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Instability of in-plane vortices in two-dimensional easy-plane ferromagnets
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An analysis of the core region of an in-plane vortex in the two-dimensional Heisenberg model with

easy-plane anisotropy A. =J, /J„~ leads to a clear understanding of the instability towards transformation
into an out-of-plane vortex as a function of anisotropy. The anisotropy parameter A,, at which the in-

plane vortex becomes unstable and develops into an out-of-plane vortex is determined with an accuracy
comparable to computer simulations for square, hexagonal, and triangular lattices. For 1, & A.„the in-

plane vortex is stable but exhibits a normal mode whose frequency goes to zero as co ~ (A,,—A, )' as A, ap-
proaches 1, For 1,)A,„the static nonzero out-of-plane spin components grow as (1,—A,, )' '. The lattice
dependence of A,, is determined strongly by the number of spins in the core plaquette, is fundamentally a
discreteness effect, and cannot be obtained in a continuum theory.

I. INTRODUCTION: IN-PLANE VORTEX INSTABILITY

The easy-plane anisotropic Heisenberg ferromagnet on
a two-dimensional lattice has been studied for many
years, for its relation to the Kosterlitz-Thouless vortex
unbinding transition. ' More recently the model is still
studied, especially for the dynamics of individual and
pairs of vortices, and their contributions to dynamic
correlation functions. It has been known for some time
that the classical model supports two distinct types of
vortices, termed "in-plane" and "out-of-plane, " depend-
ing on the absence or presence respectively of nonzero
out-of-easy-plane spin components in the static vortex. '
The interest here concerns the question of why-there are
two types of vortices possible, and what determines the
stability of these excitations. Because the type of stable
vortex is determined by the anisotropy strength, ' which
may cover a wide range in available materials, this dis-
cussion is relevant for the interpretation of dynamic
correlation measurements, such as neutron-scattering ex-
periments. Especially the vortex contributions to dynam-
ic correlation functions for the out-of-plane spin corn-
ponents may be influenced by the type of vortices present
in the system.

This discussion of instability also is analogous to the
similar problem of normal modes and instabilities in soli-
tons in one-dimensional magnets. ' Instabilities of one-
dimensional magnetic solitons have been found using
continuum theory, for ferromagnets and for antifer-
romagnets. ' However, generally, solitons can be well de-
scribed by a continuum field, except perhaps for certain
parameter ranges. This is not true for vortices on a lat-
tice, in the sense that the region close to the vortex center
cannot be described very well by a continuum field, for
any parameter ranges. This is because the spins near the
vortex "core" vary rapidly over small distances, which is
represented by a singularity in a continuum theory. On
the other hand, there is usually no such singularity at the
center of a soliton. The calculations here will avoid the
problem of how to deal with the singularity at the vortex
core by treating the discrete degrees of freedom in the

core region exactly on a lattice, without any continuum
approximations.

Specifically in this paper we consider the following
easy-plane Hamiltonian for classical spin variables S„:

H = —J g (S„"S"+S»S» +A,S„'S~),
where 0(A. (1 determines the degree of easy-plane an-
isotropy, and the spins S„are located on sites of a lattice
in two dimensions, such as square, hexagonal, or triangu-
lar. It will be convenient to describe each classical spin
variable by an angle in the xy plane, P, and the canonical-
ly conjugate out-of-easy-plane spin component S'. In Eq.
(l) the coupling of x and y spin components will be re-
ferred to as "in-plane exchange, " and the coupling of the
z components as "out-of-plane exchange. " The static
vortices have an in-plane angle given by

P=q tan '(y/x ),
where q is an integer charge.

The two different vortex types correspond to two
separate solutions of a nonlinear equation of motion for
the out-of-plane component. However, the stability of
these solutions has only been determined via computer
simulations by placing the solutions on a discrete lattice.
It has been found that the in-plane vortex is numerically
stable provided A, (A,„where A,, is a critical anisotropy
that depends on the lattice. ' For the square lattice,
A,, =0.72; similarly X, =0.86 for the hexagonal lattice
and A,,=0.62 for the triangular lattice. Conversely, when
1,)A,„the in-plane vortex becomes unstable, and devel-

ops into an out-of-plane vortex, whereas the out-of-plane
vortex becomes the only stable vortex solution. For a
particular choice of easy-plane anisotropy parameter A, ,
only one type is found to be stable. The dependence of
these critical values on the lattice was not understood.

