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Magnetization: A characteristic of the Kosterlitz-Thouless-Berezinskii transition
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In the low-temperature phase of the two-dimensional XYmodel, spin-spin correlations decay so slowly
with distance that the thermodynamic limit is inaccessible. As a result the Mermin-Wagner theorem is
inapplicable to any realizable system, and all have a measurable finite-size magnetization. We show that
there is a regime of universal behavior near to the Kosterlitz-Thouless-Berezinskii transition. In experi-
ments, the regime is identified by a magnetization exponent @=0.23, which we have calculated by a
renormalization-group analysis. Monte Carlo simulations of an harmonic XY model clearly locate the
boundaries of the universal regime, and identify it with vortex renormalization.

Twenty years after the original papers of Kosterlitz
and Thouless and Berezinskii' it is still a subject of debate
as to whether "KT theory" is a truly accurate description
of the two-dimensional XY (2D XY) magnet.
Verification of the theory —whether by numerical simu-
lation, series expansion, or experiment on real
magnets —is made problematic by the lack of an easily
measurable and definitive characteristic of the KTB tran-
sition. In a recent calculation we have shown that such
a characteristic exists, and that ironically it is a magneti-
zation. There is, of course, no magnetization in the
infinite 2D XY model, but as originally pointed out by
Berezinskii and Blank, even a macroscopic 2D XY mod-
el has a measurable finite-size-induced magnetization.
We used this fact to explain the apparently universal
magnetic exponent P=0.23, ' observed in all experi-
ments on materials which approximate the model, such
as layered magnets and the recently developed ultrathin
magnetic films. The latter are of particular interest as
they are truly two dimensional.

In Ref. 4 we showed that P=0.23 is observed in Monte
Carlo simulation, and can be calculated from the stan-
dard renormalization-group (RG) analysis ' of the 2D
XY model. We did not explore the more fundamental
question of why scaling behavior should occur in a finite
system. In this paper we examine the physical content of
our finite-size scaling analysis by means of Monte Carlo
simulation of an harmonic 2D XY model. We show that
the model has several well-defined regimes, with sharp
and distinct crossovers between them. One of these, the
vortex renormalized spin-wave regime, is characterized
by a separation of the important length scales, allowing
the approach towards scaling behavior. Our results
confirm the accuracy of KT theory in this region.

The XYHamiltonian is

H= —J $ S, SJ=—J $ cos(8; —81),
(~j) (~j)

where J is the coupling constant, S; is a 2D classical spin
vector of unit length at site i, and 8,. is an angle of rota-
tion within the spin plane. If the cosine function in (2) is
expanded, and only the quadratic term is retained, the

magnetization can be calculated exactly at all tempera-
tures. The result is '"

M(N, T)=( —x S; )=N ~ =1,N

1

2N

' 1/8m. EC

where the angular brackets represent a thermal average
and K = I/T is the spin-wave stiffness (temperature is in
units of J/ks throughout). One can get an order-of-
magnitude estimate of the effects of finite size by putting
the "mean-field" transition temperature' TK~ = m /2 into
Eq. (2). With M(N, TKr ) (0.01 as a reasonable estimate
for the thermodynamic limit, the sample would need to
be bigger than the state of Texas for the Mermin-Wagner
theorem to be relevant!

The harmonic XY (EIXY) model again retains only the
quadratic term in the expansion of the cosine function in
(2), but also maintains the periodicity of the original
cosine interaction in the partition function. The spins in-
teract via the potential

H= —J[1—
—,'(8, —8 —2n.n )2], (3)

where n is an integer ensuring that (8;—8~
—2nn) is

bounded between +m. This approximation corresponds
closely to the system of noninteracting spin waves and
vortex pairs studied in KT theory. ' The vortices can be
mapped onto a neutral charge system, ' and are simul-
taneously referred to as a 2D Coulomb gas. Numerical
results for the HXY model should correspond closely to
the predictions of RG calculations, and any deviation of
the magnetization from the harmonic spin-wave expres-
sion (2) can only be due to vortices.

We have performed Monte Carlo simulations of the
magnetization of the HXY model for systems of 10, 10,
and 10 spins. The results for the largest system are
shown in Fig. 1, with the XY data of Ref. 4 included for
comparison. The results are an average of three to nine
simulations each with 10 Monte Carlo steps per particle
per temperature.

