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The equations for determining the free energy of a solid with two-body interactions in the
uncorrelated-factors approximation {UFA) are derived from the correlated-factors theorem. A self-

consistent choice of the parameters in the harmonic Hamiltonian causes the approximation to be accu-
rate through second order. The specific heat, thermal expansion, and bulk modulus of an fcc Lennard-
Jones solid with nearest-neighbor interactions only are calculated in the UFA and the results are corn-

pared with the predictions of lowest-order and improved self-consistent phonon theory {SC1and ISC),
perturbation theory through fourth order, and other approximations. The predictions of the UFA are in

very good agreement with new classical Monte Carlo estimates and with recent effective potential Monte
Carlo results. The calculational effort required in the UFA is similar to that in SC1, while the accuracy
of the predictions is similar to that of ISC.

I. INTRODUCTION

A reasonable goal for solid-state theory is the ability to
predict the thermodynamic properties of crystalline
solids from a knowledge of the interatomic potentials at
all temperatures from absolute zero to melting. Ideally, a
single approximation that is computationally efficient and
easily programmed should be able to account for both
quantum and anharmonic efFects. The purpose of this pa-
per is to report the results of an application of the
uncorrelated-factors approximation (UFA), which is one
of the newer approaches to this problem, and to compare
it with several competing approximations.

In Sec. II the equations for determining the free energy
in the UFA are derived for a solid with two-body interac-
tions. In Sec. III the equations are applied to an fce
Lennard-Jones solid with interactions between nearest
neighbors only. The predictions of the UFA are then
compared with the predictions of several other analytic
approximations, new classical Monte Carlo {MC) esti-
mates, and recent effective-potential Monte Carlo
(EPMC) results.

The UFA is based on the correlated-factors theorem,
which was proved in an earlier paper, where it was ap-
plied to the P model. ' The UFA can be viewed as a gen-
eralization of an earlier approximation, the
uncorrelated-pairs approximation, in which only one of
the two zeroing conditions was satisfied [i.e., Eq. (18) was
satisfied but not Eq. (19)]. Even this lower order of ap-

proximation gave very good agreement with the experi-
mental results for solid argon when a realistic potential
was used. Another approximation related to the UFA is
the correlated-Einstein model (CEM), in which both
zeroing conditions were satisfied but a less general har-
monic Hamiltonian of the Einstein type was used. The
approximation (CPE3) obtained by adding third-order
corrections to the GEM gave very good agreement with
the classical MG estimates for both the Lennard-Jones
and the hard-sphere solids. '

Quantum effects, which are most significant at low
temperatures, are easily accounted for in approximations
that utilize normal modes (or phonons). In addition to
the UFA, the approximations of this type considered
here are the quasiharmonic approximation (QHA),
second-order perturbation theory (PT2), fourth-order
perturbation theory (PT4), ' lowest-order self-consistent
phonon theory (SC1), and improved self-consistent pho-
non theory (ISC)."' Of these only the UFA and ISC
give accurate predictions for a Lennard-Jones solid from
absolute zero to the estimated melting temperature.

Another type of approximation is based on indepen-
dent sites, instead of normal modes. The cell cluster ex-
pansion (CCE), ' the CEM, and the CPF3 are the ap-
proximations of this type considered here. Such approxi-
mations are quite effective in treating anharmonic effects,
which are most significant at high temperatures, but they
have difficulty with quantum effects. Only classical re-
sults are given. The UFA, ISC, CCE, and CPE3 results
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are in good agreement with the classical MC results.
Monte Carlo methods give statistical approximations.

Classical MC in its computationally eScient and easily
programmed form gives estimates for the averages of
phase functions of small model systems but not for the
free energy. Even though quantum effects are not includ-
ed, classical MC is very useful for the testing of analytic
approximations, since its accuracy is limited only by the
size of the statistical sample used. A comparison with
MC results gives a more meaningful test of an analytic
approximation than a comparison with experimental re-
sults, since it is not afFected by any uncertainty about the
correct form for the interatomic potentials.