There have been some attempts to describe the vortex
stability and make a normal mode analysis in a continu-
um limit. For example, Costa, Gouvea, and Pires" con-
sidered a linear stability analysis of vortices in the XY
model (A. =O). This type of calculation determines the
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normal modes of the spin field about the static vortex
structure, but in the process it must make certain as-
sumptions about the structure of the vortex core. This is
dif6cult because the vortex core is a singularity in a con-
tinuum limit. Usually this means that a short-distance
cutoff must be applied ad hoe to integrals over the spin
field, but the cutoff radius itself is not well known. In ad-
dition, to this, any inherent effects of the particular lat-
tice must be lost in the continuum limit. For this mag-
netic vortex problem, and correspondingly for any other
vortex problems on lattices, it is found that the vortex
structure is strongly affected by the discreteness of the
lattice, especially near the core. Since the vortex core is
the region where the energy density of the vortex is
highest, it is essential to take these discrete effects accu-
rately into account. Any continuum limit will break
down at small distance from the core, and be incapable of
correctly describing these important discrete efFects.

The philosophy of the present calculation is to try to
take the core region of the vortex more precisely into ac-
count, at the expense of treating the far field only approx-
imately. The deviations away from the static in-plane
vortex will be assumed to be small so that linearization is
possible, and included only for a finite set of spins near
the core. We know from simulations that a vortex on a
discrete lattice energetically prefers to be centered within
a unit cell. This adds considerable symmetry to simplify
the calculation. Also the deviations are assumed to de-
pend only on the radial coordinate away from the vortex
center.

In the first part of this paper, the static vortex struc-
ture is considered, by allowing perturbations away from
the structure of the static in-plane vortex. The energy of
a set of spins near the core is minimized, with a boundary
condition that spins outside this core region are held in
the easy plane, but the spins in the core region can tilt
out of plane. The minimization directly leads to a critical
value of anisotropy A, , below which the minimum-energy
configuration lies purely in the easy plane, and above
which the minimum-energy configuration has nonzero
out-of-plane spin components. This behavior can be seen
in different levels of approximation using different num-
bers of core spins that are allowed to move. Using a
larger core region with more spins being allowed to move
out of plane leads to successively lower estimates of k„
which converge to a limit. For two-digit accuracy in A, ,
about 12 spins near the core are needed, regardless of
whether the lattice is square, hexagonal, or triangular.

In the second part of the paper, the dynamics of the in-
stability of the in-plane vortex is considered, for A, &A,
Once again, a continuum theory is inadequate. On the
other hand, a complete description of the spin-wave nor-
mal modes about the static in-plane vortex structure on a
lattice is intractable. However, Volkel and co-workers '
have made preliminary numerical studies on small lat-
tices of the discrete normal modes on a square lattice.
These suggest that as a function of increasing A,, there is
one mode in particular whose frequency goes to zero at a
specific value of A, , i.e., at the critical anisotropy or unsta-
ble point of the in-plane vortex. This special instability
mode is seen to have a circular symmetry around the vor-

II. CORE MODEL FOR THE SQUARE LA'ITICE;
STATIC ENERGY FUNCTIONAL

The vortex structure on a square lattice is considered
first. We assume that the vortex is centered in a unit cell,
at the origin of a coordinate system, and the in-plane an-
gles are given by the usual in-plane vortex, Eq. (2). In the
most crude approximation of the core region's out-of-
plane spin components, we assume that only the first four
spins nearest to the vortex center have nonzero out-of-
plane components, as indicated in Fig. 1. By symmetry
these four lattice sites are equidistant from the vortex
center, at radius r, =1/~2, and they all have the same
S', taken to be S'=Sm] ~ All other sites have S'=0 by
assumption.

