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We investigate a recently constructed ground state of the one-dimensional Emery model in the
infinite-tf limit with two holes per unit cell and a restricted range of parameters. We show that
the ground state is unique and evaluate exactly the equal-time correlation functions which we find
to decay exponentially with distance. In a certain range of parameters, the model incorporates the
physics of the Kondo insulator. Our exact results imply the absence of off-diagonal long-range order
or power-law correlation for singlet pairing. The ground state of the doped Emery chain exhibits
a massive degeneracy. The additional charges are found to be exponentially localized around the
insertion sites.

I. INTRODUCTION limit, i.e.,

Recently, Brandt and Giesekus constructed the exact
ground states of the Hubbard model with infinite on-site
repulsion on (D & 2)-dimensional perovskitelike lattices
as well as of the periodic Anderson model for a certain
range of parameters. In Refs. 2—4, the method was ex-
tended to the one-dimensional (1D) periodic Anderson
model, to the 1D Emery model, to a modified d-p model
in two dimensions, and to a Hubbard model with nearest-
neighbor and bond-charge interactions. These solutions
are subject to restrictions on the parameters of the theory
and involve an even number of (spin-1/2) electrons per
unit cell. The ground-state wave functions have a local
character and correspond to a fermionic realization of the
valence bond solid (VBS) ground states occurring in cer-
tain isotropic quantum antiferromagnets. In the latter
case, it has been shown rigorously that the spin Hamil-
tonian has a unique ground state, a gap in the excitation
spectr»m, and exponentially decaying ground-state cor-
relation functions. In contrast, little is known about the
physical properties of the fermionic ground states intro-
duced in Refs. 1—4. For instance, in various cases it is
not known whether the ground state is unique (see the
discussions in Refs. 1—3), and there is even speculation
that it is superconducting.

In this paper we provide technical details for the
derivation of the results in Ref. 8. Below, we show
that the ground state is unique and evaluate exactly the
equal-time ground-state correlation functions of the 1D
Emery model when the on-site repulsion on the Cu sites
is infinite. The extension of our approach to the peri-
odic Anderson model and other Kondo lattices is possible
in one dimension, even though the latter models involve
larger matrices than we have to handle in this work. For
the Emery model, which is the simplest among this class
of models, we find exponential decay in the singlet pair-
ing channel and in all correlation functions. We argue
that this type of wave function describes an insulator,
and in a certain range of parameters, incorporates the
physics of Kondo insulators.

Consider the 1D Emery model in the strong-coupling
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FIG. 1. (a) The unit cell comprises one 0 and one Cu ion.
The labeling of the sites is that of the unit cells. (b) A cluster
consists of one central Cu ion and two adjacent 0 ions.

x d,. (y;~, —p, , )+H.c. )7,
where the subscript i runs over I unit cells consisting of
one 0 site and one Cu site (see Fig. 1). We employ the
hole picture where dt creates a hole of spin cr at a Cu site.
The energy of a single hole (3d configuration) is eg and
that of two holes is infinite. The operator 'P projects out
the two-hole configurations. We restrict our discussion
to the spin s = 1/2 case and note that the generalization
to higher spin and/or degeneracy is straightforward. s

In Ref. 3, an exact ground state of the model (1) for two
particles (spin s = 2) per unit cell has been constructed
as'
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and V = —denotes a dimensionless interaction parame-
ter. The wave function (2) is an eigenstate of the Hamil-
tonian (1) with open boundary conditions (OBC) pro-
vided the parameters of the model are restricted to the
manifold

., -e„=@II-V (4)

To get some insight into the physical problems de-
scribed by the restricted parameter space, consider the
limits V -+ oo and V + 0. For V &) 1, eg —ez &( —2t
so that the d level should be nearly fully occupied. This
corresponds to the Kondo lattice regime with one Kondo
site and one conduction electron per unit cell. Futher-

Q2
more, the effective exchange J, is comparable to

Cp —Cg

the direct hopping t between conduction holes; therefore
we are in the intermediate-coupling limit for the Kondo
lattice. In the opposite limit V « 1, eg —e„2t, i.e., the
d level crosses near the top of the conduction band and
the occupation of the Cu site should be small. On physi-
cal grounds, we expect the constraint of no double occu-
pancy to be ineffective in this limit, i.e., the system can be
described by hybridized p and d bands. A simple calcula-
tion leads to a dispersionless upper band located at e„+2t

Vand a lower band given by e (k) = e„——, + 2tcos(k),
resulting in an insulator with a gap ~

. We shall verify
that this is indeed consistent with our exact results.

The plan of the paper is as follows: In Sec. II, we
present a proof of the uniqueness of the ground state.
Some details of the proof are deferred to Appendix A.
Section III is devoted to the evaluation of the ground-
state correlation functions. Appendix B contains the ex-

plicit form of some matrices and right (left) eigenvectors
used in Sec. III. In Sec. IV we deal with doping effects
and discuss various extensions of previous work. Section
VI contains the concluding remarks.

II. UNIQUENESS OF THE GROUND STATE

In this section we prove the uniqueness of the ground
state of the 1D Emery model Hp. Following Refs. 1—3, it
is convenient to rewrite the Hamiltonian (1) for a system
with t. unit cells as

Hs = $'[ NC—+ (e„+2t)n]'PL+ H&,

where N = 2 (for spin s = I/2) is the degener-

acy, c = 2t + ~~, 8 = l Q,. (d! 1; + pt p, , ), and

H& ——C P,. cr; a, denotes a positive semidefinite

piece, with crt = Pat P. When acting on the state

(2), the first term on the right-hand side of (5) gives a c
number while the second term vanishes by virtue of the

-2
property a = 0. Therefore (2) is a ground state of

(1). However, from the above argument it is not clear
that the ground state is nondegenerate. Since H& is pos-
itive semide6nite, the ground state of the system must
fulfill (@oIH&I@o) = 0 ergo 2', Ila', I@o)II' = 0 which
in turn implies that

Kt I@a) = 0,
for i = 1, . . . , L and 0' =t, $. The set of equations (6)
impose very strong constraints on the state

I
4'o). In Ap-

pendix A, we show, by expanding I%'o) into a complete
set of states and. by eliminating the configurations that
are inconsistent with the set of Eq. (6), that the ground
state should be of the form

I t t t tI@'o) = ) ) A(vi&. . . , vL, Ivi, . . . , vL)c„&.. .c„&c,&. . .c, &IO),
(V) fV')

(7)

where (v) = (vi & v2 & - & vL, ) and the summation index vz runs over all sites assigned to the jth cluster (a
cluster involves three sites, one Cu site and two adjacent 0 sites, see Fig. 1). For generality s sake, we write the
cluster operators as at = P„a„,.ct, where the coefficients a„, are independent of the spin label [see Eq. (3)] and

ct, denotes a fermion or a Hubbard operator with the property that ct = 0. The amplitudes A(. . .) are not
assumed to be antisymmetric and the constraint of no double occupancy is automatically taken into account in the
commutation rules of the Hubbard operators, i.e., A(vi, . . . , vt, Ivi, . . . , vL) need not vanish when vz, referring to a Cu
site, coincides with @'-.

Let us rewrite explicitly the equations (6), say, for the up-spin cluster operator,

) I » t t t t ta&.A(vi, . . . , vI Iv». . . , vt )c ~c . . . c ~c, , . . .c, , IO) —0,Vl I VI+ VL g
fv') fv} pj

(8)

- 2
for j = 1, . . . , L. In the expansion (8), the components for which pi coincides with one of the vi vanish as ct

&
——0.

