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We investigate the magnetic properties of the Cu-0 planes in stoichiometric Sr„qCu„+~02„
(n = 3, 5, 7,...) which consist of CuO double chains periodically intergrown within the CuOg planes.
The double chains break up the two-dimensional antiferromagnetic planes into Heisenberg spin
ladders with n = —(n 1) r—ungs and n~ = —(n+1) legs and described by the usual antiferromagnetic
coupling J inside each ladder and a weak and frustrated interladder coupling J'. The resulting
lattice is a new two-dimensional trellis lattice. We first examine the spin excitation spectra of
isolated quasi-one-dimensional Heisenberg ladders which exhibit a gapless spectrum when n„ is even
and n~ is odd ( corresponding to n = 5, 9, . . .) and a gapped spectrum when n is odd and n~ is even
(corresponding to n = 3, 7, . . .). We use the bond operator representation of quantum S = — spins
in a mean-field treatment with self-energy corrections and obtain a spin gap of ~ J for the simplest
single-rung ladder (ri = 3), in agreement with numerical estimates. We also present results of the
dynamical structure factor S(q, ~). The spin gap decreases considerably on increasing the width of
the ladders. For a double ladder with four legs and three rungs (n = 7) we obtain a spin gap of
only 0.1J. However, a frustrated coupling, such as that of a trellis lattice, introduced between the
double ladders leads to an enhancement of the gap. Thus stoichiometric Sr„qCu„+qOg„compounds
with n = 3, 7, 11, . . ., will be frustrated quantum antiferromagnets with a quantum-disordered or
spin-liquid ground state.

I. INTRODUCTION

The so-called "infinite-layer" or "all-layer" compound
SrCu02 represents a new family of the Cu-0 supercon-
ductors. This compound crystallizing in the tetragonal
structure is characterized by an in6nite stacking of Cu02
planes with intervening Sr layers without oxygen, rep-
resenting the simplest possible charge reservoir. The
infinite-layer SrCu02 compounds (Ref. 1) are synthe-
sized under extreme conditions involving high temper-
atures and high oxygen pressures, and superconductivity
in the Cu-0 layers is induced by modi6cation of the in-
tervening Sr layers. The-Cu-0 layers can be either hole
or electron doped depending on the dopants introduced
in the Sr layer. The high-pressure forms of SrCu02 are
however unstable above certain-'temperatures and a ho-
mologous series of oxides formulated as Sr„qCu„+q02„
(with n = 3, 5, 7, 9, . . .) begins to be mixed in with the
parent (n = oo) phase.

The homologous series of Cu-rich high-pressure phases
Sr qCu +q02 were recently studied and were shown
to consist of parallel lines of CuO double chains period-
ically intergrown within the Cu02 sheets as illustrated
in Fig. 1(a). The occurrence of these double chains was
interpreted as resulting &om a periodic shear operation
with a shear vector of 2(110) in the parent (n = oo)
phase. This can also be visualized as the appearance of
domain walls within the planes. The structure of one
such sheet for a general n is shown in Fig. 1(a). The
Cu atoms are shown as big black dots while the oxygen
atoms are located at all the points of intersections of the
straight lines. The Sr atoms (not shown in the figure)

are located at the centers of the squares which are empty
and in planes displaced by kc/2 with respect to the cop-
per oxide sheet shown, with c being the lattice constant
perpendicular to the Cu-0 planes. The dotted circles
are the square coordinated Cu atoms (as in the parent
compound) and there are respectively 0,1,2,. . . such Cu
atoms in between two double chains for n = 3, 5, 7, . . ..
Thus the introduction of the CuO double chains period-
ically in the matrix of square planar coordinated CuO~
produces a superlattice geometry with unit cell parame-
ters (na x a).

The double chains in Sr„ iCu„+i02„compounds af-
fect dramatically the magnetic properties of the copper
oxide planes. In the stoichiometric compounds the Cu
sites are singly occupied (in the hole notation) and the
0 sites are empty. This can be modeled by an S = 1/2
Heisenberg model on the new lattice, the trellis lattice,
formed from the Cu sites. The exchange interaction be-
tween Cu atoms which are both not located along the
double chains is given by that of the bulk (n = oo)
value of J. Along the double chains however, two Cu
ions [such as A and B of Fig. 1(a)j are connected via
an 0 site by 90 bonds, which gives rise to a ferromag-
netic exchange. The superexchange path between these
Cu ions is through two orthogonal 0 orbitals and this
introduces a Hund's rule contribution leading to a ferro-
magnetic exchange J' (( 0) given in perturbation theory
by
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where t&g is the nearest-neighbor hopping in the plane
between the Cu 3d(x y-) and the 0 2p(x, y) orbitals, 6

6p —cg with e„and ep being respectively the on-site
energies of the 0 2p(z, y) and the Cu 3d(x y-) levels,
and ET and Ep are respectively the triplet and singlet
levels. Using the values of E~ ——1.8 eV and Es ——7.3
eV obtained from the level splittings assuming an on-
site Coulomb repulsion of U~ =4 eV, and taking the
standard values of tzg ——1.3 eV and 4 = 3.3 eV, we obtain
J'/J = 0.1—0.2.

