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Finite-size contributions to the free energy of a Quid confined between two parallel walls, separated by
a distance L, give rise to an excess pressure which is termed the solvation force f 1„(L). Using exact
transfer-matrix methods we calculate the analog of f„,„ for a two-dimensional Ising strip of infinite

length and finite width L —=na, where n is the number of layers and a is the lattice spacing, for bulk field

h =0 and fixed (+ /+ ) and (+ / —) boundary conditions on the spins in the surface layers. + and-
refer to up and down spins, respectively. f,'+,„+ ' is negative (attractive force) for all temperatures T and

for a given L has its minimum above the critical temperature T, . The amplitude of the force at the
minimum is about 6.6 times the value at T„the "Casimir" amplitude. In the (+ / —) strip a + —inter-

face develops at all subcritical temperatures and entropic repulsion gives rise to a positive fI,+1„' which

has its maximum slightly below T, . Universal scaling forms are derived for both cases and accurate ap-
proximations, valid for low, near critical, and high temperatures, are obtained. In the scaling limit,
L~ ~,t[—:(T —T, )/T, ]~0, the minimum of f,'+,„+' is given by nt;„=1.2642 and the maximum of

f,',+,„' by nt, „=—0.2735. We compare and contrast our results with earlier predictions based on

mean-field analyses and scaling arguments.

I. INTRODUCTION

When a simple fluid, or an Ising magnet, is confined be-
tween two parallel plates, or walls, of infinite area which
exert local surface fields h, and h„ the properties of the
fluid or magnet depend upon the distance L between the
plates and on the nature of the surface fields. A model of
this type is standard in fundamental studies of finite-size
effects in statistical physics. ' It also serves as an ideal-
ized representation of a Quid in a slitlike pore; the local
surface fields then model the substrate-fluid interactions
which give rise to adsorption phenomena. The phase
behavior of fluids confined between identical parallel
plates (h, =h„) has been the subject of several detailed in-

vestigations. More recently, the case of opposing sur-
face fields (h, h„&0) has attracted attention because of
predictions of phase behavior, very different from that as-
sociated with identical walls ' and (for dimension d & 3)
of long-ranged density (magnetization) profiles associated
with interfacial fluctuations. One important quantity
which arises naturally in the thermodynamics of confined
fluids is the solvation force, sometimes called the disjoin-
ing pressure, defined by

where co'" is the excess grand potential per unit area and
the derivative is performed at constant chemical potential
p, temperature T, and surface area A. f„,„ is a general-
ized force conjugate to the distance L between the plates.
For a fluid it is the excess pressure (over the bulk value,
fixed by the reservoir) arising from confinement and has
the property f,o~„(L )~0 in the limit L ~~. The sign of
the solvation force is of particular interest. It is generally
the case that for simple fluids confined between identical
walls f„,„(L}&0 for large L, i.e., the net force between
the plates is attractive for large separations. [This result

emerges directly from mean-field (Landau or density
functional) analyses. ' "] At small plate separations,
when excluded volume (packing) effects dominate,
f„~„(L)exhibits oscillations and such behavior has been
observed in force-apparatus measurements. ' Although

f„,„(L)&0, at large L, is not observed for simple fluids
between identical walls, a repulsive solvation force has
been calculated in mean-field treatments of a fluid subject
to opposing surface fields. ' When the temperature and
surface fields are such that one wall is wet by liquid (+)
and the other by gas (

—) (for L = 00 at bulk coexistence)
a soft-mode or interfacial phase develops at large L. This
phase exhibits a + —interface near the center of the slit
and f„,„(L}& 0 for temperatures above the wetting tran-
sition temperature T . A positive solvation force would

appear to be a characteristic of a special type of confined
phase; namely one that is dominated by interfacial fluc-
tuations. Alternatively, one might consider f,„(L}&0
as simply a manifestation of finite-size effects on the inter-
facial tension of the + —interface.

In this paper, we explore these ideas further and calcu-
late the "magnetic" solvation force, using exact transfer-
matrix methods, for a two-dimensional Ising strip subject
to two choices of surface fields: (i) symmetric (+l+)
with h, =h„and (ii) antisymmetric (+/ —) with
h ] = h ~ h ] is chosen suSciently large that a single
"wall" (L = ~) would be wet for all sub-critical tempera-
tures, i.e., 0 & T & T, . Case (i) clearly corresponds to that
of identical walls so we expect to find a negative solvation
force, whereas the boundary conditions in case (ii) are
chosen to ensure that, for bulk field h =0 and large L, a
nearly free + —interface can develop in the strip and
mean-field theory then predicts that the solvation force
should be positive for all temperatures. Mean-field and
scaling arguments also make specific predictions for the
temperature variation of the solvation force at fixed
(large) L. We inquire whether these predictions remain
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valid in the d=2 Ising model where fluctuation effects
are especially pronounced.

