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Monte Carlo analysis of an interatomic potential for He

J. Boronat and J. Casulleras

{Received 13 August 1993)

By means of a quadratic diffusion Monte Carlo method we have performed a comparative analysis be-

tween the Aziz potential and a revised version of it. The results demonstrate that the revised version

produces a better description of the equation of state for liquid He. In spite of the improvement in the

description of derivative magnitudes of the energy, as the pressure or the compressibility, the energy per
particle which comes from this revised potential is lower than the experimental one. The inclusion of
three-body interactions, which give a repulsive contribution to the potential energy, makes it feasible
that the calculated energy comes close to the experimental result.

I. INTRODUCTION

Many-body techniques have achieved a high level of
accuracy in the description of atomic He and He, which
constitute the most characteristic examples of quantum
liquids. The theoretical approaches to the many-body
problem can be classified in two large blocks depending
on the use or nonuse of stochastic procedures. Among
the nonstochastic methods it is the variational frame-
work' combined with integral equations such as the
hypernetted-chain (HNC), which has provided the best
results for the ground state. Also, perturbation schemes
constructed on [correlated basis (correlated basis function
(CBF) theory ] has led one to extend this study to the
lowest excited states. On the other hand, Monte Carlo
(MC) methods give exact information, within some sta-
tistical uncertainties, on the ground state of bosonic sys-
tems both at zero and finite temperature. The initial con-
straint imposed by the use of a finite number of particles
in MC simulations does not inhuence appreciably to the
energetic properties. However, the structure properties
at r~ ~ (k —+0) related to long-range correlations are
out of scope.

The high agreement between the theoretical results and
the experimental data is also linked to the well-known in-
teratomic interaction for He atoms (pairwise additive
form). For the last ten years, the HFDHE2 potential
proposed by Aziz et al. has allowed for reproducing the
energetic and structure properties of liquid He quite well
both in homogeneous and inhomogeneous phases.
Despite the accuracy of this pair potential a renewed ver-
sion of it (HFD-B(HE) ) was published by Aziz et al. in
1987. The revised Aziz potential (hereafter referred to
as Aziz II potential) was brought about as a consequence
of several new theoretical and experimental results,
which appeared in the literature between the publication
of the two potentials. First, Ceperley and Partridge'
pointed out by means of a quantum Monte Carlo calcula-
tion of the interaction energy of two He atoms, with in-
ternuclear separations less than 1.8 A, that the Aziz po-
tential is too repulsive below this distance. On the other
hand, new experimental measurements of the second viri-
al coe%cients and transport properties for He and He
showed evidence of some smal1 inconsistencies of the

Aziz potential. The explicit expressions of the Aziz and
Aziz II potentials appear in Appendix A. Apart from a
soft core, the Aziz II potential has its minimum at
m=10.95 K, r =2.963 A, while Aziz potential has its
minimum at c.=10.80 K, r =2.967 A. Therefore, the
new potential is only slightly deeper with the minimum
localized at a lower interatomic separation.

To start on a theoretical comparative study between
He potentials it is necessary to calculate the properties of
the liquid as precisely as it is possible. Stochastic
methods provide the appropriate tools for this purpose,
especially in the case of bosonic systems as He. In the
past, the Green's function Monte Carlo method (GFMC)
was used to elucidate between difFerent models for the
pair interaction. The main conclusion of this analysis
stated that the Aziz potential was the best interaction to
study the properties of liquid and solid helium.

Our objective in the present work is to perform a com-
parative analysis between the two Aziz potentials to es-
tablish if the revised potential (Aziz II) produces even
better results than the previous one. The calculation
presented here follows an alternative procedure to
GFMC known as diffusion Monte Carlo (DMC).

Both GFMC, developed by Kalos and co-workers, "'
and DMC algorithms' ' solve stochastically the
Schrodinger equation in imaginary time. The GFMC
scheme constructs a time-integrated Green's function by
means of a double Monte Carlo sampling. On the other
hand, the DMC algorithm is a simpler method that as-
sumes an approximate form for the Green's function for
small time steps ht. In this case, after an iterative pro-
cess and. sufficiently long times, only the ground-state
wave function survives. Therefore, the exact energy per
particle of the system is obtained when the limit b t ~0 is
considered. DMC is posterior to CxFMC, but up to now
it has already been applied to the study of small mole-
eules, ' solid hydrogen, ' or He clusters. The main
disadvantage of the DMC algorithms used in the major
part of those works is that the energy eigenvalues change
linearly with ht. This fact obliges one to perform several
calculations using different values for the time step and
next to extrapolate the exact value in the limit At~0.
To avoid this difBculty several quadratic algorithms have
been devised, but the success of this improvement has not
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been complete. Recently, a new quadratic diffusion
Monte Carlo (QDMC} method' has proved to work
efBciently in the description of He droplets. In the
present work, we use a QDMC method with a very simi-
lar algorithm to the one reported in Ref. 16. In the next
sections of the article we will justify the accuracy of the
proposed method, which allows for the possibility of cal-
culating the properties of the system at a finite time-step
without introducing any significant difference with the
extrapolated value.