Thus the planes in Sr„qCu„+q02„are broken up
into Heisenberg ladders with a weak and frustrated in-
terladder coupling as illustrated in Fig. 1(b). There
are 0,1,2, ... vertical chains (separated by width a) cut-
ting the dashed region in Fig. 1(b) corresponding to
n = 3, 5, 7,.... The lattice that results is a trellis lattice
consisting of individual ladders with n„= 2 (n —1) rungs
and nt =

2 (n+ 1) legs and coupled to each other through
zigzag couplings J'. Since J' « J we can to a first ap-
proximation neglect J' and divide the Cu-0 planes into
independent sets of ladders with n„=1,2,3,... rungs and
n~ ——2,3,4, ... legs corresponding to n = 3, 5,7,.... The
compounds with odd n„and even nt (corresponding to

n = 3, 7, 11,...) and those with even n„and odd nt (cor-
responding to n = 5, 9, 13,...) exhibit different spin ex-
citation spectra, the former having a spin gap with a
short-range exponentially decaying magnetic correlation
function, while the latter are gapless with a long-range
power-law decay of the correlation function (as in the
case of a single chain corresponding to n = 1).

It was argued in Ref. 6 that Sr„qCu„+q02„com-
pounds with n = 3, 7, 11,... would be frustrated quantum
antiferromagnets and spin liquids. This argument was
motivated by numerical studies ' on isolated Heisenberg
single-rung antiferromagnetic ladders with couplings J
which exhibited a gap of = z~ J. Here we will follow an al-

ternate treatment in terms of bond operators formulateds
to study two-dimensional dimerized Heisenberg systems.
In Sec. II we will emphasize some of the important fea-
tures of these bond operators and use them in a mean-
field treatment to study the simplest single-rung Heisen-
berg ladder with two legs. In Sec. III we report the
results of the calculations on the spin excitation spec-
trum, spin gap, ground-state energy, and the dynamical
structure factor S(k, ur). We extend the calculations to
double ladders and also to periodic ladders in Sec. IV.
We show that the spin gap decreases considerably on in-
creasing the width (rungs) of the ladders. In Sec. V we

study the effect of frustration on two spin ladders and
show that any nonzero frustrated coupling leads to an
enhancement of the gap. This important result points
toward the stabilization of a spin-liquid ground state in
a trellis lattice. Such lattices will be realizations of short-
range RVB (resonating valence bond) ground states in an
S =

2 system. ~o

II. SINGLE SPIN LADDER

We investigate here the properties of a single spin-2
ladder, shown in Fig. 2(a), which is described by the
standard Heisenberg antiferromagnetic model

H=J) s, , s„, +AJ ) s, s,.„,
i,m=l, r

(2.1)

(b)

FIG. 1. (a) Schematic diagram of a single copper oxide
sheet in Sr qCu„+q02 showing the parallel lines of CuO
double chains. The Cu atoms are shown as big black dots
while the oxygen atoms are located at all the points of in-
tersections of the straight lines. The dashed regions corre-
spond to the usual square coordinated Cu02 regions. (b)
The two-dimensional trellis lattice formed from the exchange
couplings in a single copper oxide plane of Sr qCu +~Op
at stoichiometry. The usual antiferromagnetic coupling J de-
scribes each of the ladders having n„= —(n —1) rungs and

1
2

n~ =
~ (n+ 1) legs and the ladders are coupled to one another

through weak and frustrated zigzag couplings J'.

where we take J to be the strength of the interaction
along the rungs (i) of the ladder and AJ the interaction
along the legs of the ladder. S~,. and S, are respectively
spin-2 operators at the left (l) and right (r) -hand sites
on each rung i of the ladder. In the limit of A=O (strong-
coupling limit) the Hamiltonian of Eq. (2.1) reduces to a
sum over contributions from independent two-spin rungs.
Thus it would be natural to tackle this problem from
the limit of singlet dimers placed on the rungs and then
switch on the interaction between them. It will be seen
later that this starting point leads to reasonable results
even for the case of %=1 which is of interest here. We
follow the bond operator representation of quantum S =
&

spins introduced to study specifically the properties
of dimerized phases. We emphasize here the essential
features of the bond operators.