For an Ising system the analog of the solvation force is

where f'"(L}=F—Lf—
& is the excess free energy per unit

area, and f& is the bulk free-energy density. The quantity
f'" contains L independent surface contributions in addi-
tion to the finite-size contribution 5f'"(L). It is well
known that the latter exhibits certain universal or near-
universal features when the confined system is at the bulk
critical temperature T=T, and h=0. Fisher and de
Gennes' predicted

(1.2)

f i,
kit T,

L A]A~ 0 7 T T~ o (1.3a)

When they are of opposite sign, '

L' hh&0, T=T
kit T, 48

for L~ Do.

These confirm that, for T=T„f i„ is attractive for
identical surface fields, for example (+ /+), but is repul-
sive for opposing fields, for example (+ / —). Here we are

(1.3b)

where the amplitude A,„depends on the relative signs of
the surface fields h, and h„, but not on their magni-
tudes. ' The slow algebraic decay predicted by (1.2} is as-
sociated with bulk critical fluctuations, i.e., a divergent
bulk correlation length g&(T) —~

T T, ~

'.—For the d =2
Ising strip the amplitudes have been calculated exactly so
that the leading-order decay of the solvation force is
known exactly. When the surface fields are identical, '

concerned with the form of the solvation force over the
whole temperature range, not just at T, . At low tempera-
tures, T «T„ interfacial fluctuations (capillary-
wavelike) should dominate the large L behavior off i„ in
the (+/ —

) strip so there are interesting cross-over
effects. Some of these have been described in earlier work
on the magnetization profile' and on the density-density
correlation function' in the (+/ —) strip. We make use
of the techniques developed there to analyze the solvation
force.

Figure 1 shows an example of our results for f„,„.
These are calculated for fixed n =59 layers, i.e., a strip of
width L —=na, where a is the lattice constant. The tem-
perature dependence shown here is typical. In the
(+ /+) strip the solvation force is negative for all T and
has a minimum above T„while in the (+/ —

) strip it is
positive and has its maximum slightly below T, . The
magnitude of the solvation force is much larger for the
(+/ —

) case and it decays much more slowly with de-
creasing Tbelow T, .

Our paper is arranged as follows. In Sec. II we de-
scribe the theory, which is based on exact results by Au-
Yang and Fisher, ' and details of calculations for the
(+ /+) strip. Results are presented in both unscaled and
scaled forms. A single scaling function accounts accu-
rately for the T and L dependence of f,„ in the neigh-
borhood of T, . For temperatures sufficiently far below

T„ f„,„decays as exp( L/gb), in—agreement with
mean-field predictions. The determination of the solva-
tion force in the (+/ —

) strip is described in Sec. III.
Since the results of Ref. 18 do not apply with this bound-
ary condition we calculate the difference between the sol-
vation force in the (+/ —) and (+ /+) strips directly, us-

ing the techniques of Ref. 16 and 17, and combine the re-
sult with that for f„,„ in the (+/+) strip. An explicit
scaling form is deduced which describes accurately the
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FIG. 1. The solvation force
(in units of kP as a function of
temperature in the semi-infinite

Ising strip with (+ /+ ) and
(+ / —) boundary conditions.
The points for (+/+) were ob-
tained from the finite difference
(2.4b) by subtracting data for
n =59 and n =60. [The dashed
line for (+ / —) is merely a guide
to the eye. ] At T= T, the solva-

tion forces take their "Casimir"
values (1.3).
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position and shape of the maximum of f„,„. A discus-
sion of our results is given in Sec. IV.

Here

f'= —(I/n).f dyln[1+R "p],
0

(2.5)

13H—=K g cr;o+h. , go(x, 1)+h„go(x,n),
&ij & x x

(2.1)

where P= 1/kT, and K =I/kT is the coupling constant.
The sum runs over nearest neighbors (ij ) and the sur-
face fields act only on the spins in row 1 and in row n.
The fixed (+ /+) boundary condition

o(x, 0)=o(x,n+1)=+1; all x (2.2)

translates into h
&

=h„=K. Substitution into Eqs.
(A7) —(A17) of the Appendix of Ref. 18 gives the free en-

ergy per site, in units of kT, as

f(n, K ) =fb+2f /n +f '(n)/n, (2.3)

where fb is the bulk free energy, f is the (n

independent) surface contribution of each wall, and is f'
the finite-size interference term. The latter vanishes for
n ~ 00. The solvation force introduced in Sec. I is then
for our system

f...„= (Bf'/—Bn ),
or, as a finite difference,

f„)„=—[f"(n+1)—f'(n)] .