Moreover, if c„. is a Hubbard operator, there is no contribution from the term where p~ = v-. The remainingVj

nonvanishing terms contain configurations whose coefficients appear in pairs, since in (7) only one up spin and one
down spin are assigned to each cluster. For example, we have terms such as

lit t t t t ta„.A(vi, . . . , v~, . . . , vt, vi, . . . , vL, )c c . . .c . . .c c, , . . .c, , IO),Iji Vi i VL, i
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I&t ta„A vi, . . . , p, ). . . ) vL v„.. . , v, )c,c . . .c. . . . . . , lo) .
V& ~ Vi[ Pj t VL I V14-

(10)

f I I
&~& ~ ~ &I, I ~i ~ ~ ~ ~ ~ ~ ~Z)J

I I I &av'. A(vi) ) VZ Ivi) ) Vp ) VL)
2

(12)

for appropriate p,
' and v'. with j = 1, . . . , L. Using the

fact that, for fixed j, the right-hand sides of (11) and
(12) are independent of (vi, . . . vL, vi, . . . , vL j, where the
indices referring to the jth cluster are excluded, it can
be readily seen that the set of Eqs. (11) and (12) has a
unique solution given by

I IA(vi). . . , vLlvi). . . ) vL) x GV. QV!

Substituing (13) into the expansion (7), we note that

l@0) has the product form l@0) = Q, n; l0). From the
uniqueness of the ground state and the total azimuthal
spin S' = 0, it follows immediately that the ground state
is a singlet.

Interchanging the order of the ct's in (9) and (10), and
grouping the coefficients multiplying identical configura-
tions, we infer that the amplitudes should fullfill

Ia„,. A(vi, . . . , p, . . . , vLIvi, . . . , vL)
)

+L(+1 ' ' ' +I)j
for all appropriate p~ and v~, with j = 1, . . . , L. Sim-
ilarly, we obtain a set of equations for the down spins
as

(14)

On each Cu site, we define a supermatrix D,. as

0

y —l

—6

0

—d.if
0
y —1

The set of local supermatrices Dt form a superalgebra.
With these definitions, the wave function (2) can be writ-
ten as

In order to calculate the correlation functions in the
ground state, we need to rewrite (2) in a manageable
form. The ground-state wave function has a local struc-
ture and in this sense shares some resemblance with the
VBS ground states occurring in certain spin quantum
antiferromagnets. s The local nature of the wave function
suggests the use of a transfer matrix method.

For clarity's sake, we first evaluate the norm of the
ground state (2) in detail. We represent the local degrees

of freedom at each 0 site by a "supervector" vt with
2

transpose

III. CROUND-STATE CORRELATION
FUNCTIONS

This section is devoted to the evaluation of the equal-
time ground-state correlation functions of the 1D Emery
model. The method we present is easily extended to other
models for which the ground state has a similar struc-
ture such as the periodic Anderson model. For the 1D
Emery model, we are able to solve the problem analyti-
cally. In general, however, the dimension of the matrices
involved becomes very large and it is difFicult to give a
complete analytic solution. Nonetheless, a combination
of the algebraic techniques devised in this paper as well

as of numerical diagonalization of large matrices permits
a complete determination of ground. -state properties.

1@0) = &i Di&2 ~2 D2 "z, DL"Lyi 10) (18)t t t t t t t t

Pt
~i t~i 4

0
Pl,t

0
0

t t

t
Pj,g

0
t t

~j tIi 4

0

so that the norm of the ground state becomes

where l0) denotes the vacuum. Note that in this repre-
sentation the constraint of no double occupancy is obeyed
automatically and in contrast to Eq. (2) the projector 'P

is not necessary. Moreover, it is natural to introduce a

supermatrix P. = v. v. , i.e.,
aP

(40l@0) = (0l [eL+,] DLPL. . .P2Diui v, D,P2 . . . PLDLi)L+, l0) .T t t t t t t

In (18) the supermatrix P (D) is the adjoint (transposed and conjugate) of Pt (Dt). The expression (18) involves

products of (disentangled) site operators while (2) is written in terms of (overlapping) cluster operators. Hence, to
calculate the norm of the ground state it is sufficient to evaluate operators in the local site vacua and the problem
reduces to a sum of products of c numbers. Let us rewrite (18) with explicit matrix indices as

(@0l@0) (0 l UL+1, qi, L,uugi, u~l, ) PL, vol, ) u2I, g .P2,vsv2Di, tv) &1,v)

xvt D' P' . . . Zt D' v' IO~
P 1 ~ Qj P2 2 @2@3 + P2L, —2@2K—1 L) P2L) —1 P2L) L)+~ P2L) l I



49 EXACT GROUND-STATE CORRELATION FUNCTIONS OF THE. . . 8885

where summation over repeated indices is implied. The term vq „,vz is readily evaluated in the local vacuum (Oq),

for there are no other terms involving site 1. It is then convenient to introduce a vector (W) = (Oi(vz v (Oi), i.e.,
W,. = (Oi(ui „,vt„(0i) with az ——(vi, pz). It is clear that the 16 entries of (W) are c numbers independent of

site label. We may therefore commute Dz „„,through lV, and de6ne a 16 x 16 c-n»mber matrix l'. as the local-

vacuum expectation value of the tensor (direct) product of D; with D;, i.e. , 8 p = (0;(D; „, ,„Dt„„(Oq),
where a = (v2; q, p2; q) and P = (v2;, yz, ). Next, we can commute P2»„, through 8, , and W, , and define

another 16 x 16 c-number matrix At = (Oi(P P (Oi), and so forth. This procedure is continued until the last pair
of supervectors in the product (19) is exhausted. The explicit forms of (W), 8, and M are given in Appendix B. The
final expression is most compactly written by introducing another c-number vector (Z) = M (W) as

(@0(+0)= Waz~az, aq+aqas~as&4 ' ~ ~~ir. z~ir,-+~~L~ir+i &ir+i

which leads to the simple result

(~.l~.) = (W(7'I~) (21)

where 7 = l:JH is a c-number 16 x 16 matrix, the analog of the transfer matrix in statistical mechanics. The matrix
7 takes the explicit form (see Appendix B)

-1+B
0
0
0
0
A
0
0
0
0
B
0
0
0
0
B

0 0 0
A 0 0
0 B 0
0 0 B
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 —A
0 0 0
0 0 0
0 0 0
0 A 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
A 0 0 0 0
0 A 0 0 0
0 0 A 0 0
0 0 0 A A
0 0 0 1 B
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 —1 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

0 1
0 0
0 0

—1 0
0 0
0 A
0 0
0 0
0 0
A 0
0 B
0 0
0 0
0 0
0 0
0 1

0 0 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0
0 —A 0
0 0 0
0 0 0
0 0 0
0 0 0
A 0 0
0 B 0
0 0 A
0 0 0
0 0 0

0 1
0 0
0 0
0 0
0 0
0 A
0 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0
A 0
0 B

(22)

7 = ) (R; A, a) (L; A, a(,C (23)

where A = V and B = 1+V 2. Unlike the usual case
7 is not symmetric. Moreover, the physical quantities
of interest cannot be expressed in terms of the trace of
the "transfer matrix" 7 . Nevertheless, 7 has the useful
property of being a normal matrix, i.e., 7, 7t = 0. In
other words, 7 can be diagonalized and so we have the
spectral representation,

4 —
2 1 (

A4 ——+ V-'+ —(z-+ z-*
3 3

(25)

From (24), we infer a fivefold degenerate eigenvalue Aq ——

V, two fourfold-degenerate eigenvalues A~
——2+V

z pl+ 4V and As ——2+V 2+z pl+ 4V and three
nondegenerate eigenvalues which are roots of the third-
order polynomial on the right-hand side of (24). These
can be written as

where A are the eigenvalues of 7 and (R(L); A, a) de-
note the corresponding right (left) eigenvectors with de-
generacy label a. The eigenvalues and eigenvectors are
obtained analytically with the help of Mathematica. For
notational simplicity, we choose to work with unnormal-
ized eigenvectors, i e , (L; A. , .a(R; Ap, b) = b~pb sC
where C are the normalization constants (see Ap-
pendix B). The characteristic polynomial P(A) of 7 is
found to be

As ———+ V —— (z& +zs
(

—iV3(z& —z&
3 6.E )

and

4 1 1 1 . g 1 1
A, = —+V —— z*+z (+iV'3 z —z

3 6 . i

where

(27)

P(A) = (A —A)'(A' —[A+ B]A+ A')'
x(A —[1+3B]A + [2+ A(1+ 3B)]A —A ) .