We consider two S =
2 spins S~ and S„placed on each

rung. The Hilbert space is spanned by four states which
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can be combined to form the singlet Is) and the three
triplet lt ), lt„), and lt, ) -states defined as being created
out of the vacu))m Io) by the singlet and triplet creation
operators

commutation relations,

[s, st] = 1, [t, tpt] = h p, [s, tt] = 0, (2.6)

ls) = "Io) = (I14) —
I &t))

) = t. Io) = —
(I t1) —

I
4,))

we can reproduce the S = 2, SU(2) algebra of the spins

S~ and S„:
[S~a) S~P] = tE Pa7S~7)m = t) r) [S)a) S„P] = 0)

(2.2) (2.7)

Substituting the operator representation of spins de-
fined in Eqs. (2.3) and (2.4) into the original Hamiltonian
of Eq. (2.1) we obtain the following form:

A representation of the spins S~ and S„ in terms of
these singlet and triplet operators is given by where

H = Hp+ A(Hg+ H2), (2 g)

Sla —
2 (S ta + tas —teap7tpt7))t t

S).a =
2 (—s ta —tas —2eap7tpt7)

(2.3)

(2 4)

Hp ——) J(—48, 8;+ 4t, t; ) —) p;(s, s;+t; t; —I),

(2.9)
where a, P, and p represent respectively the components
along the z, y, and z axes and e is the Levi-Civita symbol
representing the totally antisymmetric tensor. Hence-
forth, it is assumed that all repeated indices over a, P,
and p are summed over.

A constraint of the form,

Hg —+ ) (t tj+] sa+ysj + t t~yy sj'8j+] + H c )
2

(2.io)

Sts+tt t (2.5)
H, = ——) —,'(i —h p)(t,' t,'+, t;pt;+, p

is introduced for each dimer in order to restrict the phys-
ical states to either singlets or triplets. Taking the singlet
and triplet operators at each site to satisfy the bosonic

—t; t,+)pt;pgat;p + H.c.). (2.ii)

The part of the Hamiltonian containing triple t operators

2.0, 4.0

1 (a) r

0.0
0.0 1.0 0.0 0.5 1.0 1.5 2.0

FIG. 2. (a) Single S = —Heisenberg antiferromagnetic ladder with couplings J along the rungs (i) and AJ along the left (I)
and right () ) legs of the ladder. (b) The dispersions of the spin-triplet excited states of the ladder of (a) relative to the band
minimum at k = m for several values of A. The continuous curves are obtained from the present mean-Geld method and the
611ed circles are the Lanczos results of Ref. 10 obtained on a 2 x 12 ladder (c) The s.pin gap E (in units of J) as a function
of A obtained from the present mean-Beld treatment (continuous curve). The dashed curve is a sia))&ar plot after including
higher-order terms as described in the Appendix. In the inset a plot of A/AJ versus A is shown. The continuous curve is
from the present treatment (without higher-order terms) and the Blled circles are the numerical results of Ref. 8. The dashed
line in the inset is obtained after including a self-energy correction (described at the end of Sec. III B) to the present treatment.
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vanishes identically in the present case due to reQection
symmetry. ~ A site-dependent chemical potential p; is
introduced to impose the constraint of Eq. (2.5). The
Hamiltonian of Eq. (2.8) can now be solved by a mean-
field decoupling of the quartic terms. This yields an ef-
fective Hamiltonian H with only quadratic operators.
We take (s;) = s, which means that the s bosons are con-
densed. We replace the local constraint p; by a global one

p in accordance with the translational invariance of the
problem along the ladder axis (y axis here). We will con-
sider here only the terms Hp and Hi in Eq. (2.8) and will
show later in the Appendix that inclusion of H2 changes
the results only slightly. We perform a Fourier transfor-
mation of the operators tt = ~ P& t&~ e'""', where N
is the number of dimers or rungs in the ladder and k is
the wave vector whose only nonzero component is along
the ladder axis. Thus, retaining only terms Ho and Hz
in Eq. (2.8) we obtain the mean-field limit,

(2.i8)

(s' —
—,') + gl+ dE

(
l

2 27r 1+d)

t'

/1+ d ( 1+d)

(2.i9)

/3 pi 2A 1 i 2d
~

-+2— +- K
(2 J) hard gi + d ( 1+d)

We obtain the following self-consistent equations from
Eq. (2.18) evaluated at T = 0:

H (y, , s) = N( 4Js ——ps + y) + ) [Apts ti,
1+d)

= 0.

where

++i(ti, t s +4 t —A, )] (2.12) where K(rI) and E(il) are respectively the complete el-
liptic integrals of the first and second kind of modulus g.
The dimensionless parameter d is defined as

= J —2
AI, ————p+ AJ8 cosk,

4
(2.13)

2A82

(4 —~g)
(2.20)

Dg ———Js cosk.
2 III. RESULTS

We have taken the lattice constant to be unity. The
ground-state wave function can be written in the form

~P) = Cexp[g, . s;s, —g&bgt& t
& ]~0). The above

mean-field Hamiltonian Eq. (2.12) can be diagonalized
by a Bogoliubov transformation into new boson opera-
tors pg given by

A. Spin-triplet spectrum

For each A, the self-consistent solutions of s and p, are
obtained &om Eqs. (2.19) and are used to determine the
excitation spectrum of the system of a single ladder ob-
tained from Eq. (2.17) as,

——cosh OI, ty + sinh Opt (2.i4)

where the coefficients cosh8i, and sinh8g obtained in
terms of Ap, AI„and uk are given by

sr ~ = J
~

———
~
[1 + d cos k] & .