(2.4a)

(2.4b)

II. SOLVATION FORCE IN THE (+ /+) STRIP

Following McCoy and Wu', Au- Yang and Fisher'
have given exact formulas for the free energy of a semi-
infinite Ising strip with two surface fields h

& h„
(h, h„)0). The Hamiltonian H of the (isotropic) Ising
model is

where the factor P can be written as

P=(p+/p ) =g (V~/V~)

with

ar —=sin(y),

g—= (qoq, —pop, —c+1—co )/(qoq, +pop, +c —I+co ),
2 2V =—q0q, +p0p, +ceo, V~ =—q0q&

—
p0p&

—ceo

R =—(qo+q, )

and

S—:sinh(2K ), c =cosh(2K ),
p()

——(1—& ) /(2& )
'

p, =(1+pQ)'~, qo =—(pQ+co )'~

q
—(1+p2+ 2)1/2

For the discrete version (2.4b) we evaluated the in-

tegral

f„)„=(1/m )f dyln[(1+ Y/R )/(1+ Y)], (2.6)
0

with Y—:R P, numerically. Gaussian integration with
interval subdivision produced very accurate and stable re-
sults. One such curve for n =59 is shown in Fig. 1 and
results for several values of n are shown in Fig. 2. f„)„is
negative for all temperatures T and shows a minimum
above the critical temperature T, . For large n we used
the differential version (2.4a) which gives

0
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0

FIG. 2. The solvation force in
the (+/+) strip for n =69 (0),
n =99 (+), and n =139 (0).
(The dashed lines are guides to
the eye. )
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f &„=—(4/»& I d»&[Y/((+&'&](»(qo+q» (2.7&

again with the abbreviation

Y:PR—"=Pexp[ —4n ln(qp+q) )] .

At suSciently large n excellent scaling plots were ob-
tained using the scaling variables n f („and nt. Here
t —=(T T,—)/T, and the choice of scaling variables is dic-
tated by the standard finite-size ansatz for the free energy
at bulk field h =0, i.e., f=

~t~ IV(nt') or, equivalent-

ly, f=n "8'(nt }. For the d =2 Ising model the critical
exponents are a=O and v=1. The scaling limit corre-
sponds to n ~~ and t~O at constant X:—nt.

In order to derive the scaling function for the solvation
force we introduce the variable X:—pan, write
d(p=dw(1 —w ) ', and set ndw=dg, introducing the
new integration variable g= nw In t.he scaling limit
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FIG. 3. The modulus of the scaled solvation force
f„]„=n f„,„vs X=nt for (+—/+) strips. The sets of points are
obtained from (2.4) and correspond to widths n E[60,200],
while the solid curve is the scaling limit (2.9). Note that the
maximum (the minimum off„]„)occurs at nt;„=1.26424.

4n in[(1+Q()/n2)'~ +Qpln]=4Qp+

we find
f„»=-— exp[+8K,X] . (2.11)

„&„=im n

where

Qp exp( —4Qp )(Qp+ X )

n Jp Qp
—X+exp( —4Qp)(Qp+X)

'

(2.8)
The universal position of the minimum above T, is given

by

nt in=1.26424,

with value f~» = —0.430 516 312656. Recalling the
definition of t it follows

with X=2K,X. Note that in the limit t~O, pp=2K, t
since sinh(2K, ) =1. This scaling function was evaluated

by numerical integration. Figure 3 shows f )„plotted vs
X and compared with exact data from (2.4) for n
C [60,200]. The agreement is excellent and the correc-
tions to scaling are small on the scale of the graph. The
corrections appear to be largest near the minimum off,„. The scaling curve goes through the known point at
T, . Then X=0 and (2.9) reduces to

f )„(X=O)=— f dyy = — n(2.10).1 ~ 1 1

4m. 0 e&+ 1 48

and we recover (1.3a}.
Below T, a semilogarithmic plot reveals the exponen-

tial behavior of the solvation force, i.e.,
f~» -exp( L /g»). The decay—length is precisely g», the
true bulk correlation length of the Ising model. Ex-
ponential decay, with decay length gb, is obtained from
mean-field treatments' ' ' ' of fluids confined between
identical walls. The same decay also follows from an ex-
act treatment of the one-dimensional Ising strip subject
to two identical surface fields.