(24)

z = 28+ 45V +i3 8+40V + 85V + 64V

In Fig. 2, we plot the cMerent eigenvalues versus V
Note that all eigenvalues are real, positive, increase
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25-

20-

15-

10-

0-
0

where the summation is over o. = 4, 5, 6 and p
(WlR; A, 1)(L; A, 1lz). The eigenvalues A4, As and As
contribute to the norm of the ground state whereas there
is no contribution &om the subspaces belonging to the
eigenvalues Aq, A2, and As because (WlR; A, a) = 0 for
a = 1, 2, 3 (see Appendix B). The result (28) is exact
for a Gnite chain of length L in units of the two-particle
cell. From (2) it is clear that the norm (18) is a polyno-
mial of degree 2L in V while this is less obvious from
(28).~s Nevertheless, for the purpose of calculating phys-
ical quantities in the limit of an infinite system, Eq. (28)
is appropriate. In the thermodynamic limit, the largest
eigenvalue A4 dominates in (28), i.e.,

FIG. 2. The eigenvalues of the "transfer matrix" 7 versus
V . Note that all eigenvalues are real, positive, increase
monotonically with V, and do not cross.

A+ %+V '
(~ l~.) =-

V—2 8P +4V—2+2
(29)

monotonically with V ~ (as V when V ~ ~ oo) and
do not cross. Equation (24) implies that at V = 0,
Ag —— A2

——0, A3 —1 A4 ——2 + ~2, As ——0, and

From the explicit form of the right (left) eigenvectors
of 7 ',

l W), and
l Z), we infer the norm of the ground state

as

where the fact that A4 is a root of the third-order poly-
nomial in (24) has been used to simplify the final result.

We now pass to the evaluation of the expectation value
of some local boson operator b;. We discuss successively
the charge density b; = n; and spin density 6; = S,",
where p = d (p) for the Cu (0) site. The charge density,
say, at a Cu site i, is given by

(~.l,'l~. )
(~.l~.)

(~.l~.) =).~a 1
(28) Using (16), the numerator on the right-hand side of (30)

can be written as

(w( )lg(~)~( ) g(' —)~(')Q(')~(*+ ) g(L)~(L+ )lz)

where Q&' ——(0;lD; n, ". D, l0;). For clarity, we have dis-
played upper indices in (31), though the c-number ma-
trices are site independent. In this compact notation, we
then have for i & 1

site (i & 2) can be written as

(wlyi —2g 7L i+1lz)—
(wlT'i —1g gL i lz)—

(wl&LIZ)

where 8~ = Q~~. Similarly, the mean charge at an 0

where 8„=ZL$„, and 9„= (O~lP7 n~Ptl0&) In the.
thermodynamic limit, the mean charge at a Cu site (0
site) is parametrized by the eigenvalues A4, As, and As as
is seen on substitution of (23) into (32),

(A l *
(WlR; A, 1)(L;A, ll8qlR; A4, 1)(L;A4, llZ)

(34)

respectively, into (33),

(A & (WlR; A, 1)(L;A, llB lR; A4, l)(I; A4, llZ)
( A4 )

where the summation is over a = 4, 5, 6. The average charge at a Cu site (0 site) in the bulk of the system reduces
then to (i » 1)

(L A4 ll~~lR A4 1)
t 444
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where (see Appendix B)

(L„~., 1]e,iR; X., 1) = 2[a,'(1+a,")+ 2+ a,"+t,"],
and

{I;A4, 1i8~iR; A4, 1) = 2[a4 ((1 + A) a4 + 2) + Ab4 (1 + b4 ) + Aa4 + 264 + 2(1 + A)] .

In Fig. 3, we plot the bulk charge on the Cu site ver-

sus V . Substituing the explicit expressions for 8~,
p = d (p), it can be verified that in the bulk of the chain
there are two charges per unit cell as (n;) + (n~) = 2.
In the Kondo regime (V i « 1), there is on the average
one electron at the Cu site and one at the 0 site while
at small hybridization (V i )) 1) the Cu site empties
in favor of a doubly occupied p site. In the latter limit,
the strong on-site repulsion on the Cu sites becomes in-
eHective, and we expect the physics in this regime to be
similar to that of the noninteracting system. In the ther-
modynamic limit, the largest eigenvalue A4 determines
the local charge while As and A6 control the charge de-
pletion on the Cu and 0 sites near the boundary of a long
chain. For finite V, the depletion region for charge has)- —1
a width oc ln ~

i
. Figure 4 illustrates the behav-

Ag&

ior of the charge near the boundary on the 0 sites. At
large hybridization, the charge depletion takes place in a
narrow region near the ends of the chain (for V —100,
it is a few unit cells wide) while for small hybridization

it extends over an extended region (for V —0.1, about
20—25 unit cells) away from the boundary. When V is
large, the charge can accumulate on the Cu sites in the
bulk and close to the boundary so that the Cu sites are
nearly insensitive to the boundary effects (at V 100
the Cu charge drops within a few units cells by a relative
amount of 10 s!) whereas on the 0 sites the occupation
drops to approximately half its value within a few unit
cells. On the contrary, when the hybridization is small
the boundary eKects are substantial on the Cu sites be-
cause the occupation on the 0 sites should be close to two

(Wi7' i8'7i 'iZ)

Hence [see Eq. (23)],

C 'm
Q 9

0.8

Q. 7-

0. 6 10

I

particles per site. This requires a considerable spread in
the depletion width for both Cu and 0 sites.

Let us now calculate the average azimuthal spin
(S~") = {@oiS~"iso)/(@os%'o) at an arbitrary site in
the chain. Simple manipulations lead to the average spin,
say, for a Cu site, as

~ ~ ~ ~ ~ ~ e ~ ~ ~
~ s

0.8- 1.5-

0.6-
M' e4

0.4-

0.2-

10

1.25-

0.75-

0.5-

0.25-

0
0

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

10 12 14

FIG. 3. Bulk charge on the d site versus V . In the
Kondo limit (V = 0), the average occupation on the Cu
site is 1. As the hybridization decreases to zero, the Cu site
empties in favor of a doubly' occupied 0 site.

FIG. 4. (a) Boundary charge distribution on the 0 sites

((n~)) and Cu sites ((n;)) for V = 5. (b) Boundary charge
distribution on the 0 sites ((n~)) and Cu sites ((n,")) for

V = 0.5.
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). fA l ' (W(R;A, 1)(L;A, 1(8q~R; A4, 1)(L;A4, 1(Z)
(40)

where 8& ——Q&M and Q& ——(0;~D; S,. "D,~0~). Using the explicit form of 8&, it is straightforward to show that
(L; A, 1~8&~R; Ap, 1) = 0 for a, P = 4, 5, 6 while (W~R; A, a) = 0 for o. = 1,2, 3. In other words, the azimuthal spin
at an arbitrary site vanishes in agreement with the singlet nature of the ground state. Notice that the expectation
value of an arbitrary boson operator depends solely on the eigenvalues A for o. = 4, 5, 6 and their corresponding
right (left) eigenvectors because (W~ projects out the remaining subspaces. This is no longer true for the two-point
correlation functions which we now consider.