(1 p&

&4
(3.i)

1 fAi,
cosh 8i, = —

i
+1 i,

)

1 (Ag
sinh 8i, = —sgn(Ai, ) ~

—1
~

.
2 )

We finally obtain

(2.15)

H (p, s) = N( Js —ps +—p-) ——
~

——p ~4 2 g4 )

+).~i(wg vi + —,'), (2.16)

where

~s = [A'r —(2&i )']'. (2.17)

The parameters p and 8 are determined by solving the
saddle-point equations;

These quasiparticle excitations arising from the spin-
triplet states of the spin ladder form a band whose band-
width is a function of A. The band minimum is at k = vr

and in Fig. 2(b) we present plots of &us/ J (relative to the
band minima) as a function of k for %=0.1, 0.5, and 1.0.
We notice that the dispersion around the band minimum

gets more linear with increasing A which is reminiscent
of the case of a linear chain (A = oo).

Recently extensive numerical calculations have been
performed on Heisenberg spin ladders using Lanczos
techniques. The spin-triplet dispersion relations were ob-
tained on a ladder with 2x12 sites and for various val-

ues of A. The results of such a calculation are shown
as filled circles in Fig. 2(b) and the agreement with the
present work is very good. For small values of A the
spin-triplet excitation spectrum has a bandwidth of 2AJ
which is in excellent agreement with those obtained 6.om
the Lanczos data and &om the strong-coupling expan-
sions of Heisenberg ladders. The dispersion relation of
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Eq. (3.1) can be parametrized by a spin-wave velocity
which is given by c, = J(4 —$)(2)~. The spin-wave
velocity reduces to 0 as A ~0 and is 1.1J for A = 1.0.

B. Spin gap

If the excitation spectrum up is real and positive every-
where in the Brillouin zone then the system is in a mag-
netically disordered (spin-liquid) phase and has a spin
gap given by

(I pi
g4 J) (3.2)

This is indeed found to be the case for a single Heisenberg
antiferromagnetic ladder. In Fig. 2(c) we present a plot
(continuous line) of the spin gap (in units of J) as a func-
tion of A obtained numerically by solving the nonlinear
Eqs. (2.19) and then substituting the self-consistent so-
lutions a and p into Eq. (3.2). Alternatively, Eqs. (2.19)
and (2.20) can be combined to give the following single
equation for d:

d=A 30 —— K
t'

~gl+d
~

I+d~ (3.3)

which is easier to solve numerically. The solution of d for
a given A can be used in Eq. (2.19) to determine p and
the spin gap is then obtained from Eq. (3.2)

We can analytically study the asymptotic behavior of
the spin gap. For small values of A (and hence d) the
elliptic integrals of Eq. (2.19) can be expanded in a power
series as

E(rl) = —(1 —-g ——4g — ),1 2 3 4

K(il) = —(1+ 4g + s4il — ),1 2 9 4

(3.4)

and we obtain

d = 2A[l —
gsA +O(A )],

= 1+ 4A +O(A ),
fl pl, , 4

i4 J)

(3.5)

(3 6)

and the spin gap is given by

( A' A'
b, =J~1 —A ——+ —+O(A) ~.

4 8 )
(3.7)

This is consistent with Fig. 2(c) which shows a linear
drop of the spin gap A for small values of A. As A gets
larger the spin gap as shown in Fig. 2(c) deviates con-
siderably &orn the linear behavior and does not exhibit
any critical value for A where the gap vanishes. Thus,
starting from the limit of A = 0 with spin singlets on
each rung of the ladder, we see that any lnite coupling
A along the legs of the ladder delocalizes the singlets on
the rungs, thereby reducing the magnitude of the gap but

not closing it completely.
The spin gap seems to approach zero as A m oo which

should be the right gapless limit corresponding to decou-
pled spin-2 chains. However, on closer inspection of Eq.
(3.3) we notice that at A = oo, d is given by the solution

of the equation „K y~g 2 0 This gi~~~gl+d
a value of d which is very close to 1. In addition it can
be shown using Eq. (2.19) that as A ~ oo, $ diverges as
Aln(1 —d). Hence the spin gap given by Eq. (3.2) also
diverges as A m oo. In the present case the spin gaps
start to increase for values of A & 3 and the mean-field
treatment ceases to be valid.

The Heisenberg ladder has also been extensively stud-
ied numerically ' using the Lanczos technique and the
spin gaps have been determined on 2xN ladders with
N = 4, 6, 8, 10, and 12. An extrapolation of these re-
sults to the bulk limit is shown (as filled circles) in the
inset of Fig. 2(c) as a plot of && versus A for values of
A & 1. The full curve in the same inset indicates results
obtained from the present calculation. The agreement is
found to be good only for small values of A.

