b, r, —@~3)=—gpt (co) —1+
a Gg

(6.14)

(6.15)

The essential features of this relaxation rate are captured
by the situation at half filling, where

p2
2p'(co) =p'(co)=, p . (6.23)

To leading exponential accuracy, the relaxation rate is
then

y'„(co) KP f dx pt+(x)pi+(x —co)

f (x)—f (x —co)
7

„—p
E E

(6.16)

This spectral density can be used to carry out the
Matsubara frequency convolution. We can consider the
a = + term only, since it corresponds to the gapless exci-
tations. The final expression for the imaginary part of
the low-energy spin response is

1 a —~, tr 2e ' (a=2mAI[pD] ) . (6.24)

This exponential relaxation at the heavy-fermion site is a
reflection of the "s-wave" character of the odd-frequency
triplet pairing: condensation between the f spins and the
conduction electrons builds a sharp gap in the excitation
spectrum of the f spins. We refer the reader to Fig. 1,
which contrasts the NMR relaxation rates at the heavy-
fermion and conduction electron sites for various values
of the chemical potential.

The key difFerence between the d-wave and odd-
frequency description is that the former relies on a node
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in momentum space, whereas the latter relies on a node
in frequency space. For this reason, we expect that odd-
frequency pairing is rather insensitive to elastic scatter-
ing. This point can be illustrated in the following general
way. Let us consider a general odd-frequency paired
state, where the pairing self-energy takes the form

p2
X(co;x,x') =g(x) P(x)5„„.,

(6.25)

G '(co) =Z 'co —h,
(6.31)

z-i= 1+
p'2

Notice that the effect of the resonant scattering is to in-
troduce a wave-function renormalization into the propa-
gator. Low-energy eigenstates are set by the determinan-
tal equation

P= —,'[3(1)—d,&(x)0'~ ] . Det[G ']=0 . (6.32)

%,(x)=p(x)%(x},
p(x) =1—P(x) =—,'[(1}+d,b(x)o'r ] .

(6.26)

In this expression, the amplitude V, g(x) of the resonant
scattering and the orientation d,&= ,'Z (x—}o,rbZ(x) of
the triplet order parameter may be site dependent. The
component of the conduction electron states which does
not directly couple to the resonant pairing, V, (x), may be
projected out of the conduction electron spinor as fol-
lows:

Clearly then, if there are zero-energy eigenstates of the
projected Hamiltonian

h(x, x')g~(x') =0, (6.33)

then these will give rise to zeros in this determinant. In
other words, the projective character of the resonant
scattering means that the indirectly coupled zero-energy
states form zero-energy excitations of the complete Ham-
iltonian. Suppose we define the Majorana conduction
electron states as

H, =—g 4 (x}%(x,x')%(x') .1
(6.27)

Let us project out the parts of the conduction electron
Hamiltonian that couple directly, or indirectly to the res-
onant scattering, writing

This component experiences an indirect effect of the reso-
nant pairing through mixing with the directly scattered
components.

Consider a general conduction electron band with dis-
order, described by the Hamiltonian

a tz =g g, (x)gz(x) .

Then their propagator will be given by

where the pole strength Z& is

Z, = I+g'„=~,'-'g„
p2

(6.34)

(6.35)

(6.36)

Thus, the zero-energy eigenstates of the complete Hamil-
tonian will have the form

n~g=+Z~ g g, (x)gg(x)+ (6.37)

p(x) &(x,x') . (6.28)

p2
Q(a) )= a) —&— P'

CO
[g„„=g(x)5„„,], (6.29)

The conduction electron Green's function can then be
written

where the residual part of strength Q(1—Zz) is carried
entirely by the Majorana spin fermions. In general then,
the off-diagonal coupling between the indirectly and
directly scattered states leads to a reduction in the con-
duction character of the Majorana zero modes, and a cor-
responding enhancement of the density of gapless excita-
tions:

N'(0)= (6.38)
where all subscripts have been omitted. The projected
component of the conduction electron propagator for
those states that do not directly couple to the resonant
scattering is then given by

2
r

V,
G (co)=a)—h —a a) H——

CO

(6.30)

Though these states do not directly couple to the reso-
nant scattering, they couple indirectly because of the off-
diagonal terms in the Hamiltonian that mix them with
the resonantly scattered states. At low energies, the reso-
nant scattering dominates the "self-energy" correction in
the propagator, which then becomes

H, =—g %qZ), %q ——g 4 (x}p(x)r3%(x} . (6.39)

The chemical potential term can be identified as the off-
diagonal coupling, whereas the kinetic-energy term com-

The important point, however, is that despite these
effects, the gapless excitations remain Majorana fermions:
the spin and charge operators are completely off-diagonal
at the Fermi surface, and coherence factors must con-
sistently vanish in this region.