Then by using Hamiltonian (1), and only including the
m, degree of freedom, we obtain the following core ener-

gy functional due to the 12 bonds nearest to the vortex
center:

Eloge 4JS Am ) + Q 1 m f 3
4

(3)

The first term is the out-of-plane exchange energy, the
second term is the in-plane exchange energy, and the con-

0

0

0

0

FIG. 1. Notation for the square-lattice calculations. The
vortex center is at (0,0), and there are four sites at radius
r& =1/&2 with S'/S=m& (solid squares), eight sites at radius
r2=v 10/2 with S*/S=m2 (solid triangles), and four sites at
radius r3=3/&2 with S'/S=m3 (solid circles). The other sites
are held fixed in the xy plane (open circles).

tex center (see below). Thus it makes sense to use this
fact in a model of the spin motions near the vortex core.

A Lagrangian will be constructed for the core region
under the assumption of a circularly symmetric normal
mode, where the spin deviations depend only on the radi-
al distance from the vortex center, which itself is held
fixed in position. In this constrained Lagrangian the
normal-mode frequency is obtained as a function of A, .
The basic result is only weakly dependent on the lattice
or on the number of spins allowed to participate in the
core. The frequency' of this mode is found to approach
zero as co= A QA, , —

A, , with A and k., lattice dependent.
The spatial structure of the mode's out-of-plane com-
ponent bears a strong resemblance to that of the static
out-of-plane vortex for A, & A,
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stant ground-state (in-plane exchange) energy —12JS
has been subtracted out. The factor Ql —m, refiects
the fact that as the out-of-plane components increase, the
in-plane components are reduced, an important effect
controlling the competition between in-plane and out-of-
plane exchange energies. For small m&, an expansion
leads to

m&—2X(m, +m~)+ 4 Ql —m~ =0,
5 gi —m',

(9a)

The term proportional to A, is the out-of-plane exchange
energy, the other terms are in-plane exchange. Minimi-
zation with respect to I, and m2 simultaneously leads to
coupled nonlinear equations, as follows:

E„„=—4JS ——3+ A,
— — m i+0(m, )

5 5

2 2 1= —8JS m1 A,
—

+5 Ql —m',
=0 . (5)

The equation always has two solutions, either m&=0,
which is the in-plane vortex solution, or

m, =+1 —
( A,, /)I, )

which is the out-of-plane vortex solution. The in-plane
solution exists for any A, , and has fixed energy
Eyp = 8JS A ~ The out-of-plane solution exists only for
A, ) A,„and has core energy Eop= 4JS (A. +A,, /l)—,
which is lower than E1p. Thus we see that at A, =A,, the
in-plane vortex becomes unstable, and must grow into an
out-of-plane vortex. The numerical value for A., is rather
high compared to the computer experiments' value ' of
k, =0.72, but this is a result of the crude approximation,
not allowing more spins to participate in the energy func-
tion. However, the results of this crudest approximation
do not differ in substantial details from the more accurate
approximations involving more core spins.

It is interesting to rewrite the out-of-plane component
just above the critical anisotropy, where approximately,

m, =Q(2/A, , )(A, —A,, ) .

This square-root dependence on the deviation from the
critical anisotropy is also seen in the hexagonal and tri-
angular lattices.

In the next order of approximation, the next set of
eight spins all equidistant at radius rz = v'10/2 from the
vortex center are included in the core energy, as in Fig. l.
This will include a total of 32 bonds. When the first set
of four spins has S'=Sm, , and the next set of eight spins
has S'=Sm 2, the core energy with the ground-state ener-

gy
—32JS subtracted out is

E„„=—4JS A,(m, +mz) + —Ql —m i Ql —m~z
4

v'5

+ — 1+ —Ql —mz +—(1—mz) —8
4 4 4

&5 &13 5

(4)

It is clear that the energy can be reduced by creating an
out-of-plane component provided A, )2/&5, defining the
critical anisotropy A,, =2/v'5=0. 894 in this approxima-
tion.

More generally, for arbitrary m, & 1, the extrema of
the core energy are determined by a nonlinear equation:

4 m2—2A, (m, +mq)+
5 Ql —m,'

T

X Ql —mi+ 1+
&13

+—m =0 . (9b)
8

5 2

(A, —k)m, —Am&=0,

—
A,m, +(B,—A, )mq =0,

A, = =0.89443,=2=
5

B, —= 1+ + =3.58113 .4 1 2

&s &s

(loa)

(lob)

(10c)

The critical anisotropy at which the determinant vanishes
1s

A, B, =0.716 .
(A, +B, )

This agrees very well with the results of computer experi-
ments, A,, =0.72. At the same point, the ratio of core
out-of-plane spin components is

m2/I ]
= A /8 0.24976 (12)

This ratio characterizes the initial growth of the out-of-
plane components just above the critical point.