The deviation of the present spin gaps &om those ob-
tained numerically can be traced to the A terms in the
expansion of the spin gap as obtained in Eq. (3.7). In
Ref. 12 it was shown in a strong-coupling expansion that
the spin gap varied as b, = J(1—A+ 4A2) for small values

of A. The A2 term arises in the strong-coupling expan-
sion &om short-range effects as the two nearest-neighbor
singlets surrounding the rung which is excited to a triplet
state are ineffective in contributing to the energy of spin-
triplet excitations to O(A2). Thus the positive coefficient
obtained for the A2 term shifts the spin gaps above the
1—A line as A is increased in agreement with the numeri-
cal results [see the filled circles in the inset of Fig. 2(c)].
However, in the present treatment a positive coefBcient is
obtained in the expansion for (4 —$) [Eq. (3.6)] but the

expansion of (1 —d) ~ produces an overall negative coef-
ficient for the A2 terms which shifts the spin gaps below
the 1 —A line as A is increased. This implies that for a
finite A the singlet and triplet levels are not pushed apart
enough due to the wrong treatment of the short-range ef-
fect in the present mean-field method. This arises from
treating the local constraint as valid only on the average.
We have therefore added an additional self-energy term
of O(A2) in the triplet levels of Eq. (2.9) which corrects
for the neglect of short-range effects in the present treat-
ment. We use the self-energy term PA2 with an optimum
value of P = 0.7 which gives reasonable values of the
spin gaps for A & 1, as shown by the dashed line in the
inset of Fig. 2(c). It should be pointed out that this self-
energy correction does not modify the dispersion curves
of the spin triplets shown in Fig. 2(a), it merely shifts
the positions of the minima at k = 7t. .

C. Ground-state energy

The ground-state energy obtained f'rom Eq. (2.16) is
given by (neglecting the 02 term)
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1+d) (3.8)

D. Structure factor

where d is defined in Eq. (2.20) and P, = ~&.

In the limit of A ~ 0 the correct ground-state energy

~J ———— is recovered. As A is switched on the ground-
state energy decreases, and we present in Table I the
values of 2~oJ obtained &om Eq. (3.8) for certain values of
A. As discussed before for the spin gap, the ground-state
energies have also been obtained numerically on finite-
length ladders, and the extrapolated values to the bulk
limit are also presented in Table I. We observe that the
energies obtained &om the present mean-field treatment
compare well with numerical estimates for A & 0.5.

0.5
1.0

Present work
-0.394
-0.475

Ref. 12
-0.43
-0.578

component of the spin-operator combination along the
rungs given by

(3.10)

where S~, and S„,. are the two spin operators at each
rung i of the ladder as shown in Fig. 2(a). Using the
representations of the spins S~ and S„ in terms of the
singlet and triplet operators as defined in Eqs. (2.3) and
(2.4) we obtain

TABLE I. Results of the ground-state energy 2N~J of a
Heisenberg ladder.

gg
2NJ

Structure factors are important physical quantities
which can be measured experimentally. The dynamic
spin structure factor is defined as

S), + S„, = —ie p~t,.pt;~,

S,, -S„, = s!t; +t!.s, .

(3.11)

(3 9)

where S ~ represents the Fourier transform of the o.th
I

Substituting these in Eq. (3.10) and transforming the t
operators to Bogoliubov operators defined in Eq. (2.14)
we obtain the following expressions for the dynamic spin
structure factors:

S (q, o~) = —,'s (cosh28, —sinh28, )[n, + O(u))]b((uq —((u(), (3.12)

S (q, ur) = —) {[cosh2(8s+q —8s) + 1]ns(1+ ns+q)b(urs+q —~g —u)

+2[cosh2(8s~~ —8),) —1][ni, + O(~)][ns+~ + O((u)]b'((ds+~ + (us —~ur~)), (3.13)

&s

2(1 —d)

1
2

(3.14)

where c, is the spin-wave velocity, A the spin gap, and d
is as defined in Eq. (2.20). We notice that ( ~ 0 as A ~
0 and for A = 1 we obtain a value of ( = 2.66.

where O(ur) is a step function, n), is the Bose occupation
factor, and cosh 8s and sinh8i, are defined in Eq. (2.14)

The first terin of Eq. (3.13) represents the simultane-
ous emission and absorption of excitations and vanishes
identically at T = 0 while the second term corresponds
to creation or annihilation of two excitations. In Fig. 3
we present the results of the structure factors So' (q, (d)
as a function of u for q = vr and for A = 1.0 after ap-
plying the self-energy correction described at the end of
Sec. IIIB. The dominant contribution to the structure
factor comes &om S (q, u). The static structure factors
S,~' (q) = f doiSo (q, (d) show peaks at the commensu-
rate wave vector of q = m. The spin-spin correlations in
the present case decay exponentially at large distances
with a correlation length given by