This result leads to a very good approximation, valid
for negative X and ~X~ not too large,

T;„/T, =1+C/n, (2.12)

where the value of the constant C is fixed by scaling:
nt;„=C.

There will be corrections to scaling and these are re-
vealed in semilogarithmic plots of f„)„computed for the
same X=nt but for difFerent n and t. These corrections
are of order 1/n in f )„and will yield nonuniversal
corrections to (2.12}.

There are three further remarks. First, instead of tak-
ing surface fields h

&
=h„=Ewe can make a system larger

by 2 rows, with n ~n+2, and put h, =h„+2= 00 so that
tanhh

&
=tanhh„+2=1. The numerical results agree with

those obtained using (2.5), as they must on physical
grounds. '

The second remark concerns free boundary conditions.
Putting h, =h„=O we obtain, after performing the limit-
ing procedure leading to the scaling form for f )„,an in-
tegral identical to (2.9) but with —X substituted for X.
Thus, in the scaling limit

f(++)(X) f(PP)( X) (2.13)

It follows that at T= T, the solvation force for free boun-
daries is the same as for (+ /+), see (1.3a). However, the
minimum of f'„,„' occurs below T, and the position is
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given by (2.12) with C replaced by —C. Although we are
not aware of any published derivation of the striking re-
sult (2.13) it is likely that this follows as a consequence of
duality.

Finally, for the Ising model, where the critical ex-
ponent a=0, we expect logarithmic terms of the form
X lnX to be present in the scaling function. Although
corrections to scaling manifest themselves quite visibly in
numerical results, the logarithmic term is not visible
directly. Note, however, in the integral defining f„&„ in

our (+ /+) strip, (2.9), the cases X)0 and X & 0 can be
distinguished because the integrand behaves differently.
For example for positive X, Qu

—X vanishes at )=0+,
whereas for negative X, Qu+X vanishes at (=0+ and

Q0
—X does not. This is discussed further in the Appen-

dix, where we extract the X lnX term in f„,„.

for tv, is [0,~/M ]. In the notation of Ref. 16 this equa-
tion is 5'(iu, )=Mdiv, . The program for the computation
of y, (K,n) is, therefore, straightforward: for a given

temperature T/T, and a given strip width M solve first
the transcendental equation for tv, and then invert (3.3)

with k=1. Before we present the results for the solva-
tion force several remarks are in order. The quantity y„
being the difference of the free energies of a strip with an
interface and a strip without, has the obvious interpreta-
tion of a surface tension. On the other hand, Onsager
showed the surface tension 0.0 is given by
ou/kT=u2 —u, . It can be seen from (3.3) that the On-

sager value is recovered in the limit co, =O, i.e., as
M ~~. Moreover, y &

is positive and, from (3.3),

y, )00/kT. At the critical temperature T=T, we ob-
tain' from the exact equations the following expansion:

III. SOLVATION FORCE IN THE (+ / —) STRIP

In the semi-infinite Ising strip with a (+/ —) fixed
boundary condition an interface develops between a la-
tent (+) phase and a latent ( —) phase for T & T, . In or-
der to investigate the solvation force in this case we can-
not use the exact expressions given in Ref. [18]. These do
not apply to this case. However, we can bypass this
difficulty by making use of the transfer matrix in the x
direction along the strip. This transfer matrix has been
formulated and diagonalized for fixed boundary condi-
tions by Abraham and Martin-Lof. Stecki, Maciolek,
and Olaussen' have applied a projection in order to ex-
tract the (+ / —) case out of the general solution of Ref.
22, which treats all four possible cases on equal footing.
Here we require only the eigenvalues. Now we take
h

&

=K and h„= K in (2.—1), corresponding to
~r(x, 0)=+1 and o(x, n+1)= —1 (in each column) and
we introduce the notation M:—n+1. The highest eigen-
value needed for determining the free energy of a semi-
infinite strip is (a) the quantity A0, as defined in Ref. 22,
for the (+ /+) strip and (b) Aae ' for the (+ / —) strip.
The free energy difference is then given by y&() 0), i.e.,

the free energies per site in units of k T are related by

f '+ '=f '++'+(1/n )y (3 1)

For small values of n we can again take the finite
difference instead of the derivative. Since f '„+,„+' is given
conveniently by (2.4) and (2.5), we have reduced the prob-
lem to calculating the quantity y, . All eigenvalues for
the transfer matrix are known in terms of the quantities

y &, y2, . . . , which are to be calculated from

coshy„=cosh(v2 —v, )+(1—costv„), (3.3)

where U2 =2K, U
&
=2K*, and the relation

sinh2K sinh2K=1 defines K*(K). The angles tuk and,
in particular co&, are obtained from a transcendental equa-
tion discussed in detail in Ref. 16 and the allowed interval

The solvation force is

f'„+~„'= —(B/Bn )(nf '+ ') =f '„+~„+'—(B/Bn )y&(K, n ) .