One can continue to carry this calculation to higher or-
ders; for instance, the next step is to include an additional
set of four more spins, all equidistant from the vortex
center, at radius r3=3/&2, as in Fig. 1. The energy
functional is given in the Appendix. The critical value of

Again, there is the trivial solution, m
&
=m2 =0, which is

the in-plane vortex, with energy independent of X. For A,

large enough, there is also a nontrivial solution, that can
be estimated numerically, for example, by solving Eqs. (9)
using a two-dimensional Newton-Raphson method. One
finds that m, and mz grow proportional to QA, —

A,, just
above the critical anisotropy (not shown here). Natural-
ly, the approximation limits the out-of-plane motion
strongly compared to the results where a larger set of
spins can have out-of-plane motion, but this effect is not
too large provided k is not too far above k, .

The critical value of A, can be obtained accurately by
supposing that A. is slightly higher than A,„in which case
m, and m~ are small but nonzero. Then Eqs. (9) can be
linearized, and produce a nontrivial solution only when
the determinant of the coeScient matrix vanishes. This
linearization is valid only in the limit A, ~A,, from above,
and the determinant vanishes only at the critical anisot-
ropy. Doing so, we obtain the linearized system,
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FIG. 5. Notation for the triangular-lattice calculations. The
vortex center is at (0,0), and there are three sites at radius

r, =1/&3 with S'/S=m, (solid squares), three sites at radius
r2=2/&3 with S'/S=m~ (solid triangles), and six sites at ra-

dius r3 =&7/3 with S'/S=m3 (solid circles). The other sites
are half fixed in the xy plane (open circles).
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FIG. 4. Static vortex structure on the hexagonal lattice in the

m&, m&, m3 approximation. (a) Growth of out-of-plane com-
ponents in the core region. (b) Variation of the in-plane and
out-of-plane exchange energies and total core energy with an-

isotropy. The critical anisotropy is A,, =0.8395.

1 —2k++I —m2 /Ql —
m& m, —km2=0, (16a)

—Am&+ ++1—mf
5

1 Ql —m,'
m2 =0 . (16b)

IV. CORE MODEL FOR THE TRIANGULAR LATTICE

Finally we turn to the triangular lattice, with coordina-
tion number 6. The spins in the core plaquette of an in-

plane vortex have 120 angles between them, or, they are
starting to be more antiparallel than parallel. This has a
strong efFect on the in-plane vs out-of-plane exchange en-

ergy balance.
Starting as before, the lowest approximation is to allow

only three spins nearest the vortex center, at radius
r, = I/&3, to tilt out of the easy plane, with S'=Sm &, as
shown in Fig. 5. The in-plane angles are given by Eq. (2).
Then, taking the geometry into account, the core energy
(15 bonds) is

Letting Az ——(1+5/+7) =2.889 82, the determinant
of the linearized system goes to zero at
I,,= —A&++A&+2A& =0.869, in good agreement
with the numerical result of 0.86. If an additional set of
12 more spins at radius r3 =v'7 are allowed to have out-
of-plane components, the critical anisotropy is found to
be k, =0.8395, slightly lower than the numerical result.
The core energy function is given in the Appendix. The
growth of the out-of-plane components with k is shown
in Fig. 4, with results similar to the square lattice.

T

+ 1+ Ql —m, —5 . (17)
7

An expansion for small m, gives the first estimate,
A,, =5/+28=0. 94, high compared to the numerical ex-

periment value of 0.62.
Next we can allow another set of three more spins at

radius r2 =2/&3 to have out-of-plane components,
S'=Smz. The core energy (27 bonds) is modified to

E„„,= —3JS A(m &+2m&mz) ——(1—m f )
1

+ Ql —m ++1—m Ql —mv'7 1 1 2

+ + QI —m', —9 . (18)

When this system is linearized, the determinant goes to
zero at A,,= —A, ++A, +5A, /+7=0. 715, where