The outline of this paper is as follows: In Sec. II the
quadratic diffusion Monte Carlo method to solve the
Schrodinger equation is presented. The consistency of
the algorithm is checked by using different trial functions
and several numbers of particles. The time-step depen-
dence of the energy per particle shows the expected quad-
ratic behavior. A comparative analysis of the two Aziz
potentials is reported in Sec. III. A perturbative estima-
tion of the contributions coming from various three-body
potentials is also reported. A brief discussion and con-
clusions comprise Sec. IV.

In a computer simulation of Eq. (1) it is crucial to use
the importance sampling technique' in order to reduce
the statistical fluctuations to a manageable level. Follow-
ing this method, one rewrites the Schrodinger equation
for the function:

f (R, t) =—g(R)%(R, t),
where P(R) is a time-independent trial function. Consid-
er a Hamiltonian of the form

H =— V„+V(R),
2m

Eq. (1) turns out to be

= —D V„f (R, t) +D Vtt(F(R)f (R, t) )

+[EL(R)—E]f(R, t)

—= (A )+ A2+ A3}f(R, t) = Af (R, t),
where D =Pi /(2m), EL(R)=g(R) 'Hg(R) is the local
energy, and

II. COMPUTATIONAL ALGORITHM F(R)=2/(R) 'Vag(R) (6)

The starting point in difFusion Monte Carlo methods is
the Schrodinger equation for N particles written in imagi-
nary time:

Be(R t)
( )y(R )

is called the drift force. F(R) acts as an external force
which guides the difFusion process, involved by the first
term in Eq. (5), to regions where f(R) is large.

The formal solution of Eq. (5) is

where R=—(r„.. . , rz) and t is measured in units of A'.

%(R, t) can be expanded in terms of a complete set of
eigenfunctions P, (R) of the Hamiltonian:

f (R', t +Et)=IG(R', R, ht)f (R, t)dR

with

G (R', R,ht) = ( R'~exp( —A b t) ~R) .

(7)

(8)

%(R, t)= g c„exp[ (E; —E)t]P—;(R), (2)

where E; is the eigenvalue associated to P;(R). The
asymptotic solution of Eq. (1) for any value E close to the
energy of the ground state and for long times (t ~ ~ )

gives $0(R), provided that there is a nonzero overlap be-
tween %(R, t=O) and the ground-state wave function

y,(R}.

While GFMC method works with the whole Green's
function, DMC algorithms rely on reasonable approxima-
tions of 6 (R', R, b t) for small values of the time step ht
Then, Eq. (8) is not directly solved but iterated repeatedly
to obtain the asymptotic solution f (R, t ~ 00 ).

In the quadratic diffusion Monte Carlo algorithm we
have used, the Green's function G(R', R, ht) is approxi-
mated by

ht ht b, t ht
exp( —Aht)=exp —A3 exp —Az exp( —A&bt)exp —Az exp —A3

This decomposition, which is not unique, ' is exact up to order (b, t) Assuming (9)., Eq. (7) becomes

f(R', t+At)= G3 R', R), G2 R(, R~, G, (R2,R3,bt)At

I

XG2 R3 R4 G3 R~ R f(R t)dR~ dR4dR
ht ht

(10)

with

G, (R', R, t) =(4m.Dt) ~ exp
(R' —R)

4Dt
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R(0)=R
G2(R', R, t) =5(R' —R(t)), where

=DF(R(t) ),
dt

(12}

and

(n„)=exp b,r—EL (R')+El (R) —E
2

(5) Go to step (1) for the next walker R, , until the set of
walkers is exhausted. The new set obtained corresponds
to f (R, t+bt).

The whole procedure is repeated as many times as is
needed to reach the asymptotic limit ( t ~ ~ ). From then
on, the walkers R; are used to obtain the expectation
values of the magnitudes to be determined.

In order to establish the preciseness of the method
several aspects have to be considered. First, the mixed
estimator for the expectation value of an operator A, i.e.,
(g~ A~%'), only gives the exact result when A commutes
with the Hamiltonian. To obtain the expectation value of
an operator, which does not commute with H, we can use
a linear extrapolation"

&q ~A q &=2&l(~A~q &
—&q~A~q& . (14)

This simple perturbative method involves the perfor-
mance of a variational Monte Carlo (VMC) calculation to

G3(R', R, t)=exp[ —(EL(R)—E)t]6(R' —R} . (13)

In our Monte Carlo computations, f (R, t) is represent-
ed by n walkers R;, each one representing a set of the
3N coordinates of the N particles. The algorithm used
for the implementation of Eq. (10) goes through the fol-
lowing steps.

(1) Move the walkers, under the drift force F(R), dur-
ing an interval At 12 with accuracy (b, t) .

(2) Apply to each walker a displacement y randomly
drawn from the 3N Gaussian distribution
exp[ y l(4D —b, t) ].