To test the ability to predict quantum as well as anhar-
monic effects, comparisons are made with some recent
EPMC results. ' ' This and other quantum extensions of
classical MC are still under development and have some
limitations. For example, an EPMC calculation takes
about a half hour on a Cray-YMP. Reported times for a
path integral Monte Carlo (PIMC) calculation are even
longer. ' In contrast, calculations with the analytic ap-
proximations typically take about a minute on a personal
computer with an Intel 486 CPU. The analytic approxi-
mations give the free energy, volume coefficient of
thermal expansion, and bulk modulus; to date there are
no published EPMC or PIMC values for these properties.

II. UNCORRELATED-FACTORS APPROXIMATION

In this section we derive the equations that give the
free energy of solids with two-body interactions in the
UFA. The result is Eq. (23). The derivation starts with
the correlated-factors theorem which states that the har-
monic average of a product of factors f (q ) is given ex-
actly by'

gf (q ) = e jf(f (q+x ))
p 0 p x=0

—f3{H —Ho )F =Fo ——ln(e (2)

which is exact classically, but not quantum mechanically.
Here, P= 1 /k~ T. With two-body interactions the true
Hamiltonian for the system is

Ip; I'
+ g y, t, (IR, —RQ+uj

i & j(k
(3)

which is equivalent to Eq. (31}of Ref. 1. The validity of
the theorem requires (a) that the arguments q» of the fac-
tors are linear functions of the canonical coordinates and
(b) that the harmonic Hamiltonian is a sum of linear and
quadratic functions of the canonical coordinates. The
theorem is valid both classically and quantum mechani-
cally. The correlations neglected in the product of aver-
ages on the right are accounted for by the differential
operator e . Specific forms for f, q, and W are given
below.

To apply the theorem to the determination of the
Helmholtz free energy Fone uses the relationship

where the superscripts a and y label different Cartesian
components. The six components of the symmetric ten-
sor /~A (or p z) and the three components of the vector
I z (or I t, ) are adjustable parameters. The difference
H —Ho can now be written as a sum of terms,

~—&o=& (@; (IR, —R +,—
j(k

—[—,'(u, —ua )'Pp, (u, —ua )

—I Ja'(uj —ua)]j
and the Boltzmann factor in Eq. (2) can be written as a
product of factors,

AH Hp—)—
j(k

Since the canonical coordinates in the factor fjz appear
in the linear combination u. —uk, we consider the argu-
ments offJz to be the three components of

qp=uj —uk .

q» is referred to as a pair displacement The d. ifferent
values for p must be put into one to one correspondence
with the N(N —1)/2 different combinations of j and k
with 1&j&k &N, where N is the number of particles.
By using p to label the different factors and by setting
Rj Rk Rp the average of the Boltzmann factor in Eq.
(2) becomes

(e ' )e=(rtfe(qe))

where

and

f»(q»)=e

b,P =P (IR»+q»I }—( —,q» f».q» I'» q») . —

The correlated-factors theorem can be applied to the
product on the right-hand side of Eq. (8).

For solids with two-body interactions the operator W
1s

8'=g' W»»,
PP

where the prime on the sum indicates that terms with

where the canonical coordinates are the components of
the displacements u; of the particles from their lattice
sites R, . The potential for the pair of particles j and k is

P~t, (r}, and p; is the momentum of particle i B. oth Fo
and the canonical average ( ' ' )0 are formed with a har-
monic Hamiltonian Ho. To make the harmonic potential
energy a sum of pair terms, like the true potential energy,
the harmonic Hamiltonian is chosen to be

H =g + g —g g (u —u„)p'r(uj' —ug)
Ip; I'

i jgk 2

3—g l,z(uj —ut, )
a=1
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p =p' are excluded from the sum, and

(12)

Equations (11) and (12) are equivalent to Eq. (32) of Ref.
1. The components of the pair-pair-correlation tensor A

PP
are

A r=((q —(q & )(qr —(q~ & )& (13)

Note that, since the pair displacements are functions of
the canonical coordinates u; and since it is the canonical
coordinates that are harmonically averaged, A ~. is not a
function of either q or q~. The gradients in W represent
differentiations with respect the variables xz in Eq. (1).
Each x is added to the corresponding q~ in f~(q~) be-
fore the averaging is done and is set to zero after the
differentiations have been performed. Once it is clear
what the operator W operates on, it is convenient to
rewrite the correlated-factors theorem, Eq. (1), as

(g f (q ) = p y'W ~ q (f~ (q -)), (14)
0 .PP . P

and

(V f (q )&,=0

(V Vrf (q )&,=0 .