To provide a specific example, consider the generaliza-
tion of our toy model with a random chemical potential
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mutes with the projection. The Z factor for a gapless
plane wave gz(x) =(1/&N )e'" "Zz is then

and strong anisotropy

M-y, d p. (7.4)

Zz ' =[1+ (p (x) ) /V, ], (6.40)

which gives rise to an enhancement of the gapless density
of states given by

We may calculate y, very simply as follows. Let us

choose d =z. The coupling of the magnetic field is

given by

N "(0)= [1+(p (x) ) /V, ], (6.41) H = —QB Qt(j) —p(j) —r—i Xg,
J

(7.5)

where for weak scattering we have ignored the Auctua-

tions in the strength of the resonant scattering potential
that will be induced by the disorder. Thus, we see that
disorder enhances the density of states but sustains the
electric and magnetic neutrality of the Fermi surface.

Thus, the total magnetic moment in the z direction per
site is

M = ( —,'(n, t n,—&
) —iri, (j)qz( j) )

= ( —,'(n, t n, &)+—(1/2 n„~ )
—), (7.6)

VII. INTERPLAY WITH MAGNETISM

In this section we discuss some of the magnetic aspects
of the odd-frequency state. Even in our toy model, where
we have not included any detailed effects of band struc-
ture or anisotropy, there are a variety of locally stable
phases where the order parameter is commensurately
staggered. Quite generally, as we now show, the odd-
frequency state will develop an ordered magnetic mo-
ment, aligned parallel to the d vector, giving rise to the
coexistence of antiferromagnetism and superconductivity.

We begin our discussion by returning to the simplest
example, where the d vector is uniformly oriented, giv-

ing rise to a state with ferromagnetic correlations. We
will generalize our discussions to a more realistic antifer-
romagnetically ordered case at the end of the section.
When the conduction band is half filled, and hence com-
pletely particle-hole symmetric, the odd-frequency paired
state is magnetically isotropic and both static magnetic
order and static pair correlations are absent (S)=0,
(rJ ) =0 at half filling. In this state, there is long-range
order with an order parameter

M, =
—,
' ( n,

&
+n, ~ ) —

—,
' (7.7)

per site. Since the local moments leave the conduction
electron density essentially unchanged, (n, &+n, ~

—1)
=2pp, giving

and

M, =pp (7.8)

X P+0 (TK/D) (7.9)

A departure from particle-hole symmetry 5p thus gen-
erates an ordered (ferromagnetic) moment of strength

where n, , (o = 1', $) is the number of "up" or "down"
conduction electrons per site and following the notation
of Eq. (3.18), n„& =(1/N„„,)g&g&~ri&& is the number of
"down" Majorana fermions per site. Now note that the
down Majorana electrons are hybridized with the down
conduction electrons to produce a completely filled hybri-
dized band, with one electron per unit cell. Thus, in the
ground state, ( n „+n, ~ ) = 1 per site, so

p'2
(S'(x H."(x)) =2 [db(x)]', (7.1)

M(x)=5ppd (x) . (7.10)

where S(x)=S,(x)+Sf(x) is the total moment at site x,
and r(x) is the conduction electron isospin at site x.
Odd-frequency triplet pairing is thus seen to strongly
couple spin and pair correlations. Clearly, however,
these cross correlations induce anomalous response func-
tions, coupling the development of charge correlations to
the application of a magnetic field or the development of
magnetic correlations to the application of a chemical po-
tential or pairing field. To study this effect, we introduce
the spin-charge susceptibility

g'"(«) = (S'(«)~ ( —«) ), (7.2)

where the static susceptibility g(0) is of particular in-

terest. In the vicinity of half filling, the state is complete-
ly isotropic in spin and isospin space, and we then expect

~ah ~ dab (7.3)

Thus, once the system is doped (p&0), the presence of a
cross correlation between the charge and spin degrees of
freedom leads to the development of a magnetic moment

In a similar fashion, an application of a magnetic field

will inhuence the charge and pair correlations: a field

along the d 3 direction will develop a charge density,

p(x)=PB, (x) . (7.11)

More remarkably, a transverse magnetic field B=B~d'
(I =1,2) will induce a conventional pairing field of mag-
nitude