The dashed line shows the exact spin-wave result of
Eq. (2). The HXY data are fitted extremely well by (2) for
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FIG. 1. Magnetization vs temperature for a Monte Carlo
simulation of a system of %=10 spins, for the HXY model
(solid circles) and 2D XYmodel (open circles). The solid curves
show, in each case, the fit to scaling behavior, with exponent
3H/128 (see text). The dashed curve is the spin-wave result of
Eq. (2). The arrows mark T*, with "up" arrow for the HXY
model and a "down" arrow for the 2D XY model. We find

Tc = 1.655, TH gq = 1.427, Tc = 1.020, T~q =0.928.

all temperatures T/TKT ~ 0.96, where TKT = 1.351.'
This indicates that the density of thermally excited vortex
pairs is negligible up to a temperature close to TKT.
Above this temperature the magnetization suddenly devi-
ates from Eq. (2), indicating the thermal excitation of
vortices. The data in this region are accurately described
by a power law, as shown in Fig. 1. Free fits of a power
law to the data, between T= 1.3 and 1.6 give an exponent
@=0.23+0.01. The accuracy of the free fits increases
with system size, with the errors being noticeable for 10
spins. These are at first sight very surprising results, but
they are in agreement with simulations on the XF model,
and experimental results on all known XF-like layered
magnets and thin films. ' The common denominator of
all these observations is that the power-law behavior with
@=0.23 is not observed asymptotically at the point
where the magnetization approaches zero, T~. Instead, it
occurs over a finite range of temperature close to, but
below, Tc. This distinguishes P from a conventional crit-
ical exponent. Empirically, the magnetization may be
written M( T~T* )- ( T Tc),where T* is a—temper-
ature near TKT at which the power-law behavior best
holds.

In Ref. 4, we showed that KT theory, when applied to
a finite system, naturally predicts this behavior, and
forces on us precise definitions of the two temperatures
T' and Tc. The solid lines in Fig. 1, in fact, represent
the theoretical predictions of our previous work, these
being coincident with the best free power-law fits.

In the RG treatment ' of the infinite system the vor-
tex excitations are irrelevant below TKT and are renor-
malized into an effective spin-wave stiffness K,z. At TKT
the vortices unbind, and K,z jumps discontinuously to
zero from the universal value K,ir(T~T)=2/m. We ob-

tain an approximate expression for the magnetization, in
the presence of vortex pairs, by replacing K with K,ff in
Eq. (2). Hence we have a magnetization for all X,Ir) 0.
In a finite-sized system, however, K,z does not drop
discontinuously to zero at TKT. Rather the termination
of the renormalization Bow at a length scale equal to L,
the system size, rounds out the universal jurnp, and both
the spin-wave stiffness and the magnetization fa11 steeply,
yet continuously to zero.

The RG equations are linearized about the fixed point
IC ff 2 /n. . Physically this fixed point corresponds to
scaling behavior of the Coulomb gas of vortices. Chang-
ing the length scale removes all vortex pairs on lengths
less than the new scale parameter, however, fixed point
behavior is such that the vortex pair distribution remains
unchanged. For a given temperature T ~ TKT two
lengths arise naturally in the calculation. The first, L *, is
the value of the rescaling parameter b giving K,&=2/m.
The second, Lc=(L'), is the value of b where the
linearized equation break down, and K,z diverges from
the fixed point. For T~TKT one has 1«L'«LC,
where L' and LC are expressed in units of the lattice
constant. This separation of length scales allows the
identification of two well-defined regimes. For b=L',
K,z renormalizes extremely slowly with length, and the
system approaches fixed point behavior with Coulomb
gas scaling of the vortices. In this regime the power-law
behavior of the spin-spin correlation function is main-
tained. In the second regime, with b ~Lz, the vortex
pair distribution renormalizes rapidly to that of a gas of
free vortices, which results in K,z renormalizing towards
zero, and the development of exponentially decaying spin
correlations. Putting the correlation length g equal to Lc
yields the Kosterlitz expression for g, which diverges ex-

ponentially with Q T —TxT.
For fixed system size, L =&N, the same analysis yields

two characteristic temperatures. The first, T'(L) is the
temPerature at which K,Ir=2/n, and the second, Tc(L ),
is the temperature at which the spin-spin correlation
length g equals the system size. We interpret Tc(L) as
the effective Curie temperature for the finite-sized system.
T'(L) and Tc(L ) are both shifted logarithmically from

TKT with size L giving '"

Tc(L ) —TKT —4[T'(L ) —TKT ]-
c(lnL )

The logarithmic dependence on L, as opposed to a power
law, is a standard result of finite-size scaling in the 2D XF
model. ' It ensures that, for fixed L, the range of temper-
ature, —Tc —T*, over which scaling behavior occurs is
unusually large. This explains the experimental and nu-
merical observation that apparent critical behavior is
measured at temperatures well below Tc.