(3.2)

yi= —M —zv 2M +—1 — n. M +1

2 4 96

f'+ '= M +O(M )solv 48

at T= T„ i.e., we recover the known result (1.3b). The
other terms in (3.4) represent corrections to scaling. The
low-temperature finite-size behavior of y, is known

y", =(1/2PI )n M +0(M ), (3.5)

where the stiffness of the interface I /kT=sinh(tru/kT).
Thus, the low-temperature (capillary-wave) contribution
of the interface to fID~„' is also repulsive

(B/BM)y, =(1/gr)~'M —'+O(M ') .
--

(3.6)

Indeed, the repulsive contribution from y& dominates

fID~„' for all temperatures. This can be seen in Fig. l.
There is always a maximum of the —(By, /BM) contribu-
tion at or slightly below T, and in the scaling limit the
maximum is at T, exactly. Above T, the minimum aris-

ing from the (+/+) contribution is overwhelmed by the
repulsive contribution, which is invariably much larger in
magnitude. The origin and location of the maximum of
fI,+~„' can also be understood from scaling.

Scaling of y, has been discussed by several au-
thors. ' ' One of us has recently derived expansions of
the scaling functions for cok and yk for k=1,2. ' The
derivation of the scaling limit M ~~ and t ~0 is
straightforward. As M ~~, co,~0 and the transcenden-
tal equation for ~, takes the form

tan(Mcv, ) = + e ~ ~

0

where v0 = v ~
—v

&
=Iicr 0. As t ~0, v0

-=4K, t Writin—g.
y =Mes& we obtain the equation for y in the form
tany =y /( —Mua) or

(3.4)

The first term makes a positive contribution (n /2)M to
f,'0~„'. When the negative contribution —(m/48)M
from fI,+~„+ ' is added [see (3.2) and (2.10)] we find
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Mt=(4E, } 'y coty . (3.8)

and

Z
siny

(4E, ) 'y coty =X,

(3.9a)

(3.9b)

where y &[0,m]. This defines the scaling function Z(X),
with X=M—t At. t=O, y =m/2 so that Z(0)=m/2 and
Z'(0) = —4E,(2/n. ). The low-temperature limit,
X~—Do, of the scaling function Z can also be derived, '

thereby recovering (3.5).
Defining the scaled solvation force in the (+ / —) strip

by analogy with (2.8) it follows from (3.2} that

fsolv fsolv +~fsolv

with

(3.10}

(3.11)

Now for small y, , co, , and vo, Eq. (3.3) for y, can be ap-
proxirnated by y&=v&+co&, so for the scaled quantity
Z =—My, a parametric representation is

or

My, —=2(Ma /gb ) exp[ —Ma /g& ] (3.13)

as the high-temperature behavior. Note that scaling of
y &

is free of any singularity associated with the fact that
a=0 for the Ising model.

Near the maximum of Z we expand the parametric
representation (3.9) about y=n. /2 and invert the series
for y coty to obtain an expansion in x

x = —Mvo ——-4K,X. This quantity appears naturally and
is useful because vo is inversely proportional to the bulk
correlation length, i.e., Mvo= —Ma/gb above T, and
Mvo =Ma /2gb below T, . [In Sec. II we used the variable
X=x /2, which appeared in the integrand of (2.9).]

As y~O+, y coty~1 and X~(4E, ) '. This point
sets the upper limit of the range of the scaling function
Z(X), which is defined for —oo (X& (4E, ) '. At higher
temperatures we find an exponential decay of Z. As is
known, '

co& is then purely imaginary, coshy, is given
by another equation that replaces (3.3) and we obtain in
the scaling limit

Z —=2(x ) exp[ —x ]

or in terms of the scaling function Z =My &, hf„,„=co+c2x +c3x + (3.14)

b f~,„=Z—X(dZ/dX) . (3.12)

Figure 4 shows the comparison of results obtained nu-
merically from (3.11), as described earlier, for values of
ME [60,200] with those calculated from (3.12) using the
scaling function Z(X) given by (3.9). The maximum of
the right-hand side of (3.12) occurs precisely at X=0, the
critical temperature.

In order to analyze these results further it is convenient
to introduce, in addition to X=Mt, a new variable

with the coefficients co=a/2, c2= —( 8+m )/m—, and
c3 = —8( 48+5m—)/(3n), . . . . . . At X=x =0 this
function is a rnaxirnum and takes the appropriate value
m. /2. It approximates bj„,„accurately for small ~X ~.