(7.12)

This leads to a possible field-dependent Josephson cou-

pling with conventional superconductors.
Even in this ferromagnetically ordered state, there are

strong antiferromagnetic correlations. To illustrate this

point, consider the case where p=O. Here, the main con-
tribution to the magnetic susceptibility is provided by the
local moments, and may be calculated from the spatial
correlations of the Majorana fields. Low-frequency prop-
erties of the local moments are determined by excitations
across the indirect gap at wave vectors q= +Q/2. In the
vicinity of the gap, the Majorana fermions can be ex-



49 ODD-FREQUENCY PAIRING IN THE KONDO LATTICE 8975

p'2
ImD(k, co —i5)= n5(to t0—) .

p'2 +~2 'q (7.14)

The spin correlations are determined from the product of
two Majorana propagators:

(S'(q)S ( —q) ) =5' p(q)

=5' —QD(q/2+it)D(a —q/2) .ab T
2.

(7.15)

At low frequencies, this is governed by excitations in the
vicinity of the indirect gap, where the quasiparticle spec-
trum is parabolic t0 =kb +(q+Q/2} /2m", m'
=(D/Ttt)m, and m is the electron mass at the band
edge. Using this parabolic approximation to carry out
the momentum space integrals gives

panded as shown in Eqs. (3.5) and (3.6). In momentum
space, the Majorana propagators have the form

(rl'(a)rt~( —it) ) =5,bD(gc),
(7.13)

l CO~
D(a.)=

[i to„(ico„ek} V ]

so that

In other words, independently of the ordered magnetic
moments, there is a large amount of spin-fluctuation
spectral weight above the superconducting gap at the an-
tiferromagnetic zone vector. This general feature sur-
vives when we come to consider other configurations of
d (x).

Let us now consider the possibility of more general,
staggered configurations of d . Take the more general
ansatz for the mean-field order parameter

—i(1/2)x (Q+Pcr))z(x)=e Z p Z

(7.17)
d, (x) d, cos[Q x]

At(x) = d2(x) = d2cos[(Q+P).x]

d3(x) d3cos[(P.x)]

where P and Q are commensurate vectors.
As before, we can redefine the conduction electron

states to take account of the staggered order,

(i /2)x (Q+P(2() (i /2)x (QZ3+ P~()—

(7.18)(i/2)x . .(Q~3+Pn&)—
J

%.=e
J

The conduction electron Hamiltonian can then be written
(

III )3/2
Imp(q, co+ i5)= 5'

(2m )

p2

V +(co/2}

X+c0—i)) 0" (to —b, )

a =2~ +'q+Q' .
4m*

(7.16)

H, = g )Ii„[(e[k—Q/2r3 —P/2o, ]—(M )r3])I/k,
jf.G —BZ1

2

(7.19)

where the kinetic-energy term can be expanded as

[e(k—Q/2+3 —P/2LT() —p]r3= —g [(Z3+a}(1+Po'))e[k—aQ/2 —PQ/2]] @13-=1
a,P=R1

[~k+~kLr) ] [P'k+i2ktr)Lr3 (7.20}

From the discussion of Sec. III, we know that gapless ex-
citations will develop on the "Fermi surfaces" described
by

ae[k —aQ/2 —PP/2] =0 .1

a,P=+1
(7.21)

2t [s„+s,] (si =sin—[ki], l =1,2, 3),
Z1

—2'„,
PZ P P1

(7.23)

To make our example more specific, consider the case
where

ek = 2t [c„+c~ +c, ] (ci =co—s [ki ], l = 1,2, 3),
(7.22)

Q=(n, n, n. ), P=(m, 0,0),
corresponding to a staggered d vector in the x direction.
In this case,

I

The gapless modes lie on a tube with a square cross sec-
tion [s +s, ]=0 and the spectrum is given by

Det[G& '(co)G& '(to) —[ek] 1]=0,
Gt '(a))=[co—ek —b, (1—r()+pr3],
Gt '(to)=[co ek 2A +lj,r3] . — —

(7.24)

After a short calculation the corresponding mass renor-
malization of the gapless quasiparticles is found to be

p +(2tc„)=1+" (7.25}
m V2

In Fig. 11,we show the mean-field ground-state energy as
a function of P=(P„,P,P, ), clearly showing the devel-
opment of local minima at the commensurate points in
the Brillouin zone. At each of these points the odd-
frequency state will develop a staggered magnetization
with wave vector P and approximate magnitude M-pp.
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-0.6

—0.8

I
I I charge (isospin) and spin of the localized states. If we ex-

pand the localized f electron in terms of its four real
components

r

—1

to —0.9
W

W

P = (O.p, p)

l
I I

I
I I

where

'=1—[f +if o]z,
2

ZT

Z $

(8.3)

P = (O, o,p) is a unit spinor, then the interaction may be written as a
symmetric product of all four fields

Ht=U[(r3) —(S, ) ]+—

FIG. 11. Dependence of mean-field free energy on the mag-
netic wave vector P in three dimensions. In three dimensions,
the state at P =(~,0,0) is locally stable.