The evaluation of equal-time two-point correlation functions for boson operators offers no new difFiculty. Below we
concentrate on the bulk correlations and neglect boundary effects. Up to a normalization factor, the charge-charge
correlation function is given by (i & j)

(41)

for p = p, d. In (41), we have commuted the boson operators n~, p = p, d, through the local supermatrices so that
their position is adjacent to the corresponding local matrices D; (P, ). We can then proceed as in the previous
calculations, evaluate local expectation values, and in the thermodynamic limit we obtain (p = d, p)

where

s~i (L' A4' 118 IR' As 1)(Li As 1~8&~R' A4)

&4&6|"4~6
(42)

(L; A4, 1~8~~R; As, 1) = 2[2a4 + (1 + A)a4 as + Ab4 (1 + bs ) + Aas + 2bs + 2(l + A) j, (43)

and (L; As, 1~8~~R; A4, 1) follows from (43) by interchanging the indices 4, 6 m 6, 4. The explicit form of the various
terms in (43) is given in Appendix B. The charge-charge correlations are negative and decay exponentially on both

- —1
Cu and 0 sites with identical correlation length f, = ln ~&

~

. This indicates that the system behaves as a
B)

single-component charged liquid. Note that (, coincides with the decay length for charge depletion at the boundary
- —1

and so only one length scale controls the charge degrees of freedom in the model (at V = 0, (, = ln +~
—1

while as V -+ oo, (, =
z ). Figure 5 illustrates the nearest-neighbor charge correlations between the Cu sites and

between the 0 sites as a function of V . In the Kondo limit, the charge Huctuations between Cu sites are completely
suppressed as expected while the charge correlations between 0 sites are enhanced. The Cu-Cu correlations are
naturally suppressed in the limit of small hybridization and therefore go through a maximum in absolute value at an
intermediate value of V 1.6.

The longitudinal spin-spin correlations for Cu and 0 sites are evaluated similarly as (~i —j~ & 1 and p = d, p )

(L; A4, 1[8'
i
R; Ai, 1)(I,; A i, 1i8'

i
R; A4, 1)

(A4) ~4~1C4 1+1

where 8„' = lX/„' with the definition M„' = (Oz ~P S'D ~0z). Substituing the explicit form for the matrix elements,
we arrive at

(Ai ) I

—zl Aa4 (2+ Ab4~)

5 A4 ) A4A1+4, 1+1,1

Ai ) ' ' a4 (2 + a4 + b4 )S". S,")=-
A4 ) A4A1+4, 1+1,1

The spin-spin correlation function between Cu and 0 sites takes a di8'erent form, namely,

(46)

(Ail ' ' (L;A4, lp'g[R~A1&1)(L~Alslp'„')R;A4, 1)
(47)

which leads to

(48)

Note that the formula for the nearest-neighbor spin-spin
correlation between Cu and 0 sites requires some mod-
ifications as the labeling of the sites refers to clusters.
When j = i + 1, we have instead of (48) the following
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FIG. 5. Nearest-neighbor charge-charge correlation func-
tion for 0 sites (0-0) and for Cu sites (Cu-Cu). The
Cu-Cu charge correlation function has been scaled by a fac-
tor of 5. As expected, the charge Buctuations are completely
suppressed in the Kondo limit.

result

FIG. 6. Spin-spin correlation for nearest neighbors ver-
sus V between Cu sites (Cu-Cu), between Cu and 0 sites
(Cu-0) and between 0 sites (0-0). Notice that in the 6gure
the O-O correlation function has been rescaled by a factor of
7. In the Kondo limit, the nearest-neighbor spin Suctuations
between 0 sites vanish while between Cu sites and between
Cu and 0 sites the probability for antiparallel alignment is
substantial. This illustrates the inadequacy of a simple Neel
picture with two antiparallel aligned sublattices.

(,g, „) (L;A4, 1lg'lR;A4, 1) a4+a4

A4C4 g 2A4C4 g
(49)

where g' = Q&Ll„'. All spin-spin correlation functions
are negative and decay exponentially with a correlation

- —1
length (, = ln ~& . In the whole range of parame-

ters, (, is greater than (, . This however does not im-

ply that the spin gap is greater than the charge gap since
we have no inforination on the excitation spectrum. s'

Figure 6 illustrates the nearest-neigbor spin-spin correla-
tions versus V ~. The decay lengths for both Cu and 0
holes are identical and this supports the physical picture
of a single-component spin liquid involving the Cu and 0
sites. In the Kondo limit, the quantum fluctuations in-
duce a 28% probablility of antiparallel alignment between
the neighboring Cu and the 0 spins and a 20% probablil-
ity of antiparallel alignment between the neighboring Cu

spins while the correlations between the 0 spins vanish.
This is understood as a consequence of the fact that in
this limit the wave function (2) is a superposition of pure
local Zhang-Rice singlets. s'~~ Since all nearest-neighbor
spin correlations are negative, the classical Neel picture
does not apply to this class of insulators.

We next calculate the equal-time single-particle prop-
agators for Cu and 0 holes, i.e.,

(~.lf,',;.A,,-l~o)
7,$cJ 3 &2~/

(@ l@ )

where f . =dt f rop=dand ft =pt forp=p.
First, co~n~sider the 0-hole propagator and focus on the
m~merator of (50),

(p&~pj's) = ( I [vL+zj Dl, . . .P2Dzvzp ~p~~ vz D&P2 . . .Dl v&+& lo)
T t. t tt tt

W

(51)

To evaluate (51), we need to commute fermion operators through a sequence of local D~t& and P(t) supermatrices.
Each time a fermion operator is interchanged with a local matrix D&t& (P~t&), the odd (fermionic) sector of the
supermatrix picks up a minus sign. Introducing the notation Dt and P~, where

Dt

0

y —1

6f '

t
d', t

0
0
0

0
0

y —1

gf

0
7 (52)

pt
9

1

pi tpi 4.
t

Pl,t
t

pi tpj 4

0
ps, t
0

0
t t

piste 4.

t

0

0
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we commute the fermion operators so that (for i ) j)

(pjcrpja) = (Ol [vL+z] . . . DqPqp. Dq q. . . . Dqvq vq Dq. . . P D . . . . D qpiaPt. . . . Dl ul+ylo)t — -t t t t t . t t t (54)

- T
where vz

—— 1,p.&p-&, —p-&, —p.
&

. Froxn this point on, we proceed as in the evaluation of the correlation functions

for boson operators and obtain

(W]7~ JV 7' ~ E' 7 '+ ]Z)
(W]7i]Z) (55)

where JV„= lXl ~ and E~ = ~ „,with the definitions M ~ = (0~]P7 pt P~~O~), M „=(0;]P+ p; P~~O;).

In (55), we have used the notation 8 = (0;]D+ DJ]0,), M = (Oz~P+ P~]0~), and 7 = ZM Th. e latter has the
(~

same eigenvalues and degeneracies as 7, yet its right (left) eigenvectors are different and labeled by ]R
~
L;A, a)

(see Appendix 8). Similarly, the Cu-hole propagator follows as

7-' ~ 'g 7-L-']Z)

(Wi~ ]Z)
" (56)

where JV~ = Q ~JR, Z~ = Q,qM, and Q~, q = (0~]D+ 8 d~ D~]0~)t Q~, q = (0;~D+ d;,~D;]0;). Using (23), the
equal-time propagators become (]i —j~ ) 1),

(f,',, f»;)=I
A

I OZ, 4+I A'
I Os, 4

EA4) ' EA4)

for p = p, d and where

(57)

(L; A4, 1~X~, ]R; A, a) (L; A, a~8», ~R; A4, 1)
A A-C. ,.C-,.

In (58) we have for a = 2, 3 (see Appendix 8),

(58)

and

(L;A4, 1~JV&, ~R;A, 4) =a4+Ab4(1+a ' )+2a ' +2+2,

(L;A~, 4~8~,~~R; A4, 1) = —1+Aa ' + a4 (Aa ' + A+ 1)

(L;A4, 1]JV~ ]R;A, 4) = 2 a/ +a,"'+1

(X;A~i 4]fg~~R;A4t 1) = —A a ' (a4 + b4 + 2) + a4 + 1

(60)

(62)

The Cu- and 0-hole propagators exhibit the character-
istic exponential decay as do other correlation functions.
This feature is a first indication that (2) does not describe
a metallic state but rather an insulating state. While
we have no information on the excitation spectrum, we

can estixnate the single-particle gap 4 using the rela-

tion go ——it/t, where (o ——in (s ) is the correlation

length of the single-particle propagators [see (57)]. For

V (( 1, we find A ——,in agreement with the gap
obtained in the noninteracting theory. It is tempting to
use the same relation in the Kondo lixnit, in which case

b, —t [ln (2+ ~2)] . This is consistent with the inter-
pretation that the model reduces to a Kondo lattice with
J t discussed earlier.