The genesis of the solvation force in the (+ / —) strip is
now clear. On adding the positive contribution 5 f „&„ to
the negative term f,',+,„+' the resultant is positive, with its
maximum shifted to negative X, i.e., below T, . Figure 5
shows the result of this addition; the upper curve refers
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FIG. 4. b,f,„, the difference
between the scaled solvation
forces in the (+ / —) and (+ /+)
strips, vs X:—nt. The sets of
points are obtained from finite
differences and correspond to
widths n E [59,199] while the
solid line is obtained from the
explicit scaling function (3.9)
defined for X( (4K, )

(=O.5673), see text. Note that
the maximum is at X=O, the
critical temperature.
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FIG. 5. The scaled solvation
force in the (+ /+ ) and (+ / —

)

strips vs X—=nt. Note that the
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maximum of J„~„occurs at
nt, „=—0.2735. Two separate
portions, valid for low and high
temperatures, are used to con-
struct the scaling function for
the (+ / —) strip, see text.
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to fI,+&„'(X}and the lower to fI,+~„+'(X). The minimum
in the latter was located earlier (see Sec. II), while the
maximum in the former can be determined by approxi-
mating f,',+~„+', at negative X, by means of (2.11) and
b f»&„by (3.14). That is, for —0.4&X &0, the approxi-
mation

f,',+,„'=co+c,x'+c,x — exp(2x )
48

(3.15)

T,„/T, =1—C/n, {3.16)

where the constant C=0.2735 is fixed by scaling. Since
there are corrections to scaling, which are again of order
1/n in f»&„, we can expect nonuniversal corrections to
this formula.

The high-temperature portion of f,',+,„',also shown in
Fig. 5, was obtained using (3.13) in (3.12) for Af„~„and
the scaling form for f, &„. This portion overlaps with(++)
the low-temperature portion, given by (3.15), in the re-
gion X—0.5, where f„&„'—1.3.

We should emphasize that our procedure for calculat-
ing f'+,„', which adds the contribution from y, to
f '„+&„+', is physically well motivated and is not just a tech-
nical artifact. The free-energy difference between the
(+ / —} and (+ /+) strips must be dominated by the in-
ferface contribution but this contribution is simply y, ,
the interfacial tension in the finite-size strip. Were we to
employ the transfer matrix of Ref. 22 throughout, we
would find that the free energy of the (+ /+) strip re-

is rather accurate and we can locate the maximum at
X—= —0.2735 or x =-—0.482 111 with value
f'„+~„'—- 1.53315103. This result agrees precisely with
direct numerical estimate. Thus, for an individual strip
of width M =—n + 1, we have, in the scaling limit,

quires al/ quantities yk, k=1,2, . . . , n+1 not just y, .
The yk sum to 21nAO but this quantity is obtained much
more easily from the Au-Yang and Fisher' approach.

IV. DISCUSSION

In this paper we have undertaken an investigation of
the solvation force in two-dimensional Ising strips subject
to two particular [(+/+) and (+/ —)] boundary condi-
tions. Our results are restricted to bulk field h =0 as the
transfer-matrix techniques we have employed are not
easily extended to h%0. Although we do not have a
complete picture of the dependence of f»~„on the ther-
modynamic fields I., T, h, h&, and h„, our study has re-
vealed several significant features and when combined
with the results of mean-field theories, "' provides
some insight into the global behavior off„,„.

The striking feature of the result for the (+ /+) case is

that the minimum of f»~„ is located at T)T, . The same

feature is observed in lattice mean-field calculations,
where it is also found that t;„=—(T;„—T, )/T, ~L
consistent with standard finite-size scaling arguments; re-
call that U =1/2 in mean field. Such a minimum above
T, is also observed in continuum density-functional re-
sults, based on a nonclassical Fisk-Widom-type free ener-
gy. It is not immediately obvious why the minimum, at
h =0, should lie above the bulk critical temperature T, .
Recall that for surface fields h, =h„)0 and bulk dimen-
sion d 3, two phase coexistence occurs in the confined
system, with finite {large) L, along a line in the (h, P
plane which ends in a (capillary) critical point (hcL, TCL)
that depends on h, . TCL lies below T, and bc~ &0.
The coexistence line has a positive slope and is located at
h &0, for example Fig. 12(c) of Ref. 7. f,'+&„+' exhibits
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singuar beha»or at ("ci. Tci. ) As the structure of
f(,+)„+) for T & TcL and h &0 has not been investigated in
any detail we are not able to link the minimum at T;„
and h =0 to the singular behavior at Tcr. Note that the
line h =0 corresponds to a single phase region for all tem-
peratures. The situation is similar in d =2. Although
there can be no true phase transition for finite L there is
still a line of sharp (very weakly rounded) transitions in
the Ising strip ending in a pseudocritical point.