In practice, we would argue that the small differences in

energy between these different commensurate states will

depend on several factors that are not included in the toy
model. It is interesting to note that in two dimensions,
the toy model predicts that a P=(m, 0) state is more
stable than the P=(n, n) state. The important point,
however, is that the mean-field energy of these magnetic
phases is close in energy to the uniform state and further-
more, is locally stable. We may conclude that this type of
odd-frequency pairing can homogeneously coexist with
antiferromagnetism. The local moments participate in
both the spin and the pair condensate.

VIII. CRITIQUE AND DISCUSSION

(8.4)

On a lattice, the interaction between the electrons can
then be written

(8.5)

where we use the Fourier-transformed operators

f'(tc)= g fde '" f'(X),
&PN

tc X—=k RJ co„r (8.—6)

and it is understood that all time coordinates are ulti-
mately to be time ordered.

A way to reduce the on-site correlation energy is to de-
velop a correlated state where certain Majorana corn-
ponents of the f state are absent. Remarkably, the opera-
tor that projects out the zeroth component at wave vec-
tor K

Our paper has presented a "toy" realization of odd-
frequency pairing, with the aim of elucidating its key
properties. In this section, we discuss the odd-frequency
state in a more general setting and examine the possibility
that this kind of paired state might be applicable to heavy
fermions.

One of the most dramatic features of the theory is the
projective character of the resonant pairing self-energy:

p2
X(co)= P,

(8.1)
P= —,'[(3)—d,bo'~ ] .

f (tc)= —[z f(tc)+f (
—tc)z]

1

is a one-particle operator

p„=f, [tc)f, [
—tc] = '9'„[1+d,bcr, 3—rb ]7„,

where d,b= ,'Z o,~bZ—,

10 2Z

(8.7)

(8.8)

(8.9)

Ht =
—,
' U(n —1)2 (8.2)

at each magnetic site. Highly correlated states minimize
this on-site interaction energy, tending to produce local
moment states where n =1. It is quite useful to examine
this constraint in terms of the correlations between the

Can we understand this feature in a more general con-
text, outside the restrictive realm of the Kondo model,
and our Majorana treatment? Let us consider the possi-
ble extension of our odd-paired state within an Anderson
model for heavy fermions, with an on-site repulsion term

i cr zf *, —
Kf

f.t
(8.10)

P„= g f, [ ~]f,[a]=1 —p„=V—tPV„. .

j =1,3

The Majorana character of this operator implies that it is
antisymmetric

are the Balian-Werthamer four spinors for the f state and
z spinor. The residual "vector" (1,2,3) components of the

f states are projected out by the one-particle operator
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K (8.12)

The self-energy term that will selectively decouple Ma-
jorana components of the f electrons will have the gen-
eral form

X(~)=b,(a)P,

Sl =g Pt(z)X(~)V(~)=g b, (a.)P„ .
K K

Since P„is an odd function of ~, it follows that

h(~)= —6( —~) .

(8.13)

(8.14)

If the physics is local in time, then the frequency depen-
dence of b, (a.} can be dropped, leading to p-wave triplet
pairing. However, if the momentum dependence of h(~)
is even, the frequency dependence is automatically odd,
leading to odd-frequency pairing. In the simplest s-wave
version of this pairing, the physics is spatially local, so
that h(x)=h(co). This establishes an intimate connec-
tion between the projection of Majorana degrees of free-
dom from the ground state and the development of nodes
in the wave function: when the physics is local, this pro-
jection results in a node in time, and the development of
odd-frequency pairing.

A general spectral decomposition of h(co) will always
contain a zero-frequency pole

Z + f dv A (v)
co —v

—Im[b(a) —i5) ]=Z5(ro)+ A (co) .1
(8.15}

This pole is a unique feature of odd-frequency pairing: it
suppresses the "vector" components of the f electron
from the low-energy excitations, gaining correlation ener-

gy and decoupling a band of gapless singlet excitations.
Our simple mean-field theory can be viewed as a dom-
inant pole approximation to the pairing field. A pressing
need for the near future is to show that such general con-
structions can lead to stable Eliashberg-type treatments
of more general models, such as the finite-U Anderson
lattice.