For a finite chain with OBC, the system is not transla-
tionally invariant. In the thermodymamic lixnit, however,
the Fourier transform of the equal-time propagator yields

the exact momentum distribution for p = p, d,

(n»s ) = O»24F (k; (s) + Os» 4F (k; (s) + O»o

where O»0 =
2 (n»), and

(63)

2e ~ cos(k) —e-&

F(k;( ) =
1 + e—'& —2 cos(k) e-&

(64)

In Fig. 7, we plot the moment»m distribution of 0
and Cu holes for diferent values of V. The absence of
singularity in (n»z ) rules out a metallic state. In the
Kondo limit, the xnomentum distribution for the Cu holes
is completely Hat. It becomes sharply peaked around
k = 0 for small V. In contrast, the momentum distribu-
tion for the 0 holes is peaked around k = m in the Kondo
limit, characteristic of a conduction band severely broad-
ened by a large hybridization gap. For sxnall V, it is near
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unity except for a narrow region around k = 0. We have

compared these exact results for V « 1 with the momen-
t»m distributions obtained in the free theory when V is
small and found excellent agreement, except that in the
free theory (n~&) = 0 and (ns) = 1 at k = 0.

Similar manipulations to those presented above
yield the ground-state amplitudes (P~ Pt), where

0 dt
I p;+z —p; I, for the Zhang-Ricee)—cr) &

singlet, ~~ Pt = p; tp;& for O-O singlet, and Pt = dt &d,+~ &
for Cu-Cu singlet pairings. For example, for singlet pair-
ing between neighboring Cu spins (0 sites), a straight-
forvrard calculation leads to

i I g2o—~ (2o& + g& + 3)
(d~+gtd~td, .tCk~x ( 4) 4 1 4,1 1,5

(65)

(66)

We Snd that all pairing amplitudes decay exponen-
tially arith the same characteristic inverse decay length

(;„s —— ln
& I, which is identical to that of the

longitudinal spin-spin correlation functions. This re-
sult implies the absence of off-diagonal long-range order
(ODLRO) or power-law correlation for pairing in the sin-

glet channel.

IV. GENERALIZATIONS

In this section we briefly discuss the doped Emery
chain and various extensions of the model that have not
been investigated in previous works.

A. Doped Emery chain

There are various ways to insert particles into the
chain, the simplest one being IC'o ) =

p& l@o), etc. ,
) t

as suggested by Brandt and Giesikus. Let us write the
ground state for a chain with an additional particle in-
serted, say, an up spin at the 0 site l,

(67)
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0.6-
bQ~

0 4.

1.5

1.4 ~

(a)

0.2-
1.3

0
1.2.

(b)
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v-1 = 0.01
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FIG. 7. Momentum distribution of (a) the 0 holes and (b)
the Cu holes for V =0.01, V =1, V =5, and V
10. The absence of singularity in (ns'~) rules out a metallic
state. In the Kondo limit, the momentum distribution of
the 0 holes is characteristic of a conduction band severely
broadened by a large hybridization gap.

10

FIG. 8. Charge density on the 0 sites around the insertion
site for V = 0.5 (a) in the buHc and (b) near the boundary.
The additional charge is exponentially localized around the
insertion site.
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Applying techniques similar to those developped in the
previous section and neglecting boundary effects (t » 1),
we find

(L; A4, 1(Rpt (R; A4, 1)

= a4a4 + Ab4 (1+ a4 ) + (2+ A)a4 + 2 . (69)

(@+]t~@+]t) (L, A4, l~Rpt~R; A4, 1)
(@oI@'o) A4&4, i

where

(68)

From (68) it is easily seen that the norm is finite (see
Appendix B). This result also holds true when inserting
two particles and so forth. We may ask for the charge
distribution around the insertion site (i g t) and this is
readily shown to be (~i —

l~ & 1)

(e',„)nP[e' „) (L; A4, 1~@,~R; A4, 1) (As) ' '
(L; A4, 1(R„(R;A„l)(I;As, 1(8p(R; A4, 1)

(@& ~y& ) A4+4 i (A4 j AsCs i(L; A4, 1~Rpt~R; A4, 1)

(L; A4, 1[&,g[R; A, 1)(L;As, ll&plR; A4 1)

(A4 J A5+5, 1(L; A4, 1~&pt~R; A4, 1)
(70)

where

(L; A4, l)Rpg)R; As, 1)

I

obvious way.
There exists an alternative way of doping the system

which has not been noted previously. Consider the state

= a4as + Ab4 (1+as ) + (2+ A)as + 2, (71)
~

@2~+2)—
l —l I

~tPt
' '

-ti0) (74)

and (L; A4, l~Rpg~R; A5, 1) is obained from (71) by the
replacement 6 + 5. When i = t, (70) reduces to where at = 'Pat&at& Pand'with the definition

(@+itl"f1@+it) (L A4 ll&pal» A4 1)
(@' t[@' t) (L;A4, 1[Rpt(R;A4, 1)

' (72)
~t t gt t t t dt t t
~l I l —a,$ l,tI I+a,tel+a, $ ~l —a, t' l,,/~i+a, tel+a, $

t t gt t + t t dt tI l —a,g~l —a,$ l,/~i+a, $ ~l —a,tI l —a,$ l,gI l+a, t
where

(L; A4, 1~Qpy~R; A4, 1)

= 2a4~a4 + Ab4 (2+ a4) + 2(1+ A)a4 + 4 . (73)

In Fig. 8 we plot the charge density measured &om
the doped site versus V . We find that the addi-
tional charge is exponentially localized around the in-
sertion site. For large distances (~i —t,

~
&& 1), the decay

length (a p,a = ln
~

~z
~

coincides with the charge

correlation length (, of the undoped chain. At small
hybridization, the charge is spread over a region of sub-

stantial width (at V i = 10, it is about 15 unit cells)
whereas at large hybridization it is localized within a
few unit cells of the insertion site. This is consistent
with the picture that at large hybridization the addi-
tional charge can easily be accommodated on the Cu and

0 sites. On the other hand, when V is small, the ad-
ditional charge has to redistribute essentially among a
large number of 0 and Cu sites. We have also investi-
gated the charge distribution when the insertion site is
at the boundary of a long chain. For comparison, we plot
in Fig. 9 the charge density at the insertion site versus
V . As expected, the charge accumulation on the in-
sertion site is larger in the bulk than at the boundary.
Note that we can also insert a (many) particle(s) in a
state p&, with k =

& 2, m = 1, . . . , L+ 1, and where

p& ~ ——
L,+2 ~+l sin I,+2j pz~. The norm of this

state is then related to the momentum distribution in an

~t Pt 0 (76)
- 2

for o =t, $, since n~t = 0 and (a~t, P&t) = 0 for j g t.
In fact, we can increase the amount of doping by replac-
ing an increasing number of P clusters at the cost of o.

1.9-

1.8.

1.7

1.6

1.5-

v-'

I

10

FIG. 9. Comparison bewteen the charge density at the
insertion site (a) in the bulk and (b) at the boundary of a
long chain. The charge excess at the insertion site is larger in
the bulk than at the boundary as expected.

(75)

To show that (74) is an exact (highly degenerate) ground
state of the doped system with two additional particles,
it is suKcient to verify that



49 EXACT GROUND-STATE CORRELATION FUNCTIONS OF THE. . . 8893

clusters until the chain is completely filled. (This corre-
sponds to having half the clusters of o, type and half of

P type. ) Defining a supermatrix 6&t as

where II& denotes the Hamiltonian (1) where the sum-
mation over j excludes the cluster I. Introducing the
defect-cluster operators p& as

0
0

l 0

0

0
0

~i~g

dl, f
we can simply write

0

0

0

de
(77)

bV 6 t tp
, l di. —

V pi+i. J—i. , l (80)v'2t2+ V2 p

the Hamiltonian (79) can be written as (d+&
——Pd&t 'P)

Hs' "' = [ NC—+ 2 (t —tp) + (e& + 2t) R]li'P

(78)

Applying the techniques developed in the previous sec-
tion, we can evaluate the charge distribution around the
insertion sites. In all cases, we find that the charges
are exponentially localized. That the ground state of
the doped chain is highly degenerate is a rather peculiar
feature. Nonetheless, in the limit V ~ 0, this massive
degeneracy is consistent with the dispersionless upper hy-
bridized band in the noninteracting system.