IV. DOUBLE AND PERIODIC ARRAY
OF LADDERS

We now consider the effects on. the spin gap of increas-

ing the number of rungs in the ladder. We first consider
the case of a simply connected double-rung ladder shown
in Fig. 4(a). The two spin ladders (denoted by left (L)

100

3
II 50-

CO

JL
0.0 1.0 2.0

m/J

Q0(x/0)
L
lg

3.0 4.0

FIG. 3. Dynamical structure factors S ' (q, (u) as a func-

tion of frequency cu for q = m. .
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and right (R)] are connected with a strength of A' J and
in each individual ladder we assume as before an inter-
action strength of J along the rungs and AJ along the
legs of the ladders. The Hamiltonian of the system can
be written as

H = ) [(Hp, + AHg, ) + —,'A'H,', ], (4.1)

where g denotes the ladder index, left (L) or right (R),
and

Hpi = J) (—4s si + 4t ti . ) —) p (s. s'i +t t~i —1),
~&Re

Hg, ———) (t;, t;+g, s;+~, s;, + t,, t,~~ s;, s;+g, + H.c.),

gl gg

(4.2)

Here, we have neglected terms of the form H2 of Eq. (2.11) as it is shown in the Appendix not to change the
results significantly in the parameter range 0 & A & 1, which is of interest here. It should be pointed out here that
the Hamiltonian containing triple t operators will not vanish here in the H' part of the Hamiltonian connecting the
two ladders as it did in the previous case along the ladder axis. However this will not give any contribution in the
magnetically disordered phase when we take averages over the operators in the mean-field decoupling.

Replacing (s;, ) = s and p;, = p, in Eq. (4.2) and taking Fourier transforms of the t operators we obtain

H (p, s) = 2N( —s4Js' —ps2+ p)+) [Ai, t~t tg, +b, I, (tts tt „+ti„ t I„)
A:,E

+—) (2ta,.t&, +to,.t-a, +ts -t-~, -)]
age

(4.3)

+(coshHq 2, ts„+sinhHq 2, t & )]. (4.4)

These are simply symmetric (bonding) and antisymmet-
ric (antibonding) combinations of the individual trans-
formations in the left and right ladders. We can now
diagonalize the Hamiltonian of Eq. (4.3) using this trans-
formation and we obtain the following:

H (~, s) =2N( Js —~s +p—,) -—N
~

——~ ~

3 -2 —2
4 4 )

(4.5)+ ). [~s.(Vs„.Vs..+ 2)]

where As and b, ~ are as defined in Eq. (2.13) and
A'—I'I, ———
4 8 J. We perform a Bogoliubov transforma-

tion into two new boson operators defined in terms of
the t operators of the left- and right-hand ladders as

1
[(cosh Hq 2, ts~~ + smheq 2„t & )

I

double ladder with the value A = A' = 1 and after apply-
ing the self-energy correction in each ladder as described
at the end of Sec. IIIB. For comparison we show in the
same figure a plot (shown as the dashed curve) of the
excitation spectrum of a single-rung ladder (A' = 0).

Following the same procedure as described in Sec. II
we can write down the mean-field equations evaluated at
T=Oas

1 dk„( 1+ -a+ 1+ 2a
8

'JJ 2

4 2's ([1+da+]~ [1+da ]~)
(4.7)

/3 p ) A dk„( a+ a
, +

(2 J) 2 2m ([1+da+]~ [1+da ]~ )
where d is defined in Eq. (2.20), and a+ is given by

k,b=1,2

where u1,2, is defined as

~g, 2, ——[Ag' —(26 )'+2I' (A —2A )] ~ . (4.6)

a~ ——cos k + —.
4%

The expression for the spin gap is

(4.8)

Thus the spin-triplet excitation spectrum of a double
ladder with three rungs and four legs consists of two
branches for each A and A' representing the bonding
and the antibonding states. The splitting of these two
branches is governed by the transfer matrix proportional
to I I, which is in turn proportional to A'. As A' -+ 0
the two branches collapse into a single branch of the one-
rung ladder described in Sec. IIIA. Vile have plotted in
Fig. 4(b) the spin-triplet excitation spectrum for the

(4 9)

We have plotted in Fig. 4(c) the spin gaps of the double
ladder as a function of A' for difFerent values of A. We
obtain a value of 0.12J for the spin gap for A = A' =
1.0 and we notice that for each A the spin gap reduces
drastically with increasing A'. This can be explained by
the fact the singlets along the rungs of the two ladders
can delocalize not only along the ladder axes via the A
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coupling but also across the ladders through the transfer
matrix proportional to A'. This produces for any nonzero
coupling of two single-rung ladders (A' g 0) a splitting in
the excitation spectrum of the individual ladders into two
branches, one above (the antibonding branch) and the
other below (the bonding branch) as shown in Fig. 4(b).
Since the spin gap is a measure of the minimum energy in
the excitation spectrum (at k = 7r) and since one of the
branches of the double ladder is always lower than that
of a single ladder for any nonzero A', we can conclude
that the spin gap of a double ladder is lower than that
of a single ladder and the spin gap should progressively
decrease on increasing the width of the ladder.