In its current form, our prototype for odd-frequency
pairing is too simplistic to account for details of heavy-
fermion behavior. We should like to list some important
issues which need to be addressed in future developments.

(1) Magnetism. The toy model has shown that odd-
frequency pairing has a propensity to coexist with magne-
tism. A more realistic model will need to take explicit ac-
count of the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interactions and their role in establishing the detailed su-
perconducting order.

(2) Normal phase. The normal phase of heavy-fermion
superconductors, with its profusion of Fermi-liquid
features, does not appear in the toy model. The Majora-
na formalism may be a poor starting point to recover the
normal phase properties, and this suggests that we should
seek a way to obtain the odd-frequency paired state
within perturbation theory for the finite-U Anderson
model, or perhaps the large-N approach to the heavy-

pgf 3 (8.16)
1,

Then the anisotropy plays a vital role in establishing the
topological stability of persistent currents. Unlike a con-
ventional superconductor, the supercurrent is linked to
the spin order and involves all three Euler angles of the
order parameter. To see this, it is instructive to consider
a loop of superconductor of length L, threaded by a
solenoid. The supercurrent around the loop is given by

2e 2ej,= p, co3 — A

co3 =VP+ cos8VQ,
(8.17)

where ($,8, $) are the Euler angles defining the orienta-
tion of the triad d,b. Notice that, unlike a conventional
superconductor, the supercurrent involves both the U(1)
phase P and the orientation of the magnetic vector d,
defined by (8,g}. For a conventional superconductor the
total phase change around the loop is a topological in-
variant

bP= fdr. V$=2nn (8.18)

that is unchanged upon application of a flux through the
solenoid, leading to a linear relation j,= (4n e/—
hL)p, (4/4, ) between the enclosed flux 4 and the super-

fermion problem.
(3) Anisotropy. Measurements of the gap and ul-

trasound absorption ' ' in UPt3 show the presence of an-
isotropy in the order parameter and have been tradition-
ally interpreted within a d-wave pairing scenario. These
results do not reveal the temporal parity of the paired
state, but tend to reinforce the conclusion that momen-
tum anisotropy can not be ignored in a more advanced
version of the model. Indeed, there is no reason not to
contemplate the possibility of odd-frequency d-wave pair-
ing.

(4) Power laws. Power laws in the temperature depen-
dence of the specific heat and NMR relaxation rate of
heavy-fermion compounds develop much closer to T,
than any simple mean-field theory can account for. One
possibility is that dynamic pair-breaking effects have
suppressed T, significantly below the gap. Odd-
frequency pairing accounts for the finite linear specific
heats in heavy-fermion superconductors in terms of a
band of excitations with vanishing coherence factors. At
present, the toy model is unable to account for the T~

term in C~ that is also seen. Fluctuation effects need to
be examined carefully.

We should like to spend a moment discussing the
long-wavelength properties of odd-frequency triplet
paired states. The intimate relation between spin and
pair degrees of freedom in this kind of state leads to rath-
er interesting consequences in the Landau-Ginzburg
theory. Suppose one considers the simple long-
wavelength action discussed in Sec. V A:

'2
g2F=—f d x pq(VR') +p, ri)3 A—+

0
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current density j,. In this superconductor, the analogous
integral around the current loop is

bP= fdr [VP+cosBVQ)=2mn+f}, .

The second term

(8.19)

0= Jdr [cosBVQ]= J dS (e,bV, A XV„h) (8.20)

is the solid angle subtended by the & vector around the
loop: this is not an invariant, and can change by multi-
ples of 4n to relax the current. Unlike the U(1) supercon-
ductor, the only stable vortex configuration involves a net
phase change of 2~ around the loop: this is the so-called
"Z~" vortex of an SO(3} order parameter, and it has the
property that two such vortices can be adiabatically de-
formed back to the vacuum (Fig. 12). Each Z2 vortex
pair reduces the effective flux through the solenoid by
two flux quanta, thus the nonlinear current will be given
by