A, —= —,'(1+4/&7+7/&13)=1. 1133. This is still rather
high compared to the numerical experiments, suggesting
that another layer of spins around the vortex center must
be allowed to move out of plane. When an additional set
of six more spins at radius r3 =&7/3 are allowed to have
out-of-plane components S'=Sm3, a more tedious calcu-
lation (E„„given in the Appendix) gives A,, =0.6278. In
this last model, the out-of-plane spin components grow
with A, above A,, as indicated in Fig. 6. Of course, even
here the out-of-plane components are being underes-
timated because of the restriction that the next set of
spins further out from the vortex center are held fixed in
the xy plane.

By now it is clear what is causing the instability of the
in-plane vortex with increasing A, , which corresponds
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where the first three core spins are starting to be antipar-
allel (120' angles between them), creating a large in-plane
exchange energy in the core. However, normally the
easy-plane anisotropy prevents these from tilting up out
of plane. But it is clear that they will have a much
stronger tendency to come out of plane to avoid pointing
against each other, than for the core spins of a vortex on
the square or hexagonal lattices, which are already closer
to being parallel even when staying in plane. Essentially
the core spins come out of plane to try to align ferromag-
netically, provided they can do so against the easy-plane
anisotropy forces. They must come out of the easy plane
at a lower value of A, on the triangular lattice because
they pay a small cost in additional in-plane exchange en-
ergy (because the in-plane energy is already large) but get
in the deal a larger reduction in out-of-plane exchange
energy. Conversely, the hexagonal lattice has the largest
critical A, , since the core spins do not have a large in-
plane exchange energy (only a 60' angle between them in
plane) and they stay in the xy plane until the anisotropy
comes much closer to isotropic.

FIG. 6. Static vortex structure on the triangular lattice in the
m&, m2 m3 approximation. (a) Growth of out-of-plane com-
ponents in the core region. (b) Variation of the in-plane and
out-of-plane exchange energies and total core energy with an-
isotropy. The critical anisotropy is A,,=0.6278.

physically to decreasing the strength of the easy-plane an-
isotropy, or approaching the isotropic limit. The spins
near the vortex core have in-plane exchange energy above
the ground-state energy due to the fact that they are not
close to being parallel. At the same time, they have zero
out-of-plane exchange energy. If there is strong easy-
plane anisotropy (A, near zero), then out-of-plane spin
components would cost too much additional total energy,
so they do not occur. However, as the easy-plane anisot-
ropy strength is reduced (increasing k), at a certain point
these core spins can favorably tilt up out of the easy
plane. In fact, when the out-of-plane components grow,
the out-of-plane exchange energy E,„, decreases, while
the in-plane exchange energy E;„ increases, such that the
total energy change comes out negative. Of course, this
can occur if A, is large enough, such that the decrease in
the out-of-plane exchange energy dominates over the in-
crease in in-plane exchange energy (which itself does not
depend on A, ). These energy changes have been indicated
in Figs. 2, 4, and 6, which show how the two energy com-
ponents vary with 3,. The instability is driven mostly by
the first set of core spins nearest the vortex center (three
for the triangular lattice, four for the square lattice, six
for the hexagonal lattice). It is interesting to note that
even though the changes in E;„and E,„, with A, are rath-
er large, the total vortex core energy decreases very slow-
ly for A, & A, In this sense the out-of-plane vortex is only
slightly energetically preferred over the in-plane vortex.

The dependence of A,, on the lattice is also clear, and
again is determined primarily by the first set of core
spins. Consider an in-plane vortex on a triangular lattice,

V. TIME-DEPENDENT SYMMETRIC NORMAL MODE
OF A VORTEX

The dynamics of this instability can be understood to a
certain extent by looking for time-dependent normal
modes of the in-plane vortex. For example, previous cal-
culations for the XY model using a continuum limit"
considered the normal modes about the in-plane vortex.
However, it is clear from the calculations here that a con-
tinuum limit cannot capture the essential features of how
the core drives the instability. We want to stress that this
is a discrete lattice instability, the strongest evidence of
this being the dependence of A,, on the lattice.