(3) Repeat step (1).
(4) Randomly replicate each walker n„ times, in such a

way that

determine the variational expectation value (g~ A ~/). It
is interesting to notice that a VMC calculation can be
carried out with the same algorithm described for DMC
only suppressing the branching term (13).

In Table I, the results for the potential, kinetic and to-
tal energies per particle obtained with VMC and QDMC
methods are shown together with a GFMC result. They
correspond to an Aziz potential calculation with N=128
at density p=0. 365o (cr=2.556 A). The trial wave
functions pz and lt J contain different two-body correla-

I 2

tion factors, and fzT includes also three-body correla-
tions. Explicit expressions of these trial functions, to-
gether with the values of the parameters involved in
them, are given in Appendix B.

As it is shown in Table I, there are not significative
discrepancies between the QDMC results for the total en-

ergy. The perfect agreement between the QDMC results
and the GFMC value is also remarkable. Equation (14) is
used to estimate the kinetic and potential contributions
to the total energy. In spite of its simplicity, this method
gives very similar values for the partial energies even
when trial wave functions as different as the ones report-
ed in Table I are used as importance sampling. New
methods to avoid the slight inhuence of the trial wave
function in the extrapolated estimators have been recent-
ly suggested by Barnett, Reynolds, and Lester' and
Zhang and Kalos. '

The effect of a finite volume simulation box has also
been considered, raising the number of particles N from
N= 128 (which has been used for the bulk of the calcula-
tion) up to N=190 for l(tz2 and p=0.365 cr . The
differences encountered were compatible with the size of
the statistical fluctuations reported in Table I.

Another important parameter in the calculation is the
population of walkers n . All the results reported in the
present work have been obtained after a preliminary
analysis of the inhuence of the population in the average
energy of the system, and the final results correspond to

TABLE I. Results for the total, kinetic and potential energies for different trial wave functions. The
forms of QJ„/zan, nd QJT, as well as the values of the parameters entering into them, are noted explicitly
in Appendix B. In the last row, the GFMC results from Refs. 5 and 27 are also reported. All energies
are in degrees kelvin per particle.

VMC QJ,
VMC Q~~

VMC l(~T
QDMC QJ,
QDMC g~~
QDMC Q~T
GFMC

'Reference 5.
"Reference 2'7.

E/N
—5.683+0.014
—5.881+0.005
—6.617+0.007
—7.115+0.010
—7.121+0.010
—7.125+0.005
—7.120+0.024'

T/N

15.119+0.005
15.248+0.004
14.552+0.030
14.589+0.020
14.576+0.025
14.417+0.030
14.47+0.09"

V/N

—20.802+0.009
—21.129+0.007
—21.169+0.018
—21.704+0.020
—21.697+0.023
—21.542+0.020
—21.59+0.09
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the empirical asymptotic value of n . This asymptotic
population decreases when one improves the quality of
the trial wave function g. In fact, whereas n =400 for

gz, and QJ2 this value is reduced to n =250 in the /AT
case. Actually, we have developed a parallel QDMC
code based on the equal role played by the different walk-
ers. The calculation has been carried out on a massively
parallel computer CM2, which best performance is ob-
tained when a large number of walkers is considered.
The length of the series have been 12000—15 000 for fz,
and fez and 8000 10—000 for Pz&.

A final but not less important point is the time-step
dependence of the QDMC algorithm. In Fig. 1 it is
shown a characteristic result of the total energy as a func-
tion of the time step ht. The time t is measured in re-
duced units ~, where

me
2

(15)

As one can see in the figure, there is a clear departure
from the linear time dependence supplied by the linear
DMC algorithms. If a second-order polynomial fit

E/N =(E/N)o+ A (b,t) (solid line in the figure) to the
QDMC results is performed, one obtains an extrapolated
value of (E/N)o=( —7. 124+0.003) K, which is indistin-
guishable from the values obtained working with
ht =(1—2)X10 r Theref.ore, it is plausible to calcu-
late the properties of the system accurately using a single
value for ht, lying in the stated range, without the neces-
sity of a complete analysis in time to extrapolate the
correct results.

III. RESULTS

—6.9

—7.0

In this section the numerical results for the energy and
for the structure properties using the Aziz and Aziz II
potentials are presented. First, we analyze the differences
between the two interatomic potentials and then, the con-
tribution to the total energy of several models for the
three-body interactions. In all the calculations reported
below the trial function fz2 (see Appendix B) has been
used as importance sampling. The average population

size (n ) ranges froin 400, near the equilibrium density
(p=0.365o ), to 900 for the highest densities. On the
other hand, the value for the time step has been taken as
At=1.25X10 ~ around the equilibrium density and
At =1.0X10 ~ for higher densities. No significant de-
viations in the results of the energy are observed when
these ht values are doubled.