1 dk I+&a
(2~)2 [1+d,]!'

t' p) d k a

1, 2 J) (2x)2 [I+dn]j

(4.10)

In the same context it is worthwhile to consider a pe-
riodic array of ladders, with A=1 in each ladder, and
simply connected to one another by A', and then to ask
the question for what value of A' should the spin gap dis-
appear, since it is known that the ground state of a two-
dimensional antiferromagnet has long-range order. We
can study the system of ladders arranged periodically
within the formalism described previously, and the self-
consistent equations are given by

where k is now a two-dimensional wave vector with com-
ponents k& along the ladder axis and k across the lad-
ders. The parameter d is defined in Eq. (2.20) and a is
given by

a = cosk ——cosk . (4.11)

Combining the equations in Eq. (4.10) we can write down
the following single mean-6eld equation for d which is
easier to solve numerically.

3.0

2.0

1.0

0.0
0.0

1.0

3 0.6

0.5 1.0
k/z

1.5 2.0

(4.12)

The excitation spectrum of the periodic system of lad-
ders has a minimum at k = (vr, n ) and the spin gap given

by 6 = J(- —&~) [1 —d(l + z&)] ~ is plotted in Fig. 5 as
a function of A' with A set to 1.0. We have again applied
the self-energy corrections on each individual ladder as
described at the end of Sec. IIIB. We notice that the
spin gap vanishes for a value of A' —0.25. As described
before for the double ladder, the decrease in the spin gap
with increasing A' is explained by the delocalization of
the singlets across the ladders. In this case the transfer
matrix connecting the ladders is twice as large as in the
case of a double ladder thereby decreasing the spin gap
with A' even faster than that of a double ladder.

(C)

0.0
I

0.5
v

1.0
0.4

.0

FIG. 4. (a) Double Heisenberg ladder consisting of two sin-
gle S = —antiferromagnetic ladders of Fig. 2(a) connected to
each other through the couplings A'J. (b) The dispersions of
the spin-triplet excited states [bonding and antibonding states
of Eq. (4.6)] of the double ladder of (a) for A = A' = 1.0. The
dashed curve is a similar plot for a single ladder (A' = 0) with
A = 1. (c) The spin gap b, (in units of J) as a function of A'

for several values of A. The dashed curves are similar plots
obtained for the case of a double ladder connected through
the zigzag frustrated couplings J' = A' J of Fig. 1(b).

0.2

0.0
0.0 0.2

jli
'

0.4

FIG. 5. The spin gap (in units of the rung coupling J) of
a periodic arrangement of ladders as a function of the inter-
ladder coupling A' and wrath an intraladder coupling of A = 1.



SPIN LADDERS %ITH SPIN GAPS: A DESCRIPTION OF A. . .

V. FRUSTRATED DOUBLE LADDERS
AND THE TRELLIS LATTICE

We now consider the double ladders described in the
previous section but connected to each other through
zigzag &ustrated couplings J' = A'J as shown in Fig.
1(b), where 1 is the standard rung coupling. We retain
the Hamiltonian in the form of Eq. (4.2) but with Hi&
containing an additional term given by

Hi~ = ) (ti ~ti+l~iasi~si+1)i

+t t +i, si~si+i, + H.c.). (5.1)

The mean-field Hamiltonian and the excitation spec-
trum are those described by Eqs. (4.5) and (4.6) with

Fi, replaced by a new form I'i, = —
4

a2 J(1 + cos k) We
obtain the self-consistent equations of Eq. (4.7) but with

ay given by ay = cos k 6 z& (1 + cos k).
The excitation spectrum of the double ladder with a

zigzig &ustrated coupling also consists of two branches,
as in the case of a simply connected double ladder. How-
ever, in the present case at the minimum position of the
spectrum (k = m) the two branches become degenerate.
This can be explained by the fact that the singlets on
two successive rungs of each ladder are completely out of
phase and hence are not able to delocalize across the lad-
ders through the zigzag frustrated couplings A'. Thus the
spin gap defined by the minimum value of the spectrum
at k = m is now given by,

(5.2)

which does not contain the A' term explicitly. Thus the
spin gaps should not change much from the values ob-
tained for a single ladder, and this is indeed what is ob-
served as shown by the dashed lines in Fig. 4(c). We
have again applied the self-energy correction to each in-
dividual ladder. We notice from Fig. 4(c) that for each
A the spin gap slightly increases with A'. This simply
re8ects the slight changes in the self-consistent solutions
of d and p with A'.