2e 4j = p, 2m —4mnz
0

(8.21)

where the number of Z2 vortex pairs is

1
nz =Int +—

0
(8.22)

e= (Ze/4) h,y

-dE/

E(e)

o & z

@I@,= h(t} i 2z

FIG. 12. Illustrating the energy dependence on the flux
through a ring of odd-frequency triplet superconductor (no spin
anisotropy). The phase P displayed here refers to the phase of
the charge 2e composite order parameter
gJKs(x) =(r (x)Ss(x) ). When the flux through the loop
exceeds one flux quantum, the system can relax the energy and
supercurrent by rotating the axes of the order parameter into
the third dimension, creating two Z2 antivortices. This reduces
the efFective flux through the ring by two lux quanta, changing
the sign of the supercurrent J= BE/BP and produc—ing a
sawtooth dependence of current on flux. The ground-state ener-

gy is a periodic, rather than a quadratic function of the applied
flux. A macroscopic Meissner current cannot develop in
response to the flux threading the loop unless spin anisotropy is
added to prevent the rotation of the order parameter into the
third dimension.

where Int(x) denotes the largest integer smaller than x.
In this way, the current density around the loop can nev-
er exceed

(2m. }
jo ~@ PS

0
(8.23)

and will never become macroscopic. Thus, without an-
isotropy, the critical current for the odd-frequency state
is zero. Furthermore, if the flux through the solenoid is
4= f V(t)dt, then the response to an oscillatory electric
field will not occur at the driving frequency. This will
eliminate the low-frequency linear Meissner response to
macroscopic fields, removing the pole in the optical con-
ductivity and producing an apparent Uiolation of the
linear response optical sum rule. This type of behavior is
most likely to occur in the vicinity of particle-hole sym-
metry, and suggests that this half-filled state will more
closely resemble an insulator, rather than a superconduc-
tor. This may be an interesting way of thinking about
Kondo insulators, where an anomalous reduction in the
low-frequency oscillator strength of the optical conduc-
tivity has recently been reported. As anisotropy is in-
creased, a macroscopic free-energy barrier will have to be
crossed in order to add pairs of Z2 vortices to the super-
conducting state, restoring the linear Meissner response.
This will lead to a nontrivial dependence of the critical
current on anisotropy.

Pending further theoretical work, it appears that there
may be some useful experiments on heavy-fermion super-
conductors that could help to compare the d-wave and
odd-frequency scenarios. Two key predictions can be
verified.

(1) The predicted absence of a Korringa term in the re-
laxation rate at nonactinide/rare-earth nuclei, even in
severely gapless heavy-fermion superconductors. This re-
quires careful measurements of the relaxation rate and
specific heat on the same samples.

(2} The appearance of a sharp gap in the f-spin excita-
tion spectrum, which should manifest itself by an ex-
ponential reduction in the NMR linewidth of the actinide
or rare-earth nuclei at low temperatures. This feature
should make it possible to resolve the NMR line at the
heavy-fermion site in the superconducting phase.

Another area of fruitful investigation concerns the field
dependence of the proximity effect. Negative proximity
effects have been observed between UBe» and Ta super-
conductors. If the symmetry of heavy-fermion super-
conductors has a different temporal parity, then we ex-
pect the application of a magnetic field to enhance the
coupling between the two order parameters, leading to a
strong reduction of the negative proximity e8'ect in a
field, and a strong field dependence of the Josephson
current.

In conclusion, we have presented a stable realization of
odd-frequency triplet pairing in a Kondo lattice model
for heavy fermions. Under rather general conditions, the
odd-frequency state that forms has a gapless singlet mode
of quasiparticles. Spin and charge coherence factors for
these quasiparticles grow linearly in their energy. Our
pairing hypothesis provides an alternative explanation of
various power laws in heavy fermions in terms of a van-
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APPENDIX A:
MA JORANA REPRESENTATION OF SPINS

In this section, we present a derivation of the Majorana
representation that provides a link with the Abrikosov
fermion representation and illustrates how the constraint
is avoided by the uniform replication of the spin Hilbert
space. We begin by noting that for any two-component
electron spinor there are two operators of interest: the
"spin"

s=f.
2 fp
CT

ap
(A 1)

ishing of coherence factors at the Fermi energy, rather
than a vanishing of the density of states. We have conjec-
tured that this may explain the absence of a Korringa law
in the NMR relaxation rate, even when the superconduc-
tor is highly gapless. Odd-frequency triplet superconduc-
tivity appears to be able to coexist with magnetism, and
in our simple toy model, ferromagnetic order coexists
with the pairing. We think our results are encouraging
enough to prompt efforts to develop a description of
odd-frequency pairing within more general models, and
to consider seriously the possibility that this provides a
viable alternative to the d-wave pairing hypothesis in
heavy-fermion superconductors.