A. Two-body potentials: Aziz vs Aziz II

As it has been commented in the Introduction, the
differences between the Aziz and Aziz II potentials are
not very large. However, slight differences in the values
of the parameters entering into V(r) produce relatively
large changes in the energy as it was asserted by Kalos
et al. in their GFMC calculation of the equation of state
of liquid He using the Aziz potential. The energies ob-
tained for both potentials, together with the experimental
results of Ref. 19 are reported in Table II. In parenthesis
there are the GFMC results for the Aziz potential. The
GFMC and QDMC calculations are in good agreement,
but a small deviation between both results is obtained at
high densities. The kinetic and potential energies are also
given in the table. The potential energy has been calcu-
lated by means of the extrapolated estimator [Eq. (14)],
and the kinetic energy comes from the difference between
the total and the potential energies. A comparison be-
tween the partial energies of the two potentials reveals
that, while the kinetic energy is practically the same, the
Aziz II potential energy is, in absolute value, larger than
the Aziz one. In particular, the Aziz II potential lowers
the potential energy with respect to the Aziz case in a
quantity, which grows from -0.19 K at p=0.365 cr to
-0.23 K at the highest density p=0.490 0. . The par-
tial energies for both potentials satisfy the lower bound
for the kinetic energy and the upper bound for the poten-
tial energy (T/N ~ 13.4 K and V/N ~ —20.6 K, at the
equilibrium density).

Concerning the total energies, one can observe that the
experimental values are approximately located at the
middle of the Aziz and Aziz II results. This fact is clear
from Fig. 2, where the equation of state of liquid He is
shown in comparison with the experimental results. The
lines in the figure correspond to numerical fits to the re-
sults reported in Table II, excluding the highest density
(0.490 o ) because it is quite far from the experimental
freezing density PI=0.430 cr . In the majority of mi-
croscopic calculations on liquid He a polynomial fit of
the form

LIJ —7.1

'2 I 3.=. +a p" +Cp"
Po po

(16)

—7.2

at (~o '~)

FICi. 1. Time-step dependence in the QDMC method. The
solid line is a second-order polynomial 6t to the calculated
points.

where e =E/N and po is the equilibrium density, has
been used to determine the equation of state. On the oth-
er hand, in calculations based on density functional
theory the form

e =bp+cp'+&, (17)

proposed by Stringari and Treiner, ' has proved to be
very efBcient in describing properties of homogeneous
and inhomogeneous [including an additional surface term
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TABLE II. Results for the total and partial energies from the QDMC calculations with the Aziz potential, the Aziz II potential,
and experiment (Ref. 19). The numbers quoted in parentheses are taken from Ref. 5. All energies are in degrees kelvin per particle.

P(0 ') E/N
Aziz
T/N V/N E/N

Aziz II
T/N

Expt.
E/N

0.328

0.365

0.401

0.424
0.438

0.490

—6.988+0.013
( —7.034+0.037)
—7.121+0.010

( —7.120+0.024)
—6.892+0.013

( —6.894+0.048)
—6.696%0.024
—6.422+0.020

( —6.564+0.058)
—5.010+0.025

( —5.175%0.101)

12.107+0.018 —19.095+0.013 —7.150+0.010 12.152+0.032 —19.302+0.030

14.576+0.025 —21.697+0.023 —7.267+0.013 14.622+0.027 —21.889+0.024

17.262+0.030 —24.154+0.027 —7.150+0.016 17.302+0.038 —24.452+0.035

19.152+0.042
20.447+0.036

—25.848+0.035
—26.869+0.030

—6.877+0.022 19.218%0.037
—6.660+0.017 20.398+0.034

—26.095+0.030
—27.058%0.030

25.402+0.047 —30.412+0.040 —5.222+0.025 25.404+0.050 —30.626+0.043

—7.17

—7.03

—6.77
—6.55

in Eq. (17)] liquid He. In the case of the Aziz II poten-
tial both analytic forms are compatible with the results of
the energy, taking into account their respective errors.
However, we have checked that only the function (17)
provides the correct result for the energy when densities
lower than 0.328o. are considered. Therefore, al1 the
results presented below, concerning the equation of state,
are derived starting on the second option [Eq. (17)].

The values of the parameters which best fit our Aziz II
potential results are

The same analysis has been performed by taking the
energy results of the Aziz potential. In this case, neither
the polynomial form (16) nor Stringari s (17) are statisti-
cally compatible with our results. This fact is clearly
reflected in Fig. 2, where several Aziz points (the size of
each point is larger than its error bar) are not intersected
by the result of the flt (represented with a dashed line). In
spite of this severe restriction, and to make possible the
comparison with the equation of state provided by the
Aziz II potential, the optimum values

b =( —27.258+0.017)Krr

c =(114.95+0.22)Ko "+r',

y =2.7324+0.0020 .

(18)

b = (
—26.947+0.016)Ko.

c =(115.72+0.21)K o

y =2.7160+0.0020

(19)

—5.9

are taken.
We have also fitted the same type of function to the ex-

perirnental results of Ref. 19. In this case, the parameters
b and c have been fixed to reproduce the equilibrium den-
sity and the energy at this density, whereas the parameter
y has been obtained by means of a numerical fit to all the
energies reported in that work. The values obtained are

—6.7

—7.1

b = —26.746I( 0

y=2 7773 .