We can extend the results discussed above to the trel-
lis lattice shown in Fig. 1(b). The excitation spectrum
would now be a function of k with components k„along
the ladder axis and k across the ladders. At the point
k„= vr the spectrum would be dispersionless with k as
a result of destructive interference of successive rung sin-
glets along the ladder axis. Thus a &ustrated coupling
between the ladders in the trellis lattice will not affect
the spin gaps of each individual ladder and hence it will
only help in retaining the spin-liquid nature.

tice. Such a lattice can be described by Heisenberg spin
ladders with n„= z(n —1) rungs and ni = z(n+ 1)
legs with the usual antiferromagnetic coupling J inside
each ladder and a weak and &ustrated interladder cou-
pling J' && J. On neglecting J' the Cu-0 planes can
be thought of as built up of independent quasi-one-
dimensional ladders with odd n and even ni (corre-
sponding to n = 3, 7, 11,...) and those with even n„and
odd ni (corresponding to n = 5, 9, 13,...) which exhibit
different spin excitation spectra. The former are gapped
with short-range exponentially decaying magnetic corre-
lation functions while the latter are gapless with a long-
range power-law decay of the correlation functions.

We have used the bond operator representation of
quantum spins in a mean-field treatment with self-energy
correction to study first the excitations of the simplest
single-rung ladder with two legs corresponding to n = 3.
We have obtained the spin-triplet dispersion with a min-
imum at k = vr and a spin gap of 2 J. These values are
in good agreement with numerical estimates. ' It should
be pointed out that conventional spin-wave calculations
applied to a ladder ' predict gapless excitations for all
values of the couplings AJ along the legs of the ladder,
even for A=O, which is clearly unphysical.

We have been able to extend the mean-field treatment
to double ladders and to a periodic array of ladders. We
find that increasing the rungs of the ladder drastically
reduces the spin gap. For a double ladder with four legs
and three rungs corresponding to n = 7 we obtain a spin
gap of only 0.1J. In a periodic array of ladders with
intraladder coupling J we find that the spin gap vanishes
for an interladder coupling of 0.25J.

We have also studied the efFect of a &ustrated cou-
pling, such as that of a trellis lattice, introduced be-
tween two ladders. We find a slight enhancement in
the spin gap. Extending the results to a trellis lattice
we can show that the spin-liquid nature will be pre-
served. Thus stoichiometric Sr„qCu„+q02„compounds
with n = 3, 7, 11,... will be &ustrated quantum anti-
ferromagnets with a quantum-disordered or spin-liquid
ground state. The resulting trellis lattice will be a real-
ization of the short-range RVB ground state for a spin-2
system. ~0

The implications of these results to the other high-
T, compounds can be conjectured as follows. Certain
underdoped high-T, samples have been experimentally
shown to have spin gaps and a theoretical description
of this in terms of frustrated next-nearest-neighbor cou-
pling in a two-dimensional antiferromagnetic lattice is
obtained only with large and unphysical values of the cou-
pling. However, if the two-dimensional Cu-0 planes were
thought of as having some microstructure (introduced
upon doping) then the spin gaps could be explained quite
naturally.

VI. CONCLUSIONS

We have shown that the CuO double chains intergrown
periodically in the Cu02 planes of the new series of
infinite-layer compounds Sr iCu +i02 (n =3,5,7,...)
creates a new two-dimensional spin lattice, the trellis lat-
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APPENDIX

The results presented in Sec. III were obtained by ne-
glecting the term Hz of Eq. (2.11) containing four triplet
operators. Here we will study the changes on including
this term in a similar mean-field treatment as presented
before. By taking quadratic decouplings of the operators
in H2 and performing Fourier transformations we obtain,

H2 ———) cosk„[2Pt~& tk

—Q(tk t'k +tk t-k )] —N(P' —Q') (Al)

but with Ag and AI, replaced by

J 2A
Ak ————p+ AJs cos k + —PJ cos k,

4 3
(A4)

b, l, = + J—i cosk ——QJcosk.
2 3

We can diagonalize Eq. (A3) by a Bogoliubov transfor-
mation as described earlier and the spectrum is given by
Eq. (2.17) but with Ak and Ak replaced by their new

forms. The parameters p, s, P, and Q are obtained by
solving the saddle-point equations which reduce at T = 0
to the following equations;

where A and N are as defined previously and P and Q
are two new mean 6elds de6ned as

P=(t,'. t;+, ),
(A2)

Q = (t*at*+ia)

On including Eq. (Al) into Eq. (2.11) we obtain a
mean-field Hamiltonian similar to Eq. (2.12):

/3 pl
I

-+2-
I

dk Ag

2K 24)g

dk AI, —26I,
cos k)

2K 4)y

dk Ag
cos k,

2K 2&g

dk AI,
Q = — — cosk.

2' (dy

(A5)

+) [Atty 4

+&k(tk t k +4 t-k )], (A3)

H (p, a, P, Q) = N( 4J8 —y—a + p) — (P —Q )
3 —2 -2 NAJ

By numerically solving for the mean-6eld parameters the
spin gap is obtained and is plotted in Fig. 2(b) (dashed
lines) as a function of A. We notice that the inclusion
of 02 does not change the results signi6cantly even for
A= 1
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