The separation of length scales and the asymptotic ap-
proach to fixed point behavior is illustrated in Fig. 2,
where K,z, as given by the linearized RG equations, is
plotted as a function of scale parameter b [from Eq. (4) of
Ref. 4]. The RG equations are strictly valid only in the
limit of very large system size, and b relates K,z for
different size ratios. An assumption of our calculation is
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by equating (7) and (8) at T'. At Tc, in contrast, the
finite system has the properties Kdt(L)~0, M(L)~0,
g =L I.n the infinite system these two temperatures coin-
cide with TKT giving the universal jump in E,ff.

Our interpretation of the two temperatures T' and Tz
is confirmed by the Monte Carlo "snapshots" shown in
Fig. 3. At T [Fig. 3(a)] the spin waves coexist with a low
density of vortices which appear to be in well-defined
pairs, as assumed in KT theory. At this temperature,
unbound vortices should only be evident on a length scale
Lc, orders of magnitude greater than the system size L.
At Tc, however, L =LC, and unbound vortices are ex-
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FIG. 2. Renormalized spin-wave stifFness E,z/(2/m. ) vs scale
parameter b, as given by the linearized RG theory with c =1.51
(Ref. 16). The arrows mark b =I.

M(L, T~ T*)=B(Tc —T )
' 1/8

(7)

M(L, T') = 1

&2L (8)

M(H, L, T') —M(O, L, T')-H' '

where (SO.S, ) is the spin-spin correlation function, with
distance r, and B is a size dependent amplitude, defined

that b -O(1) can be identified with a microscopic length
scale. In Fig. 2, the temperature is fixed at a value corre-
sponding to T* for a system size L =100. In the upper
curve, with b on a logarithmic scale, three regimes of
behavior are visible. It is the intermediate regime, with
E,ff approximately constant, illustrated in the lower
curve, that results in asymptotic fixed point behavior.

Numerically we find that the constant c decreases, with
system size, ' below the initial estimate of Kosterlitz,
c =2.1. The existence of a finite value for c has implica-
tions for the ultimate validity of KT theory, in the ther-
modynamic limit. Our data show that, with these deter-
mined values of c, KT theory is at least asymptotically
correct for the large, but finite systems that exist in na-
ture.

After replacing K with K,fr in Eq. (2) we define the
magnetization exponent P as the tangent to the curve of
InM(L, T) against ln[t(L )], where t = Tz —T. At
t' =Tc —T', we find P(L, T*)=3m. /128=0. 231. . . .
The validity of the calculation rests on K,ff varying very
slowly with wavelength, which is the case at T' (see Fig.
2).

T' may in this sense be regarded as a universal point,
where the magnetization scales with system size, field H
and temperature. The universal properties of the finite
system at T' may be summarized

K,ft(L ) =2/n. ,
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FIG. 3. Monte Carlo "snapshots" showing spin and vortex

con5guration for the HXF model, with %=1024, at T (a) and
Tz (b). The vortex positions are calculated by summing
8; —8;+I (Refs. 11 and 17) around each square plaquette of the
lattice. Solid (open) circles represent positive (negative) vortices
centered on plaquettes with a circulation of +(—)2m.
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pected in nearly all snapshots. This is confirmed by Fig.
3(b), where there is clear evidence of vortex unbinding.

Comparing the data in Fig. 1 for the XY and HXY
models, it is clear that the inclusion of the anharmonic
corrections in the cosine interaction has the effect of re-
ducing the vortex pair fugacity, hence reducing both the
temperature scale over which scaling behavior takes
place, and the absolute value of TKT. ' The anharmonici-

ty causes the magnetization to fall below that of the
linear spin-wave curve at relatively low temperature, even
in the absence of vortex pairs. '

These results may be used to explain the behavior of ul-

trathin magnetic films. We consider the most relevant
case of a ferromagnetic film with a square or triangular
lattice of magnetic atoms, in which the spins lie within
the plane. In such a system, any weak in-plane anisotro-

py will be fourfold or sixfold, and neither perturbation is
strongly relevant. ' ' The number of layers n is also ir-
relevant so long as n is small [that is n -O(1)], ' and the
dipolar coupling is only manifest on macroscopic length
scales, where it causes domain formation. The 2D XY
universality class is therefore robust to the dominant per-
turbations in the system, and one would expect to see 2D