B. Chain arith defects

We can solve the models of Refs. 1—4 with defects. The
solvability condition leads to a set of constraints on the
parameters of the model. For example, consider the 1D
Emery model with one defect at lattice site l, i.e.,

Hc'"" —Hc+P(8c).
1 prcc .pi + H.c.)

+Vs ) ~ di (pl+ldp J i8p) + H c,~

+Eg) Ai '+ tp ) (Ai + 7Li+i)]'P, (79)

r ). ~' ~' + ) .zi ~r'.
I 8(gf),n ~ j

(81)

provided that parameters are restricted to the manifold

Vp

Vp
' (82)

V2
ez+2t = eg+2 t (83)

ep —e&p+ tp+ t
Vo = to

2
(84)

~
@defect)

~ ~

i=1,a
~ 5 ~

i=l, cr

(85)

Again, dramatic simplifications occur in the calculations
when introducing the supermatrix

The Hamiltonian (81) comprises a constant and a posi-
tive semidefinite piece. The form (81) implies a unique
ground state,

/tot
Vpd) ~

t

Vpd) t

Qtpt

0

0

Qtpt

Vov„
0

—Qtpt
(86)

and wrlttlng ~lt~l4 as we consider is as follows

rt
ltplg

—— vl l vl (87)

C. 2D three-band model

In this language, the evaluation of correlation functions
is straightforward.

IIP='P ) egdt d; +) spat p;
4i'

+8„) ) ((—i)M"dt pc +H.c.
)

i,cr j~(i)

+8~ P
'

P ((—1) p, p, +PH.Cc.) 'P, (88)
~~(')

Finally, we would like to point out that it is possible
to solve a 2D three-band model where a copper atom
is surrounded by four oxygen atoms in the plane. This
model is physically closer to the original 2D Emery model
than the d-p model discussed in Ref. 3. The Hamiltonian

where

even for j =i —
2

odd for j =i+ 2

or j =i —&&;

or j =i+ &2,
(89)
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and

even for j =i+ 2+&,.
odd for j =i ———

&2 .2
(90)

In the above formulas the Cu-Cu distance is taken as
unit of distance, x and y denote a set of basis vectors,
and j C (i) means that the sum is carried over nearest
neighbors of the same ion type and so (88) contains a
direct O-O hopping (through a central Cu site) which
is absent in the original Emery model. The phases in
(88) are chosen as in Ref. 11. We next define the cluster
operators

1 P gt V-~
Ql + 4t2/V2

x —t — t t t
I'~. —I'&. +I'zs +&g4 (91)

Hs = [ NC'+ (—e„+2t)n]LP+ C') n, cat

(92)

v2 V2
provided ~~ + 2 &:6p + 2t and where C' = 4t + —, .
Again, the form (92) allows us to shows that (88) has a
unique ground state given by

where j, a = 1, 2, 3, 4 label neighboring 0 sites starting
&om the right and moving counterclockwise around the
central Cu ion. Moreover, we have set t„g ——V and t„„=
t. The three-band Hamiltonian (88) can be separated
into a constant and a positive semidefinite piece as

the result obtained in the small-hybridization limit. Our
calculations suggest that the model interpolates between
the intermediate-coupling Kondo lattice and the nonin-
teracting band theory.

Moreover, it is worth emphasizing that the band filling
for which the model is exactly solvable makes it inappli-
cable to the high-T superconductors. The exponentially
decaying correlation functions as well as the fact that
the insulating phase of the weak-hybridization limit is
continuously connected to the Kondo regime imply that
the ground state is an insulator for all values of the hy-
bridization and does not exhibit ODLRO or power-law
correlation in the singlet pairing channel. Based on the
local structure of the wave function, we conjecture the
absence of ODLRO in the singlet pairing channel for this
class of wave functions in one and higher dimensions, in
contrast with a recent speculation.

We have doped the 1D Emery chain and found a mas-
sive degeneracy for the ground state of the doped system
This degeneracy, however, is a rather peculiar artifact
which results &om the restrictions in parameter space
and forbids us to evaluate interesting properties.

We have shown that it is possible to introduce de-
fects in the system without spoiling the solvability of
the model and introduced a 2D three-band Emery model
whose ground state is also solvable. Our exact results in
1D may be used to check approximations based on the
slave fermion (boson) methods or as inspiration for new
variational wave functions. The extensions of the method
devised in this paper to other models such as the peri-
odic Anderson model are straightforward, though numer-
ical work is required in this case and a complete analytic
solution is difBcult.

(93)

It is interesting to note that for the Cu-0 ceramics, ep—
3.6 eV, a value that is consistent with the restriction

ep —eg ——2 ——t 3.9 eV where —= ~~" —2 andV V
t ~ss

t~ —0.65 eV (compare with Ref. 14). However, for a
band filling corresponding to two particles per unit cell,
the model (88) is far inside the highly doped regime and
the solvability of (92) appears irrelevant to the interesting
region of small doping. Though we have not succeeded
in evaluating the correlation functions of the 2D three-
band Emery model, we speculate that the ground state
(93) describes an insulating state, which in the regiine
where tpd ) t~ should be of the Kondo type.
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APPENDIX A

This appendix is devoted to the proof of a lemma which
we use in Sec. II.

V. CONCLUSION

In s»mmary, we have shown that the ground state of
the 1D Emery model with infinite on-site repulsion on
the copper sites is unique and evaluated all equal-time
correlation functions in the ground state. We find that
the latter decay exponentially with distance and that es-
sentially three length scales (charge, spin, and propagator
correlation lengths) determine the static properties of the
model. While we have no information on the dynamics,
our estimate of the single-particle gap is consistent with

Lemma

Consider a chain of 2L + 1 sites and let ~40) denote a
state with 2L particles such that a,. ~40) = 0, for i =
1, . . . , I, and o =g, $. The cluster operators are defined
by a; = g a&.ct, where ct denotes a fermion or

2Hubbard operator with the property that Ict ) = 0.
Then ~%'s) can be written as
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t t t t
('@p) = ) ) /4(vi . . . vL, (vi . ~ . vr)c g. . .c tc ~

~ ~ ~ c g(0)
(v) (v')

(Al)

where (v) = (vi & v2 &.. . vr, ), and v~, v'. refer to lattice
sites of the jth cluster (see Fig. 1). Note that the correla-
tion of no double occupancy on the Cu sites is irrelevant
to the lemma and the latter holds true even when the
Hubbard operators are replaced by the usual fermion op-
erators. Moreover, the generalization of this lemma to
the models discussed in Refs. 1—4 in one and two dimen-

sions is possible. For the 2D Emery model introduced in
Sec. IV the proof is a straightforward extension of that
presented below.

Proof

Without loss of generality, we restrict our discussion
to the sector S' = 0. Our first goal is to classify the
three-site clusters according to the number of particles
n, and the value of azimuthal spin S; which are not lo-

cally conserved quantities. We wish to verify in each
case whether or not the corresponding cluster configura-
tion fulfills a condition necessary (but not sufficient, see

Sec. II) for the cluster to be annihilated by at
(1) n, = 0 and S; = 0 [see Fig. 10(a)]: Such a clus-

ter cannot occur in a ground-state configuration. nt
is a linear combination of creation operators acting on

different sites and so at (cluster) = 0 cannot be fulfilled

locally for this cluster.
(2) n, = 1 and S' = k2 [see Fig. 10(b)]: This cluster

cannot occur because u, (cluster) = 0 cannot be fulfilled

simultaneously for o =g and o =$.
(3) n = 2 and S,* = 0 [see Fig. 10(c)]: This type

Ji
(b) (:

I

of cluster is not inconsistent with the requirement that
at (cluster) = 0, essentially because when acting on (4'p)

with o.; at least two identical con6gurations are gener-
ated which may cancel each other (provided the coeffi-
cients are appropriately chosen).