(20)

—7.5
0.31 0.34 0.37 0.40 0.43 0.46

Once the equation of state e(p } is known, it is straight-
forward to calculate the isothermal compressibility,
defined as

p (c' )

FIG. 2. Equation of state for liquid He. The circles are the
QDMC results with the Aziz potential and the dashed line is a
fit to the calculated energies. The solid circles correspond to
the QDMC energies with the Aziz II potential; the solid line is a
fit to these energies. These fits have been performed with Eq.
(17), the parameters being those given in (18) and (19) for the
Aziz II and Aziz potentials, respectively. The experimental
values, represented by solid triangles, are taken from Ref. 19.
The error bars of the QDMC results are smaller than the size of
the symbols.

Ir(p }=— ap (21)
as

where P(p) =p (Be/Bp) is the pressure, and the velocity
of sound given by

c(p) =
Pl KP

(22)

In Table III the results of the pressure, the compressibili-
ty and the velocity of sound of the two Aziz potentials
are compared with the corresponding experimental
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TABLE III. QDMC results for the pressure P, the compres-
sibility ~ and the velocity of sound c at the experimental equilib-
rium density using the Aziz and Aziz II potentials. The last
row contains the experimental values derived from the experi-
mental equation of state (20).

15

12—

P (atm) sc (atm ') c (m/s)

Aziz
Aziz II
Expt.

0.878+0.073 0.01199+0.00004
—0.01920.075 0.01241+0.00004

0 0.0124

241.53+0.44
237.40+0.46

237.2

6-

and its Fourier transform, the static structure function

S(k)=1+pfdre'"'[g(r} —1] (24)

25

20-

values at the experimental equilibrium density
(po"t"=0.3646o ). The accuracy provided by the Aziz
II potential is remarkable, giving results for these quanti-
ties which are indistinguishable from the experiment.
Conversely, the equation of state corresponding to the
Aziz potential supplies results which are slightly worse.
The differences between the equations of state for the two
potentials remain when the density increases, as one can
see for P (p) in Fig. 3 and for a(p }in Fig. 4. The equation
of state corresponding to the Aziz II potential gives an
excellent description of these magnitudes for all the
values of the density here considered.

Apart from the ground-state energy, the Monte Carlo
methods yield other interesting information. The radial
distribution function

3
0.35 0.37 0.39 0.43

FIG. 4. Isothermal compressibility of liquid He as a func-
tion of the density. The same notation as in Fig. 3.

are fundamental in the study of fluids. The calculation of
these quantities is more involved than the calculation of
the energy, " but the extrapolation procedure [Eq. (14)]
allows results which are practically independent of the
trial function used as importance sampling.

The radial distribution function g(r), obtained in an
Aziz II calculation at a density p=0. 365cr, is shown in
Fig. 5 in comparison with an experimental determination
at T=1.0 K by Svensson et al. There is a good agree-
ment between the calculated and the experimental g(r),
mainly in the first peak. In Fig. 6, the structure function
S(k}, obtained by means of a Fourier transform of the
g (r} shown in Fig. 5, is plotted together with the experi-
mental measure of Ref. 23. Due to the finite size of the
simulation box, there are not reliable results for S(k) for
k &1 A '. The theoretical S(k) is again very close to
the experimental result, but the height of the experimen-
tal main peak is slightly higher. On the other hand, other

15-
E
e

1.6

~ ~ ~ ~ IIe-~~ ~

0
0.35 0.37 0.39 0.41 0.43

0.8—
O)

0.4

FIG. 3. Pressure of liquid He as a function of the density.
The circles and solid circles correspond to QDMC calculations
with the Aziz and Aziz II potentials, respectively. The dashed
and solid lines are numerical Sts to the Aziz and Aziz II pres-
sures, respectively. The experimental results, from the experi-
mental equation of state (20), are represented by diamonds,
which are practically hidden below the Aziz II values. The er-
ror bars of the QDMC results are smaller than the size of the
symbols.

0.0
0.0 4.0 6.0 8.0 1 0.0

FIG. 5. Two-body radial distribution function at the experi-
mental equilibrium density. The solid line is the QDMC result
and the solid circles correspond to the neutron di8raction ex-
perimental determination from Ref. 23.
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by the QDMC code. The function p(r) is obtained as the
expectation value of the operator

1.2
4(r„.. . , r, +r, . . . , rz))~ ~ ~

~ ~

~ ~ ~

%(r), . . . , r~)
(27)

0.4

evaluated on the configuration space over a set of random
displacements of the particle i. The condensate fraction
no, i.e., the fraction of particles occupying the zero
momentum state, may be extracted from p(r) by means of
the asymptotic condition

no= lim p(r) .
p —+ 00

(28)