XY behavior over most of the temperature-field phase di-
agram. The ultrathin film is truly an anisotropic Heisen-
berg, rather than an XY system, and the presence of out-
of-plane fluctuations would be expected to renormalize
the temperature scale, and to reduce TKT from the value
expected for the XY model. The finite size of the XY
film may be the actual sample size, the average dipolar
domain size, or a coherence length limited by defects. Its
cause is not important, but its effect is to remove the
long-wavelength spin waves which are responsible for the
destruction of long-range order in the infinite system. As
in the XY simulation (Fig. 1), with increasing tempera-
ture, the system should pass through four regimes: a
linear spin-wave regime, an anharmonic spin-wave re-
gime, a Coulomb gas scaling regime with 13=0.23, and
finally a regime of finite-sized rounding. From the
present work we conclude that only the Coulomb gas
scaling regime is universal.

It is a pleasure to thank M. J. P. Gingras for valuable
discussions, and F. Huang and R. F. Willis for a very use-
ful correspondence.

'Perrnament address: Institut Laue-Langevin, 156-X, 38042
Grenoble, France.

J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973);
V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1970) [Sov.
Phys. JETP 32, 493 (1971)].

~See, for example, R. Gupta et al. , Phys. Rev. Lett. 61, 1996
(1988).

The normal method of fitting correlation length or susceptibili-

ty data is generally ambiguous. See C. A. Cornelius et al. , J.
Phys. C 19, 909 (1986), and Ref. 2.

4S. T. Bramwell and P. C. W. Holdsworth, J. Phys. : Condens.
Matter. 5, L53 (1993).

5N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133
(1966).

V. L. Berezinskii and A. Ya Blank, Zh. Eksp. Teor. Fiz. 64, 725
(1973) [Sov. Phys. JETP 37, 369 (1973)].

7S. T. Bramwell and P. C. W. Holdsworth, J. Appl. Phys. 73,
6096 (1993).

W. Diirr et al. , Phys. Rev. Lett. 62, 206 (1989); C. A. Ballan-
tine et al. , Appl. Phys. A 49, 459 (1989); Phys. Rev. B 41,
2631 (1990);F. Huang et a/. , J. Appl. Phys. 73, 6760 (1993);
F. Huang, M. T. Kief, G. J. Mankey, and R. F. Willis, Phys.
Rev. B 49, 3962 (1994).

J.M. Kosterlitz, J. Phys. C 7, 1046 (1974)~

' J. V. Jose et al. , Phys. Rev. B 16, 1217 (1977).
J.Tobochnik and G. V. Chester, Phys. Rev. B 20, 3761 (1979).
Analytic approaches use the Villain model, in which the 0;

range between +~ and the integers n are variables of the in-

teraction taking values between +00: J. Villain, J. Phys.
(Paris) 36, 581 (1975). See also Ref. 10.

' T„T=1.351 is the RG result for the Villain model (Ref. 10),
consistent with simulation [W. Janke and T. Matsui, Phys.
Rev. B 42, 10673 (1990)]. Tx&=0.898 for the XY model
(Ref. 2).

See also J. M. Kosterlitz and D. J. Thouless, Prog. Low Temp.
Phys. VIIIB, 373 (1978); S. Hikami and T. Tsuneto, Prog.
Theor. Phys. 63, 387 (1980)~ These authors obtain equations
similar to (4).

i5K. Binder, Topics in Current Physics (Springer-Verlag, Berlin,
1986), Vol. 7, p. 370.

These fits have an adjustable parameter, the constant c. We
find c1024=3.73 c "=3 30 c =2.0+0.3 c =1.871024 ' s 104

' 7 102
' ' 7 103

' 7

c 4 =1.51, where the superscripts indicate the model and

the subscripts the system size N. Other available estimates
are cx"=3.53 (Ref. 2), c""'""=2.1 (Ref. 9), or =1.3 [W.
Janke and K. Nather, Phys. Lett. A 157, 11 (1991)].
H. Weber and H. J. Jensen, Phys. Rev. B 44, 454 (1991).

8J. Als-Nielsen et al. , J. Phys. : Condens. Matter 5, 7871
(1993).

V. Ambebaokar et al. , Phys. Rev. B 21, 1806 (1980).
C. Kawabata and A. R. Bishop, Solid State Commun. 60, 167
(1986).