(4) n, = 2 and S,* = +1 [see Fig. 10(d)]: This type
of cluster is not allowed because a, (cluster) = 0 cannot
be fulfilled simultaneously for o =t and n =$.

(5) n, = 3 and S; = 62 [see Fig. 10(e)]: This type of
cluster is not excluded a priori by the requirement that
at (cluster) = 0.

(6) n, = 3 and S; = +z [see Fig. 10(f)]: This type
of cluster is not allowed as at (cluster) = 0 cannot be
fulfilled simultaneously for o =f and o =$.

(7) n, = 4 and S; = 0 [see Fig. 10(g)]: this type of
cluster is allowed.

(8) n, = 4 and S; = +1 [see Fig. 10(h)]: This type of
cluster too is permitted.

(9) n, = 5 and S; = +2 [see Fig. 10(i)]: This
type of cluster is not excluded by the requirement that
at (cluster) = 0.

Consider now an arbitrary configuration of 2L particles
(L up spins) with no doubly occupied Cu sites. Classify,
starting from the left end of the chain, all local cluster
con6gurations in the above categories. If at least one
cluster configuration encountered in this classification is
of type (1), (2), (4), or (6), discard the corresponding
configuration since at (cluster) = 0 cannot be fulfilled
locally. We are then left with configurations which only
contain clusters of types (3), (5), (7), (8), and (9).

For convenience, we now distinguish three cases:
(i) We first focus on configurations with no doubly oc-

cupied 0 sites. Since we have 2L particles for 2L+ 1
sites, there is one vacancy (unoccupied site). Therefore,
there are L —1 clusters of type (5) and one of type (3).
Starting &om the left end of the chain, we assign two-
particle groups to each cluster as illustrated in Fig. 11.
If, in this procedure, all two-particle groups drawn are of
type (A) (see Fig. 11) the configuration under scrutinity
can be written as

(A2)

FIG. 10. Possible three-site clusters, with different num-
bers of particles and azimuthal spin, occurring in an arbitrary
configuration.

where vz and v' denote cluster indices as in (Al). Thus,
the lemma is proven for this particular class of configu-
rations.

Next, assume that we have a configuration (ci) where
at least one two-particle group of type (B) occurs [ac-
tually two of type (B) must occur simultaneously in a
given configuration because S~ &

——0]. Denote by ip the
position of the vacancy and by i that of the type (B)
group (see Fig. 11). The vacancy is surrounded by up
and down spin since otherwise we would have a cluster
of type (4) which is in contradiction with the above as-

sumption. For a, t(@p) = 0 to be fulfilled another con-
figuration (c2) should occur in (@p) where the vacancy is
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FIG. 11. Two-particle group assignment.
{a} Various types of possible two-particle
groups: {A}allowed and {B)forbidden. {b}
Illustrative example of two-particle group as-
signment for a fixed configuration containing
type {B)groups. We have also sketched some
typical terms in the sequence of configura-
tions ~ci), ~cq), etc. , ~c„), where the latter
contains a type {4}cluster.
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located, say, to the right on a neighboring site (see Fig.
ll). Of course, we could equally well choose another con-
figuration ~c&) for which the vacancy is located to the left
of the original position. However, this freedom does not
affect the argument given below. The new configuration

~c2) then should fulfill a, &
~cluster) = 0, which in turn re-

quires another configuration ~c3), where the vacancy has
now "moved" one further step to the right. The con-

figuration ~cs) should as well fulfill nt +i ~cluster) = 0,
and so forth. In this manner, the vacancy is succesively
"propagated" to the right (left) and the set of equations

(6) generates a (nonunique) sequence of configurations

~ci), )c3)I(c3), ~ J ~c„) (we assume that all members of the
sequence label different configurations) so that the last
configuration ~c ) has a vacancy adjacent to the group

(B) (see Fig. 11). The latter contains a cluster of type
(4) and that is inconsistent with the local constraint (6).
Therefore the configuration ~c„) together with the whole
sequence of ancestors should be discarded. Starting with

~ei), we may generate another sequence ~cz), ~cs),. . ., yet
after a finite number of steps we shall reach a configu-
ration with a cluster of type (4), which similarly should
be excluded in ~40). Had we focused on a configuration
which contained groups of type (A) only, we would have
generated sequences with no group of type (B).We con-
clude that for the type of configurations without doubly
occupied 0 sites the lemma is proven.

(ii) Next consider configurations where clusters of type
(3), (5), (7), and (8) occur. There are now N~ doubly
occupied sites and so N = Ng + 1 vacancies. Starting
from one end of the chain we assign two-particle groups
to each three-site cluster sequentially until we reach the
other end of the chain. If, in this process, no doubly occu-
pied site occurs, we proceed as in (i). We may encounter
a doubly occupied 0 site surrounded by an up and down
spin so that there may be an apparent ambiguity in the
group assignment (see Fig. 12). Since our aim is to fac-
torize the configurations into cluster operators, we may
choose the assigment such that the type (A) groups occur

(a)
Jl

I ~
I

' I

~
' /I

(B) (&)

{b}
Jl

'4/
/4 ' ' /IE ~ /JE

l~

(c)
il

/X 4/ W L/ /L
/L 4& /L

FIG. 12. (a) Possible two-particle assignment when dou-

bly occupied sites appear: The prescription we adopt is to
choose {1)whenever {2) occurs. {b}Illustrative example for
a configuration with doubly occupied sites and its associated
two-particle assignment. {c)Last term in the sequence where
the doubly occupied sites have been separated from the type
{B}group and a cluster of type {4}has emerged

at the expense of the type (B) groups. Given a configura-
tion with doubly occupied sites, we search for groups of
the type (B) in each segment (delimited by vacancies). If
a group of type (B) is adjacent to a doubly occupied site,
we can generate a sequence of configurations using the
constraint equations (6) which is such that the first term
in the sequence has the doubly occupied site separated
Rom the group of type (B) (see Fig. 12). The next config-
urations in the sequence will involve a vacancy "moving"
successively to the type (B) group and at the end of the
procedure a cluster of type (4) will emerge. According
to the above arguments, the associated sequence of con-
figurations should be excluded from the state ~IIIO). In
this manner we have eliminated all configurations which
cannot be written as in (A2). Ergo, the lemma is proven
for this case.



49 EXACT GROUND-STATE CORRELATION FUNCTIONS OF THE. . . 8897

(a)

(b)
I i )i

X/ /' 'I
/s &/ /s A

(B) coincides with the type (9) cluster, we first build a
sequence of configurations (this is always possible) such
that the doubly occupied site becomes separated from
the group of type (B).Then, by proceeding as in (i), we
generate a sequence that contains at least one cluster of
type (4) and so the whole sequence should be discarded.

Thus we are left with con6gurations that consist only
of type (A) groups. This completes the proof that the
state (%'o) can be expanded as in (7).

APPENDIX B
(c) XS ~ 5/

/4 && /k ~ /%

FIG. 13. (a) Environment for a cluster of type (9). (b)
The type (9) cluster: separating the type (B) group from the
doubly occupied sites. (c) The 6nal term in the sequence with

a cluster of type (4).

(iii) Consider finally configurations which include clus-
ters of type (3), (5), (7), (8), and (9). Again, starting
from one end of the chain we shall form all two-particle
groups. If a cluster of type (9) occurs, then at least one
adjacent cluster must have a vacancy on the Cu site (see
Fig. 13). Otherwise, the excess accumulation of particles
in the cluster of type (9) implies the presence of another
cluster of type (2) which is forbidden. If a group of type

I

In this Appendix, we present explicit expressions for
the matrices g,M, etc. and the right (left) eigenvectors
of 7 which are referred to in the bulk of the paper.