0.0
D.D 1.0 2.0

I

3.0

a(A ')
4.0 5.0 6.0

FIG. 6. Static structure function at the experimental equilib-
rium density. The solid line is the QDMC result, obtained by a
Fourier transform of the radial distribution function showed in
Fig. 5. The solid circles are the experimental determination
from Ref. 23.

and its Fourier transform, the momentum distribution

n (k) =(2m) pn&5(k)+p fdr e'"'[p(r) —p( ao )] (26)

can also be computed using the configurations generated

0.06

experimental determinations of S(k) (Ref. 24) point to
lower values of the intensity of the first peak, even below
our results. In fact, analysis of the in6uence of the tem-
perature T in S(k} (Refs. 24 and 25) indicate that the
largest variation of the structure function with T is
placed in the vicinity of the first peak.

The one-body density matrix p(r) defined as

O' K), . . . , r~ % I'), . . . , r~ @fry ' ' ' 6frN
p(r„}=N

J ~+(r, , . . . , r~)~ dr, drN

(25)

In Fig. 7 the momentum distribution obtained via Eq.
(26) is plotted, as kn (k), for three values of the density.
The correlations between the particles make the popula-
tion of states with high momenta increase with the densi-
ty. The shoulder observed at k=2 A ' for the three
curves, which has been observed in other theoretical cal-
culations of n(k}, ' has been attributed in the past to
the zero-point motion of the rotons. On the other
hand, it has been proved that if the condensate fraction is
nonzero, n (k) diverges as I/k when k ~0. s Again, the
finite value of the simulation cell precludes the possibility
of reproducing this behavior.

We have also determined the condensate fraction from
the extrapolated estimation of p(r) and the relation (28).
At the equilibrium density, we get no=0. 084+0.001,
which is a value slightly smaller than the one obtained in
a GFMC calculation (0.092+0.001) (Ref. 27} using the
Aziz potential. The discrepancy between the two results
are not due to the use of di8'erent potentials. In fact, we
have calculated p(r) for the two Aziz potentials and no
significant di6'erences appear. The same conclusion holds
for the radial distribution function g (r).

A final point of interest is the density dependence of
the condensate fraction. In Fig. 8, the change in the
value of no is shown for a wide range of densities. The
condensate fraction decreases with the density, following
a law nearly quadratic in p. In the figure, a quadratic fit

to the results is shown as a "guide to the eye."
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0.01

0.00
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

k(A ')

FIG. 7. Dependence of the calculated momentum distribu-
tion on density. The long-dashed, solid, and short-dashed lines
stand for the results at densities of 0.328o. , 0.365o. , and
0.401m, respectively.

B. Three-body interactions

The importance of three-body interactions in helium
has been discussed for a long time. It has been argued
that these interactions would be present in He but its rel-
ative contribution to the total energy is still open to ques-
tion. The most widely known model for the three-body
potential is the triple-dipole interaction derived by Axil-
rod and Teller considering perturbative theory. The
Axilrod-Teller (AT} potential, which has been usually
considered as the major contribution to the energy corn-
ing from the three-body interactions, provides a positive
correction to the potentia1 energy. The amount of this
e6'ect was calculated for the first time by Murphy and
Barker '

by means of a variational Monte Carlo calcula-
tion. Afterwards, that contribution was estimated by
Kalos and co-workers ' in a Rayleigh-Schrodinger per-
turbative calculation starting on GFMC configurations.
From this analysis it was pointed out that, on the one
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hand, the GFMC prediction for the expectation value of
the three-body potential ( V3) was in accordance with
the variational results of Murphy and Barker and, on the
other, there were no relevant differences between the re-
sults coming from a Lennard-Jones and an Aziz potential
calculations. Another conclusion of these GFMC works
was that the inclusion of three-body potential contribu-
tions on the total energy worsened the two-body results
along the whole equation of state.

In spite of the AT potential being the dominant contri-
bution to ( V3 ), it has been proved that at short interpar-
ticle separations a nonadditive and attractive force
emerges. This short-ranged three-body interaction, usu-

ally known as exchange interaction, is due to the
inhuence in the charge densities of two interacting atoms
by the presence of a third near particle. Bruch and
McGee (BM) proposed a model potential to account for
this effect, fitting the parameters of the exchange part to
the atomic calculations of the energy of three He atoms
at very short distances from Novaro and Beltran-
Lopez. Loubeyre has proved that the BM three-body
potential, in conjunction with the Aziz potential, accu-
rately describes solid helium at high pressures and room

FIG. 8. Condensate fraction in liquid "He as a function of
density. The solid line is a second-order polynomial fit to the
calculated values. The error bars of the results are smaller than
the size of the symbols.

temperature. The explicit forms for the AT and BM po-
tentials are given in Appendix A.