Z =Tr +Pi exp( PH [Si]) (gj =s 'r)
J

(A6)

with

i J 2 JP i 2 JP '
ap ap

(A7)

where the projection operator Pj projects the "spin" or
"isospin" component of the Fock space at site j

P'=(n —1),
P,'=(n t n—g},

P$+P'-=1 .J J (A8)

There are then 2 ways of choosing the projection opera-
tors: each choice projects a replica of the spin Hilbert
space with precisely the same partition function. Sum-
ming over all replicas we can write

g Tr gP, 'exp( —PH[S ]}
g ~ =$,7 j

The sum over all 2 projectors is the identity operator

gP '=g[P'+P']=1
q ~ =$)7 J

(A10)

and hence the replicated partition function can be written
as an unconstrained trace, with each local moment
represented as a sum of the Pauli spin and isospin:

Z = Tr[exp( PH [SJ ])]—.1

2N
(Al 1)

We now demonstrate that the combined operator
S=s+~ depends only on three Majorana components of
the f electron. Suppose we decompose the complex Fer-
mi operators into their real and imaginary Majorana
components as follows:

and the "isospin"

(A2)

01
fj = (g, +irr. ri)z, , z, =

&2 (A12)
l

In terms of these components, the "spin" and "isospin"
operators are

where we have introduced the Nambu spinor

ft
(A3)

I — 0 f ] l Pf
J 1

(A13)

[s, ,s ]=is'i s„, [r, ,r ]=is'J"r„. (A4)

These operators are independent [s„rb]=0 and each
satisfy an SU(2) algebra

The sum of these two is then

~Ilm l m
j j (A14)

In the subspace ~here the spin is 6nite, the isospin is
zero, and vice versa. The sum of both operators

S=s+~ (AS}

satisfies an SU(2) algebra, and is either equal to the
"spin" or "isospin, " depending on which component of
the Fock space is projected. For any interacting system
of electrons containing N local moments, we may write
the partition function as a constrained trace

a& = (ri; i g ) (A, =—1,2, . . . , N/2),1
(A15)

which is precisely our Majorana representation. With
this choice of z, the zeroth component of the Majorana
fermions at each site does not enter into the Hamiltonian.
This component can therefore be explicitly traced out of
the partition function. Formally, this may be done by
pairing the zeroth Majorana fermions throughout the lat-
tice
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where each site I belongs to one pair: I E I (i z,j z ), A,

=1,NI. The set of N/2 complex fermions are indepen-
dent and form a completely decoupled zero energy Fock
space of dimension 2 . Hence

1 1Z= Tr exp pH—S ~——rl Xg2x j2 J 2 J J (A16)

where the remaining unconstrained trace is over the
/ =1,2, 3 components of each Majorana fermion, and the
other real electron states of the system.

The overcompleteness of our representation is closely
related to a residual discrete local Z2 symmetry of the
Majorana spin representation under the transformation

QJ 9J (A17)

In this respect, the Majorana representation is similar to
the pseudofermion representation. However, in this case,
the canonical and grand-canonical ensembles have pre-
cisely the same partition function, up to a simple normal-
ization factor. In the pseudofermion representation, the
Gibbs partition function for each conserved subspace is
not constant (for if n =0 or n. =2 there is no spin at site

j), and the projection of the unwanted spaces is an una-
voidable necessity.

Majorana fermions are easily treated in a momentum
space representation. The Fourier-transformed operators

ik.R,.ge
1

(A18)

I /k~ 1k' I ~a, b~k, k' ~

Since the original Majorana fermions are real g'=g',
their complex Fourier transforms satisfy gk= g"k, form-

ing a set of independent complex fermions that span half
of the Brillouin zone:

APPENDIX B:
SOME SIMPLE EXAMPLES

In this appendix, we illustrate the use of the Majorana
fermion representation of spin —,', by means of some

specific examples. Consider first the Heisenberg model
for two spins —,

' (where we take the exchange coupling to
be 1), written in terms of the Majorana fermions

H=S, Sq= —,'[(g, .g~) + —,
' j . (81)

One can now define three complex fermions, by taking
appropriate linear combinations of the six Majorana fer-
mions

1f—= —(r/] ill—p),V'2

1f —= —(rl)+ipse) .
v'2

(82)

These operators satisfy the usual fermionic anticommuta-
tion algebra

I f',fj
I =5; (i,j =1,3) (83)

and act on a Hilbert space of dimension 2 =8. As point-
ed out in the first section, the dimensionality of the origi-
nal space has been increased by a factor of 2' '=2,
where %=2 is the number of spins.