The vector IW) = (0~ Iv~ v~t(0z), which projects into
the subspace generated by A4, A5, and A6, is given by

IR;Ai 1) = [1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ],
(B1)

while IZ) = JH IW) is simply

IZ) = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ], (B2)

as is readily seen by inspecting the first column of M
(see below). The matrices 8 = (0;IDT 8D, I 0;) and M =
(0;IP; P; (0,) are given respectively by

0 0 0
0 0 0
0 0 0
0 0 0
0 A 0
A 0 0
0 0 0
o o A
0 0 1
0 0 0

—1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0

0 o A
0 A 0
0 0 0
0 0 0
0 0 0
0 0 0

—A 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 —A 1
A 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 A
0 0 0
0 0 0

0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
A 0 0
0 0 0
o o-A
0 A 0

0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 0
0 —A

—A 0
0 0
0 0
0 0
0 0
0 0
0 0

0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 A

—A 0
0 0
0 0
0 0
0 0

(B3)

1
0
0
0
0
1
0
0
0
0
1
0
0
0
Q

1

0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 Q 0 Q —1
1 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 —1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 Q 0 0 0 0
G 0 Q 0 0 Q

0 0 0 1 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 A 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 —1 0 0 0
0 —1 0 0 0 0
0 0 0 Q —1 0
Q Q 0 1 0 0

0 0 1
0 0 0
Q 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 1
0 —1 0
0 0 0
0 0 0
0 0 Q

0 0 0
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We now list all (right and left) eigenvectors of the "transfer matrix" 7 . The Ai right eigensubspace is five dimensional
and is spanned by

IR Ai 1) = [0 0 0 0 0 0 0 0 0 0 —1 0 0 0 0 1 ],

IR;A„2)=[oooooooooooooolo],

IR;Ai, 3) = [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ],

IR;Ai, 4) = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ],
IR;A„5)=[oloooooooooooooo].

The right eigensubspace to A2 is spanned by

IR A„l) = 0 o a,"' o o 0 o o o 0 o o o 1 o o

(85)

(87)

(88)

(810)

R A2 2) = 0 0 0 0 0 0 a2' 0 0 0 0 0 1 0 0 0 (811)

IR A2 3) = 0 0 0 az' 0 0 0 0 0 1 0 0 0 0 0 0 (812)

IR;A»4) = 0 0 0 0 0 0 0 a2' 1 0 0 0 0 0 0 0 (813)

where a ' = ', a ' = — A a ' = —a ' and a ' = —a ' . The right eigensubspace to A3 is spanned byR1 A —A R2 A R3 R1 R,4 R,2
2 A ' 2 Ag —A' 2 2 2 2

IR;As, l)= 0 0 as' 0 0 0 0 0 0 0 0 0 0 1 0 Q (814)

IR As, 2) = 0 0 0 0 0 0 as' 0 0 0 0 0 1 0 0 0 (815)

IR As, 3) = 0 0 0 as' 0 0 0 0 0 1 0 0 0 0 0 0 (816)

IRA, 4)= 0000000a ' 10000000 (817)

where a3' —— 'A, a3 p A a3' ———a3', and a3' ———a3' . The right eigenvectors to the nondegenerateR)& A3 A R)2 A R 3 R 1 R 4 R 2

S
eigenvalues A4, A5 and A6 are, respectively,

IRA41)= a4 0000b4 0000100001 (818)

IRA51)= as 0000bs 0000100001 (819)

IR;As, 1) = [as 0 0 0 0 bs 0 0 0 0 1 0 Q 0 0 1 j, (82o)

wherea~ =~ A 2andb- =A,. —A —2 —
q A 2for j=4, 5, 6.2— 3—

The left and right eigenvectors to Aq are identical. The left eigensubspaces to A~ with j = 2, 3 are obtained by
performing the replacement a ' ) a. ' in (810)—(817) where a. ' = A) —A, a. ' = —

& &, a ' = —a. ' and

a. ' = —a. ' . Finally, the left eigenvectors to A) with j = 4, 5, 6 are as in (818)—(820) except for the replacement

~ b. ' where a. —A- Q 2 2A and b~

The normalization constants follow then as C = h ph g(L; A, aIR; Ap, b): Ci i ——2 and Ci ~ ——1 for a = 2, 3, 4, 5;
C~ ~ = 1+ a a ' for o. = 2, 3 and a = 1,2, 3, 4; t ~ q

——2+ a a + b b for o. = 4, 5, 6. Moreover, the weights
p = (WIR;A, l)(L;A, 1IZ) are readily calculated as p = a (a + b + 2), for n = 4, 5, 6.
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It would excessively lengthen the paper, should we display all matrices Q~, B~, 8&, etc. Since the method of
performing a direct product and evaluating expectation values is elementary, we shall omit most of these matrices
and content ourselves with mentioning the matrices l:, M, and 7 which are required in the evaluation of the fermion
propagators. The latter differ &om E., M, and 7 by important phases which take into account the fermion nature of
the underlying particles. Below, we also give the right (left) eigenvectors of 7. Notice first that l: = (0;iD+ DtiO;),
M = (0;iP; P; i0;), and iW) = (O~ivz v. iOz). On the other hand, l: = (0;iD; D, . i0;) and JH = (0;iP; P; i0;)
are given by

0 0
0 0
0 0
0 0
0 A
A 0
0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 0

—1 0

0 0 0 A
0 0 A 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 —A 0 0
A 0 0 0
—1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 —1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
0
0
A
0
0
0
0
0
0
0
0
0
0
0
0

0
0

—A
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

—1
0
0
0
0
0
0
0
0
0
0
A
0
0

0
0
0
0
0
0
0
0
0
0
0
0
A
0
0
0

—1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 —A
A o

0
0
0

—1
0
0
0
0
0

—A
0
0
0
0
0
0

0
0
0
0
0
0
0
0

—A
0
0
0
0
0
0
0

0 —1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 A

—A 0
0 0
0 0
0 0
0 0

(B21)

0
0
0

—1
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
A
0
0
0
0

—1
0
0
0
0

—1

1 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 —1 0 0 0
0 0 —1 0 0 0
0 0 0 0 0 0

—1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 —1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

—1 0 0 0 0 0

and 7= l A,
1+B 0 0 0 0

0 A 0 0 0
0 0 B 0 0
0 0 0 B 0
0 0 0 0 A
A 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 A 0

—B 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 —A 0 0
0 0 0 0 0

—B O O O O

0
0
0
0
0
0
A
0
0
0
0
0
1
0
0
0

0 0
0 0

—1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 —1

—1 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
A —A
—1 B
0 0
0 0
0 0
0 0
0 0
0 0
0 0

—1 0
0 0
0 0
0 0
0 0
A 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 —1
1 0

0 —1
0 0
0 0
1 0
0 0
0 —A
0 0
0 0
0 0
A o
0 B
0 0
0 0
0 0
0 0
0 1

0 0
0 0
0 0

—1 0
0 0
0 0
0 0
0 0
0 1
1 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 A
0 0
0 0
0 0
0 0
A 0
0 B
0 0
0 0
0 0

0
0
0
0
0
0
0
0
0
0
0

—1
0
0
0
0

0
0

—1
0
0
0
0
0
0
0
0
0
0
A
0
0

—1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

0 —1
0 0
0 0
0 0
0 0
0 —A
0 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0
A o
0 B

(B22)

(B23)
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The characteristic polynomial of 7 is identical to that of 7 [see Eq. (24)] and so the eigenvalues of the two matrices
coincide. The right (left) eigensubspaces to Ai for both matrices are identical. On the other hand, the right (left)
eigenvectors to A for cr = 2, 3 are obtained from (B10)—(B17) by the replacement a+ ~ a+', where a ' = —a
for a = 1, 2, 3, 4 (a -+ a ', where a~' = —a ' ). Similarly, the right (left) eigenvectors to A, n = 4, 5, 6 follow
from the substitution a+ -+ a, where a+ = —a (a~ -+ a~, where a = —a~).
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