As has been previously discussed, the Aziz II results
for the energy per particle are below the experimental re-
sults for all the densities considered (see Fig. 2). There-
fore, the inclusion of a repulsive contribution to the po-
tential energy, arising from three-body interactions,
could bring the theoretical results nearer to the experi-
mental ones. In Table IV the results for the total (E/N)
and potential ( V/N) energies are reported in comparison
with the experimental values of the energy. In all cases,
the three-body potential energy is obtained by means of a
Rayleigh-Schrodinger perturbation calculation, following
the method described by Whitlock et al. As one can
see, the AT potential produces an increase in the energy,
leading to values which are slightly higher than the ex-
periment. Moreover, the difference between the Aziz
II+AT and experimental values increases appreciably
with the density, yielding to poor results for derivative
magnitudes of the energy as the pressure or the compres-
sibility. The results of the energy, using the BM poten-
tial, appear in the second column of Table IV. The ex-
change part of the BM potential practically cancels the
repulsive contribution of the dispersion term (AT)
becoming even dominant at the highest densities. The re-
sulting energies lie very near to the two-body calculation
but also in this case, as in the AT one, with a worsening
reproduction of the dependence of the energy with the
density. Therefore, neither the simple AT potential nor
the more elaborated one (BM) improve, in a significant
way, the Aziz II results. In fact, it seems more convinc-
ing that, in the density regime of liquid He, the main
three-body contribution comes from the AT potential,
the exchange part of the BM potential being too large.
We should notice that the parameters of the BM poten-
tial have been fitted to reproduce the energy of helium
trimers with interparticle separations considerably less
than the characteristic mean distance between the atoms
in the liquid. Then, it is uncertain that the same parame-
ters, or even the same analytical form, could be used to
study the liquid phase.

In the third column of Table IV, labeled as MBM, we
report the results which are obtained by using the BM
potential with a modified value 3'= A/3 (see Appendix
A). Now, the energy at the experimental equilibrium
density reproduces the experimental result and a quite

TABLE IV. Energies from the QDMC calculations with the Aziz II potential including the pertur-
bative estimation of the expectation value of several models for the three-body interactions (AT, BM,
and MBM; see text). The last column contains the experimental values. All energies are in degrees keI-
vin per particle.

p(o ')
Aziz II+AT

E/N V!N
Aziz II+BM

E/N V/N
Aziz II+MBM

E/N V/N
Expt.
E/N

0.328
0.365
0.401
0.424
0.438
0.490

—7.045
—7.127
—6.971
—6.668
—6.435
—4.913

—19.197
—21.749
—24.273
—25.886
—26.833
—30.317

—7.122
—7.249
—7.141
—6.886
—6.675
—5.323

—19.274
—21.871
—24.443
—26.104
—27.073
—30.727

—7.071
—7.168
—7.027
—6.741
—6.515
—5.050

—19.223
—21.790
—24.329
—25.959
—26.913
—30.454

—7.17
—7.03
—6.77
—6.55
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good description is also obtained at higher densities. In
Fig. 9, the equation of state obtained with the Aziz II-
MBM model is depicted together with the experimental
and the Aziz II results. The values of the parameters of
the fit for the Aziz II+MBM calculation are

25

20—

b = ( —27.202+0.017)Eo.
c =(114.11+0.21)Ko "+r',

y =2.6961+0.0020 .

15—
E

(29)
a 10-

The Aziz II+MBM results for the pressure and the
compressibility are plotted in Figs. 10 and 11, respective-
ly, in comparison with the experimental values. One can
observe that there are slight differences between the
theoretical and the experimental results, which are more
evident in the pressure case. In fact, these discrepancies
refiect the departure of the Aziz II+MBM total energies
from the experimental values when the density increases.
This small effect on the energy, which can be observed in
Fig. 9, is enlarged when the derivative magnitudes of the
energy as P (p) or a(p) are calculated.

0
0.35 0.37 0.39 0.43

FIG. 10. Pressure of liquid He as a function of the density.
The solid circles are the Aziz II+MBM results and the dia-
monds are the experimental values from the equation of state
(20). The solid line is a numerical fit to the data. The error bars
are smaller than the size of the symbols.

IV. DISCUSSION

The properties of bulk liquid He have been investigat-
ed by means of the diffusion Monte Carlo (DMC)
method. It has been proved that the extension of the
DMC algorithm up to second order (QDMC) allows for
the possibility of calculating the energy without the ex-
trapolation to Et=0, required in the linear DMC code.
We have applied the QDMC method in order to perform
a comparative analysis between the Aziz and the Aziz II
two-body potentials. The calculations have been extend-
ed to a wide range of densities in order to contrast the
theoretical predictions on the equation of state provided
by the two Aziz potentials. The results unambiguously

—6.3
15

—6.7

—7. 1

1

C)

I

0.34
—7.5

0.31 0.400.37 0.43 0.46

FIG. 9. Equation of state of liquid He. The circles are the
QDMC results with the Aziz II+MBM potentials; the solid line
is a 6t to these energies. The solid circles and the dashed line
correspond to the calculation with the Aziz II potential. The
solid triangles are the experimental values form Ref. 19. The er-
ror bars are smaller than the size of the symbols.