To do a complete stability analysis of the in-plane vor-
tex on a lattice requires a numerical calculation of the
eigenmodes for a finite system. Volkel' has made a pre-
liminary calculation on a 10X10 square lattice, which
showed that there is one mode in particular whose fre-
quency goes to zero as A, is increased towards A,„and is
apparently closely related to the instability. The spatial
structure of the mode involves a radially symmetric out-
of-plane amplitude about the vortex center, combined
with a radially symmetric in-plane spin rotation. Indeed,
this is reasonably the simplest symmetrical mode of the
in-plane vortex. If there are time-dependent out-of-plane
components then there must necessarily be time-
dependent in-plane motions with the same kind of sym-
metry, since S' is the momentum that is conjugate to the
in-plane angle P. In this mode, the time-dependent devia-
tions in S' and P depend primarily on the radial distance
from the vortex center, which itself does not move. We
can use this information to make a very reasonable ansatz
for the mode, concentrating on the motion of the most
important spins near the core, in the same spirit as the
calculations giving A,

So we proceed to consider only the properties of this
one particular symmetric mode that is responsible for the
in-plane vortex instability. The ansatz for the mode, on a
square lattice, is as follows. The first set of spins nearest
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to the vortex center, at radius r, =I/&2, have out-of-
plane component S'=Sm t, and equal deviations P, from
the static in-plane angles. This means they all are rotated
counterclockwise through P, relative to the static in-
plane structure, Eq. (2). Similarly, the next set of eight
spins at radius r2=&5/2, have equal out-of-plane com-
ponents Sm2, and equal in-plane deviations Pz. All other
spins further out from the vortex core are assumed to lie
in the xy plane, with in-plane angles being those of the
static in-plane vortex. Then by its design the ansatz as-
sumes a well-organized radially symmetric motion, with
only radial dependence of S' and 4.

A Lagrangian is constructed for the system, by using
the fact that S' is the momentum conjugate to P, and
modifying the core energy functional found above to in-
clude the in-plane degrees of freedom, P, and (r)2. The La-
grangian is

L= g P,S; F.„—„,
n

(19)

where the sum is over the lattice sites in the core region
participating in the motion. Making the appropriate
changes to the energy to include the P, and $2 degrees of
freedom, we have,

L =4S(m Pt, +2m $2&)+4JS A(m&+m )2 +—(1—mz)+ —Ql —m t Ql —mz cos(P, —$2)

+ — 1+ —g 1 —m 2 cosPz
4 4

5 13
(20)

The equations of motion follow from the usual Euler-
Lagrange variation. In particular, the linearized equa-
tions of motion are found to be:

1
(t), =2( A, —A)m, —2Am2,

I

But now, since DI is rather large compared to A., and be-
cause we are most interested in the region near the criti-
cal point, an expansion of the square root can be made
that is quite accurate, even when A, is near zero. Doing so
gives, to a very good approximation,

1 ~

P~= —Ami+(B, —
A, )m2,

1
m )

= —2A, (t)t+2Agg~,
(21a)

ro=+DoD2/2(D, —
A,, )QA,,—A, =1.645+A,,—

A, . (24)

In fact, even for A, =O, the dilference between Eq. (24) and
Eq. (23a) is much less than 1%. We should note that the
prefactor 1.645 is determined primarily by the number of

2
C, —:~ (21b)

2.0

A, and B, were defined in Eq. (10c). These equations
have a solution with time dependence e' '. The frequency
is determined from the zero of a 2X2 determinant, lead-
ing to a quadratic equation in co,

co +2A, [(1+C,)(A, —B, ) —2A, ]ro

+4A, (2C, +1)[A,B,—(A, +B,)A]=0. (22)

From this equation we see, first of all, that the eigenfre-
quency becomes zero when the constant coefficient van-
ishes, which occurs when A, =A,, = A, B, /( A, +B, ), a re-
sult previously obtained in the discussion of the static
structure. For other values of A, & k„ the desired solution
to the quadratic that recovers co~0 as A, ~A,, from below
1S

0.5

0.0
0.0

2.0

0.2 0.4 0.6 0,8

(o):

1.0

ro =Do(D) —1,) 1 —+I —D2(A.,—A, )/(D, —
A, )

where the new numerical constants are

(23a)
0.0-

0.0 0.2 0.4 0.6 O. B

(z,—x) '~'
1.0

Do = A, (1+C, ) =1.39057,

Di =B,+2A, /(1+C, )=4.73174,

D2=4(A, +B,)(2C, +1)/(1+C, ) =15.62331 .