Equation (2.12) can be reexpressed as
L/gb (tm;„)=2.228, since gb =a(4K, t) ' for t &0. That
is, the minimum of f'+,„+' occurs when the strip width
=2.23 times the bulk correlation length. [Incidentally,
this ratio is somewhat smaller than the estimates of
Nakanishi and Fisher for the same ratio of length scales
at the shifted critical temperature (hei, TcL ). For exam-

ple, for h, = ~, they estimate a ratio of 4.61 for the sim-

ple cubic Ising model. ]
The magnitude of f i„ is also important. Since the

value of the scaled quantity 1'+,„+'(X)at its minimum (see
Figs. 3 and 5} is very different from that at X=0, (the ra-
tio of these quantities is about 6.6) knowing only the
value at T„(1.3a), is not sufficient to estimate the overall
strength of the solvation force. We should emphasize
that the scaling function f,',+&„+' is universal, in the sense
that it should describe the critical point scaling of f,„
for all h, =h„)0. The low temperature behavior will de-
pend on the value of h &. In particular, if h

&
is such that a

wetting transition occurs, for L=00 and h=0, at T )0
(Ref. 31}then we expect to find specific features in fIo(„+)

in the neighborhood of T . These are not present in the
scaling function. For free boundaries, Ii, =h„=0, Ising
syminetry requires two-phase coexistence to be at h =0
and it is known that for d & 3 and large but finite L, a line
of coexistence extends to the critical temperature
TcL & T, (Refs. 3 and 4), see also Fig. 12(a) of Ref. 7.
Thus, we might expect the minimum off '„,„' to be locat-
ed at h =0 and T=TcL. In the d=2 strip there is no
true coexistence or criticality but we would expect the
minimum to lie near the pseudocritical point which is
below T, . Such an observation is consistent with our re-
sult (2.13).

Turning now to the (+ / —) strip it is instructive to
compare the present results with the predictions of Parry
and Evans. The Landau-theory results for the case
h„= —h ), h =0 show f '+,„'& 0 for T & T with the
maximum slightly below T„see Fig. 10 of Ref. 7. That
is, the temperature dependence of f,(,+)„) at fixed L is
similar to that which we calculate for the d=2 strip.
Lattice mean-field calculations indicate that the tempera-
ture of the maximum ~t,„~ =(T,—T,„)/T, ~L
again consistent with standard finite-size scaling. For
temperatures in the range T & T«T, entropic repul-
sion, arising from confinement of the (+—) interface,
produces a positive solvation force and a scaling ansatz

—1/Pfor the free energy predicts f,'„„'-L * for large L
and h =0. Here P, is the critical exponent which de-
scribes the divergence of the thickness 8 of the wetting
film in the approach to complete wetting from o8' bulk

pCO

coexistence: 8- ~h ~

* . For systems with short-ranged
force P,"=O(ln) for d & 3. The explicit mean-field result
is f'+,„'-exp( L—/2(b), L~ ~. In d =2, P =I/3
and the scaling ansatz predicts f~+,„)-L 3. The same
result follows from heuristic arguments for the form of
the singular contribution to the excess free energy arising
from interfacial wandering: f'"—L ' where
&=2(d —1)/(3 —d); (with d &3), is the interaction ex-
ponent for thermal wandering. ' Our present analysis
confirms this prediction for an Ising system since, for
T« T„ f(,+)„) is dominated by the contribution
—(By, /BM) given by (3.6). Note that our result for the
amplitude of the leading order term, n. /PI', should be
valid for all choices of h „h„which give rise to complete
wetting of wall 1 by (+}phase and wall n by (—) phase.
Capillary-wavelike fluctuations of the interface give rise
to the slow L decay of f'+i„' in this temperature
range. By contrast, in the (++) strip there is no inter-
face, f'+,„+' is attractive and decays much faster, as
exp( L /gb), —in this range.

In the neighborhood of T, cross-over behavior occurs
and f,(,+)„' decays as L, characteristic of bulk critical
fluctuations. The location of the maximum is determined
by (3.16), which can be reexpressed as
L /gb (

~ t,„~ ) =0.4821, where we have chosen to measure
the reduced temperature in terms of the correlation
length for t )0. At first sight one might have expected
the inaximum of f(„+(„' to be located at t =0 (T=T, ).
Were —(By(/BM) the only contribution to the solvation
force, this would be the case. It is the presence of the ad-
ditional term f'+)„+' in (3.2) which is responsible for the
shift of the maximum to T & T, . Given that the max-
imum of f(„+(„)also occurs below T, in mean-field calcu-
lations it is natural to propose the following scenario.