By using

—ill.g2= f~. f—
—,', (84)

H= ,
' I (ft f——',—)— (85)

The spectrum can now be easily worked out

one can now write the Hamiltonian in terms of the f
operators

k, k'Ehalf the 8rillouin zone . (A19)
3

(86)

The inverse transformation can be written

1 ik.R.
y

—ik R.
'+eke

kE I/2 BZ
(A20)

gk B,gk+&
kE- I/2 BZ

(A21)

or in terms of the original site representation

The corresponding Lagrangian for the Majorana is then

The first level is doubly degenerate and the second one is
sixfold degenerate. The exact eigenenergies are correctly
obtained, as expected. Besides, the singlet ground state
and the triplet excited state are replicated by the same
factor of 2. This additional degeneracy ean be traced
back to the invariance of the Majorana representation
with respect to the Z2 transformations g, ~—g;, which

is rejected in a particle-hole syrnrnetry of the Hamiltoni-
anf —+f .

A mean-field treatment of this model can be performed
by the following decoupling procedure:

X=—gg, .B,g, +& .1
(A22)

Note that for each momentum k, we can choose either gk
or g k=gk as the independent destruction operator.
This has an important consequence for broken symmetry
solutions, for there are 2 equivalent ways of making
the choice of the vacuum state: by making one particular
choice, the normalization constant in front of the parti-
tion function is absorbed.

V2=—' —V( f f——')+
8 2

(87)

A static order parameter V breaks the aforementioned

Z2 symmetry and there are two stable solutions related to
each other by the transformation

V~ —V, f—+f (BS)
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If V is positive, the ground state corresponds to
ft f——', = V =—', and its energy is —

—,', which is the exact
value.

Consider now the one-dimensional XY model, which
can be solved exactly through a mapping to a free-
fermion model. This mapping is conventionally per-
formed by means of a Jordan-Wigner transformation. It
will now be shown that an analogous mapping can be
achieved through the Majorana representation of spins.

The 1D XYmodel Hamiltonian is given by
Jll'

(Si Si+1+SiSi+1)
i=1

JV
(Si Si+1+Si Si+1)+ — — + (89}

i=1

In terms of the Majorana fermions, one can write

U' =P'+&2P' v]' = U',
(816)

UiUit Ui)Ui pi2+2 i2pi2 pi +pI0 73 1 0 1

One can now easily prove that

I t
U'(t}'c't) U't=

V'2 '

I

U'( ' ', )U"= ' (817)

The canonical transformation generated by U' transforms
away the third Majorana component.

Let U be the ordered product

are projectors onto the vacant and occupied states of site
i. The operator U' is both Hermitian and unitary

S+ —=S„'+iSy=t)3(g'1+it}2),

Sl —Si gSl (riI i7}l )t}l
(810)

JV
U—= II U'. (818}

At each site one can define a complex fermion

1c'—= (t},—it}2},
2

1c' —= (ri1+i1}2},
2

(811}

Under the action of U, the transformed operator now ac-
quires a nonlocal phase factor

i 1

U(g,c")U'= II UJ(q,c")II U"
j=1 k=i

satisfying
= IIU' II U"

k=i —1

Ic'c"l=~;, ("nA=0 Ic'~&1=0.
The Hamiltonian can now be written as

(812)
gi —1„~if

(819)

JV

y (Cit~i ~i+1cl+1+Clgl gl+1cl+ lt)
i=1

Let U' be an operator acting on site i

(813} where n =cJtc J, and, in the last step, use has been made
of

UJ(c' )UJ=C' (P$ &2'(P~ )(Pt—i+W2riIiP~ )

U' =P11 +~2''3P I—, (814} =c' ( —1) ' (iAj) . (820)
where

(815)
Using relation (819) and its complex conjugate, one

can transform the Hamiltonian into

H~) = UH~yU
JV

y ( U lt i UtU i+1 i+ Ut+ U UtU i +lci+1'tUt)

it i+1( 1) i+ lci+1t'( 1) i)
2

JV

(
it i+1 ici+ lt)

2 '
1

(821)

which is the usual free-fermion expression obtained by the Jordan-Wigner transformation. The third Majorana com-
ponents have been transformed out of the problem. Tracing over these variables will cancel out the overall factor of
2 and one is left with a free-fermion theory.
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