(23b)

FIG. 7. Frequencies of the unstable symmetric mode vs A. in
the ml, m2, m3 approximation, for the three different lattices.
(b) Same results replotted vs Qk, —A„using the critical values
A,, =0.6278, 0.7044, and 0.8395, for the triangular, square, and
hexagonal lattices, respectively.
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spins allowed to move in the core region, and should not
be taken as definitive. For comparison, when only the m i

and P, degrees of freedom are allowed, then a short cal-
culation gives eigenfrequencies co =2Q A, QA, , —

A,

=1.8915+A,,—A, . On the other hand, including three
sets of spins, out to radius r3, a numerical fit to the solu-
tion of the eij.enfrequency problem gives the result
co = l. 5281+A,,—A, (see Fig. 7}.So it is clear that the pre-
factor will decrease as a greater number of core-spin
motions are included, while the functional form for co(A, }
remains unchanged. The prefactor is expected to be
slightly less than 1.52 for the infinite-sized system. Note
that A,, in these formulas means the value found for the
approximation in question, i.e., A,, =0.894, 0.716, or

0.7044, for including one, two, or three sets of spins, re-
spectively.

VI. TIME-DEPENDENT SYMMETRIC MODE
IN HEXAGONAL AND TRIANGULAR LATTICES

Next the dynamics of the instability is investigated on
the hexagonal and triangular lattices, to see whether the
lattice has any strong influence on the unstable mode's
frequency. The principal modifications from the square-
lattice calculation require using the appropriate core en-

ergies in the Lagrangian.
On the hexagonal lattice, with two sets of spins allowed

to participate in the dynamics, the effective Lagrangian is

L =6S(migi+m2gz)+6JS —(1—m i )+A,(m i+mirn2)+V 1 rn i
—V 1 —m z cos(Pi —Pz)

2

+ +1—m z cosPi
5

7
(25)

The linearized equations that result are

1 ~

P, =2(1—k)m, —Am2,

1
Pz= —Am, + Ahmz,

1

JS mi = —bi+42

where

Ah ——1+ =2.88982 .5

7

(26a)

(26b)

co=0.9373+A,, —A, , with A,, =0.8395 (see Fig. 7).
Similar calculations can be made for the triangular lat-

tice. Using three sets of spins, out to radius ri =@7/3,
the eigenfrequency of the linearized equations was found
numerically. The core energy is given in the Appendix.
The numerical solution for co is shown in Fig. 7, and is

well approximated by the function co=2.40+A, , —A. , us-

ing A,,=0.6278. Again, it is likely that the prefactor may
be slightly overestimated from the value that would be
appropriate for an infinite system. Also, the relatively
larger coefficient compared to hexagonal and square lat-
tices is to be expected, due to the smaller unit cell and
higher coordination number, making the system "stifFer."

VII. SUMMARY
The eigenfrequencies for this system are easily found to
be determined by the quadratic equation,

co —(2+ Ar, )co —(Ai —1)(A, +23&A, —2A&)=0 . (27)

We see once again that co~0 when the last coefficient
vanishes, which reproduces A,,= —

Ar, ++Ai, +2A„
=0.869. The root for co that approaches zero for A, —+A,,
can be approximated quite accurately in a way similar to
that for the square-lattice calculation,

co=+(Ai, —1)(Bh+A, )j(Ai, +2}QA,, —A,

= 1.172+A,,—
A, , (28)

where Br, =A&+QAi2+2A&. Thus, this level of ap-
proximation gives results very similar to that found for
the square lattice, but naturally with a difFerent energy
scale (due essentially to the coordination number and size
of the unit cell of the lattice}. The calculation of co can be
repeated in the a proximation that three sets of spins out
to radius ~3 = 7 participate in the motion. In that case,
a fit to a numerical solution leads to the result