Define o(+ )(L) for arbitrary d, via

f(+ )(L)=f(~+)(L)+—(r+ (L), (4.1)

where f'"(L) is, as before, the excess free energy per unit
area and we are considering the two systems at the same
temperature and bulk field h=0. Considerations of
magnetization profiles show that, for T„&T & T„
f(+ )(L)~2o,++oo as L~~, whereas

f(++ ) (L )~2(r, + in the same limit. Here o,+ (=(r„}
is the excess free energy of the wall (h, )-up spin interface
and pro is the surface tension of the (free) + —interface.
Equation (4.1) then implies o+ (L)~ao. In the scaling
limit, L~~, i~0, each term in (4.1) must have the
same scaling form; only the scaling functions are
different. The interfacial term o+ (L) is, of course,
merely the generalization of y, (M) introduced in Sec. III
so it is tempting to suppose that for d )2 its scaling func-
tion also has its maximum precisely at T=T, . Finite-size
e6'ects on the interfacial tension of the + —interface
should be maximized when gb

= ca. Thus, provided
f'„+,„+' always has its minimum above T„as we have ar-
gued above, f'„+,„' should always have its maximum
below T, .

We should also remark that Parry and Evans made
specific predictions for the behavior of f,(,+)„) in the
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neighborhood of the wetting transition temperature T;
namely that the solvation force, at large 1. and h =0,
should, decrease with decreasing T, vanish at some
T* & T and then take on negative values, with a
minimum below T . Explicit results for the restricted
solid-on-solid model confirmed the existence of such a
minimum. However, it would be valuable to examine
both the solvation force and the magnetization profile in
an antisymmetric Ising strip, with lt, (= —h„) chosen so
that T &0, in order to test the detailed predictions
(based on a scaling ansatz for critical wetting) for the
behavior of these quantities near T . ' Our present
work is restricted to T =0 but our methods can be ex-
tended to weaker h& and we shall report results in a fu-
ture publication.

Finally we note that Krech and Dietrich have recent-
ly determined the scaling functions for the finite-size con-
tribution 5f'"(L) to the excess free energy using field-
theoretical renormalization-group theory. Although a
direct comparison of their results with the present is not
feasible since these authors do not consider surface fields,
it is significant that the scaling functions are positive
(repulsive force) for antiperiodic and Dirichlet-Neumann
boundary conditions but are negative (attractive) for oth-
er choices. Moreover, they find that the scaling functions
do not, in general, have their extrema at T=T, .
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APPENDIX

Denote the scaling function defined by (2.9), as I. As-
sume first X)0 and write

I=I) +I2

fp(g)=(1/4)g —(g/3)g +
and the first term yields

(A2)

(4/ir) f dg(X/g) ,'g~ ———X lnIXI .
X

The remainder of f2(g), as well as all the other f„,
n =3, . . . , yield terms nonsingular in the limit X~O.
For X&0 one obtains similar results with the same
coefficient, —(1/m), of the singular term. Hence the scal-
ing function f„&„has the form

(A3)

with X=2K, nt and I'(X) smooth across X=0.
It is not easy to detect this contribution numerically,

i.e., in data computed directly from (2.9) and it is even
more dificult in data for finite I =na, since these contain
corrections to scaling of the order of L ' in f„,„or L
in f„,„Neverthe. less, according to (A3), the second
derivative obtained from (2.9) must be of the form
I'"—(1/m )(2 lnX+ 3) and when this is computed it
shows the expected logarithmic divergence as X~O with
the correct coefficient 2/n. . After subtracting the loga-
rithmic term, we find I'"(X) is smooth across X=O.
Indeed the d =2 Ising model has no discontinuous t con-
tributions. '

with

Ii =—f d( . and Iz =—f dg (A 1)
0 X

In the first integral (&Xalways so Qo=X[1+(g/X) ]'
can be expanded and the integrand is well behaved every-
where for gE [O,X]; no negative powers of g appear.

In the second integral (X/g) & 1 so Qo can be expanded
if it is written as Qo=g[1+(X/g) ]'~ . Expanding the
integrand in powers of (X/g) and collecting powers of X
we obtain the integrand in the form

& f.(k4 "X".
n=0

Powers X and X' contribute to the nonsingular part.
For n =2,
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