3
0.35 0.430.410.37 0.39

FIG. 11. Isothermal compressibility of liquid He as a func-
tion of the density. The same notation as in Fig. 10.

demonstrate that the new Aziz potential gives better re-
sults than the old one, especially when the dependence of
the pressure and the compressibility on the density is
considered. In particular, the Aziz II results for P(p)
and ~(p) are indistinguishable from the experimental
values. However, the results for the energy are below the
experimental determinations. This difference could sug-
gest the presence of three-body interactions in He.

We have performed a Rayleigh-Schrodinger perturba-
tive estimation of the three-body potential energy using
two different models. The results obtained have shown
that neither the triple-dipole potential of Axilrod-Teller
nor the Bruch-Mcoee potential, which includes the ex-
change interaction at short distances, improve the equa-
tion of state given by the Aziz II potential. To make the
three-body correction compatible with the experimental
results a simple change in the parameters entering into
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the BM potential has been examined (MBM potential).
The Aziz II+MBM model provides a good description of
the equation of state (E/N)(p), but the results for P(p)
and a(p) worsen with respect to the ones calculated with
the Aziz II only. On the other hand, we would point out
that the Aziz II results for the energy are shifted with
respect to the experiment in a constant value for all the
densities. This fact explains the excellent description of
P(p} and a(p) given by the new Aziz potential. The con-
clusion is that to account for the experimental energies, a
constant value for ( V3) would be required, although
from the theoretical point of view it seems more plausible
a correction which becomes larger when the density in-
creases.

Concerning other properties as the radial distribution
function or the momentum distribution, no significant
difFerences between the results given by the two Aziz po-
tentials are observed. Overall, the agreement between the
QDMC results and the experiment is quite satisfactory.
Finally, we would remark that the accuracy of the Aziz
II potential in describing the bulk He liquid phase makes
it recommendable for future calculations of the solid
phase or films, especially when the derivative magnitudes
of the energy are among the main objectives.

The HFD-B(HE) (Aziz II) potential, which is quite
similar in form to the Aziz potential, is given by

D = 1 ~ 4826 C&0 =0.174 733 18

a=10.433295 37, A =1.8443101X10

P= —2.27965105 .

(A6)

The models for the three-body interactions we have
used are those given by the Axilrod-Teller30 (AT) and
Brunch-McGee (BM) potentials. The form of the AT
potential is

V(r)=E A exp( —ax+px ) F—(x) g (C2.+6/x21+6)
j=o

(A5)

where the function F(x) and x are formally the same as
in the Aziz potential [Eqs. (A2) and (A3)]. The values of
the parameters for the Aziz II potential are

a=10.948 K, C6=1.36745214,

r =2.963 A, C8 = —0.42123807,
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where p„p2, and $3 are the interior angles of the triangle
formed by the three atoms. We use the Leonard's helium
value v=0. 327Ko (Ref. 35), assuming the radial dis-
tances r; in a. unities.

The BM potential is given by

APPENDIX A: TWO- AND THREE-BODY POTENTIALS

The form of the HFDHE2 (Aziz) potential is

2

V(r)=s A exp( ax) F(x) g—(C2J—+6/x ~+
)

j=0

V3( 12 13 23 }
V

3 3 3r (2r 13r23

—A exp[ —a( r,2+ r,3+ r23 ) j

X(1+3 cosp, cosp2 cosp3) (A8)

where
The values for the two new parameters appearing in the
BM potential are

D
exp — ——1F(x)=
1, x+D

2

x&D
(A2)

A =9676545.53 K, a=4.948o.

APPENDIX B: TRIAL FUNCTIONS

(A9)

with

r
X =

rm
(A3)

The values of the parameters for the Aziz potential are

In this appendix we give the explicit forms of the trial
functions used as importance sampling in the QDMC cal-
culations as well as the values of the parameters involved.
The first one is the well-known McMillan two-body trial
function

a=10.8 K, C6=1.3732412,

r~ =2.9673 A, C8 =0.425 378 5,
D = 1 ~ 241 314 C]0=0.1781

a=13.353 384 A =0.544 8504X10

(A4)

(Bl)

We have taken the value b =1.20cr, which optimizes the
VMC energy at the experimental equilibrium density.

Most of the present work has been carried out using
the Reatto two-body function
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1 b
Pz2= g exp

2 r;j

L——exp
2

2
rij

A

where

Gk X k("k! )rk!
1&k

(B2)

with L=0.2, A, =2.0o., A=0. 6o., and b =1.20o. . These
values, optimal at the experimental equilibrium density,
have also been used for the other densities.

The third trial function, which was proposed by
Schmidt et al. , contains two- and three-body correla-
tions. It is explicitly given by

and

g(r) =exp
2

(B&)

1 1
QJT $1& exP ——& P Gk Gk +—& P ('(r;, )r,

4 2

(B3)

The values for the triplet parameters, roughly optimal at
the equilibrium density, are A, = —1.08o. , r, =0.80cr,
and r„=0.41o..
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