The above calculations allow for a complete explana-
tion of the instability of the in-plane vortices in the easy-
plane ferromagnet. They have concentrated on the de-
grees of freedom near the core, where the energy density
is highest, where spatial gradients of the spin field are
largest, and therefore where continuum theories would
have the most difficulties. The instability has been ex-
plained as being a consequence of the competition be-
tween in-plane and out-of-plane exchange forces. When
the easy-plane anisotropy becomes too weak (A, increas-
ing towards 1), the spins near the vortex core must come
out of the easy plane to attempt to become more parallel
and reduce their total exchange energy. This means they
reduce their out-of-plane exchange energy while increas-
ing their in-plane exchange energy. This must happen at
a lower value of A, for the triangular lattice than for the
square or hexagonal lattice, because the spins near the
vortex core start out being far from parallel and thus pos-
sessing a large in-plane exchange energy. If they come
out of the xy plane, they can become more parallel, they
increase their in-plane exchange energy, but at the same
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time reduce their out-of-plane exchange energy and also
their total energy, provided A, is large enough.

While the spins nearest to the core are primarily re-
sponsible for driving the instability, it is important to al-

low for a large enough number of spins to participate in
the out-of-plane motion in order to get an accurate esti-
mate of the critical anisotropy, especially for the triangu-
lar lattice. This discrete calculation of the in-plane vor-
tex stability limit, using three sets of core spins, must
overestimate the critical anisotropies A,„because it re-
stricts out-of-plane spin motion compared to that which
would occur in the infinite system. The critical anisotro-
pies obtained are A.,=0.8395, 0.7044, and 0.6278 for hex-

agonal, square, and triangular lattices, respectively.
The instability is closely related to a dynamic mode of

the in-plane vortex, for A. &A, This mode involves a
symmetrical oscillatory out-of-plane motion coupled to
an in-plane rotational motion, all with circular symmetry
about the vortex center. For A, slightly below k„ this
mode consists mostly of out-of-plane motions, with weak-
er in-plane motions. The in-plane motions get stronger
for A, farther away from A,, (i.e., A, near zero). The fre-

quency of this mode goes to zero at the critical anisotro-

py as co ~ QA, , —
A, , signaling the growth of large out-of-

plane spin components becoming energetically favorable
for A, & A, We can also speculate that a similar analysis
of the out-of-plane vortex for k) I,, will reveal a corre-
sponding normal mode whose frequency also goes to zero
as k approaches A,, from above.
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APPENDIX: CORE ENERGIES FOR THREE SETS
OF SPINS

For completeness we give here the core energy func-
tions when three sets of spins out to radius r3 are includ-
ed. The three sets of spins have out-of-plane components
m &, m 2, and m3, and for the time-dependent calculation,
in-plane deviations from the static in-plane vortex of
4i, 0z and A

For a vortex on a square lattice, evaluation of Hamil-
tonian (1) in the core region for Fig. 1 (40 bonds) gives,

E„„=—4JS A(m f +mz+2m &mz+2mzm3)+ —(1—
m z )

4
5

2

+ —Ql mz '1/ m 1
—cos(41 42)+Ql —m 3 cos(A 4z)+ —cos4z

4
5

+ Q 1 —m z cosg3 —10
8

17
(Al)

Various terms involve either interactions between the levels of spins or within a given level. This includes interactions
of level 3 with spins further out that are held fixed in the xy plane. For the static stability analysis, the in-plane devia-
tions can be set to zero.

For a vortex on the hexagonal lattice, the core energy (42 bonds) is evaluated as

E„„=—6JS A(m, +
&
mm+z2 mzm+ 3m)+3+i —m, Ql —mz cos(P, —Pz)

+ +1—m Q 1 —m cos(P —P )+2 2 19 2 13
2 3 2 3 Ql —m cosP + (1—m ) —73 3 14 3

For the triangular lattice, it was necessary to use at least three sets of spins to get an accurate result for A, In this case
the core energy (48 bonds) is

E„„=—3JS A[m /+2(m&mz+m&m3+mzm3)+m3] ——(1—m&)+ (1—m3)

+Ql —m f +1—mz cos(P, —Pz)+ —Ql —m, Ql —m3 cos(P, —P3)

+ —Ql —mz Ql —m3 cos(Pz —P, )+ —Ql —mz cosPz

+ — 5+ —+ —Ql —m3 cosg3 —161 23 17 (A3)
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