(18)

(19)

These are referred to as the zeroing conditions With. the
aid of Eqs. (9) and (10), they can be reexpressed as

(20)

When the subscripts p, p', p, and p' on the operators 8'
and W@, in Z2 are all different, there are averages in the
numerator of the types (f (q ))o and (V~f~(q„))o.
Averages of the first type cancel between numerator and
denominator. When one of the subscripts on W ~ equals
one of the subscripts on 8'&„averages of the type

(V~V~rf~(q~))0 also arise. Since pXp' and pAp', there
are no averages with three or more gradients in them.
Thus, both the coefficients Zi and Zz vanish when Pz
and I are chosen so that

where V is interpreted as BIBq and the factors f (q~)
are difFerentiated before the averaging is done.

The UFA is obtained by expanding the exponential
operator in the correlated-factors theorem. First, the log-
arithm of the right-hand side of Eq. (14) is expanded in
powers of an ordering parameter A, :

and

a'y, (IR, +q, l)

Bqp Bqpr

—Pb,
gati—

~l pq, ) —I;][G'(q ) —I. ]

Z]

g(f, (q, .)&,
PP P

g( f,-(q, ) &o

P

gg p p p o pp(V f~(qp))o. A~~" (Vp fp(qp ))0
2(f (q )) (f (q ))

(16)

ln exp kg' W g (f (q ))o
PP . P

=gin(f (q )),+XZ, +-,'X'Z, +
P

Then, the adjustable parameters P and I' in the har-
monic Hamiltonian are chosen so that the coefficients of
A, and A, vanish. Terms of order A, and higher are
neglected. Finally, A, is set equal to one. The coefficient
of A, in the expansion is

(21)

In addition to the explicit dependence on I' and P, Eqs.
(20) and (21) depend on I'z and P& implicitly through

and the harmonic averaging. They have a form that
can be easily iterated to produce self-consistent values for
I and/ .

By combining Eqs. (2), (8), and (14) with the above ex-
pansion, the free energy becomes

1 —PEPF=Fo X ln(e ~ &o=FUFA (23)

where

G, (q, )= —[&&~(IR,+q~l)iraq~ ]—g PPq,' . (22)

where this defines FUFA. When the zeroing conditions
are satisfied this approximate free energy is accurate
through second order in A, . It is referred to as the
uncorrelated-factors approximation, since it allows the
factors in Eq. (8) to be treated as statistically uncorrelated
random variables. '

Both classically and quantum mechanically harmonic
averages like those in Eqs. (20), (21), and (23), which are
functions of a single pair coordinate, can be reduced to

ensiona1 integrals of the form'

y~'. g(f, -(q,-)),
PP"

g(f -(q -)&
P

g' W'
~

PP

Z I ~
2

(17) three-dim
I

exp qp qp 0 +pp qp qp 0
(24)

where cancellations of identical averages between the
numerator and denominator give the result on the right.
The coeKcient of A, is
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where A ' is the inverse of the 3X3 matrix A . The
pair a-utocorrelation tensor A is given by Eq. (13) with

p =p' and ~IAr~~I is its determinant. The harmonic con-
tribution to the free energy Fp can be evaluated either
classically or quantum mechanically. To be consistent
with Eq. (2) not being quantum mechanically exact, the
anharmonic contribution FUFA Fp should be evaluated
classically, even when the quantum form of Fp is used.
This means that classical statistical mechanics is used to
determine A~~ and (qr )0.

LFA

P

P
lQ

— QHA
0

III. CALCULATIONS AND RESULTS 0
0.0 0.1 0.2 0.3 0.4

Ar

0.5

The equations that must be satisfied to determine the
free energy in the UFA are (20), (21), and (23). We con-
sider an fcc Lennard-Jones solid with interactions be-
tween nearest neighbor only, which is a standard test
case. The form of the potential is

kBT/e

FIG. 1. Zero-pressure constant-volume specific heat per par-
ticle versus temperature for an fcc Lennard-Jones nearest-
neighbor solid for a model of Ar. ad& =0.025 51.

P(r)=4e[(o/r)' (o/r) —] . (25)

Since the potential acts between nearest neighbors only,
calculations are needed only for pairs that are nearest
neighbors. Because of the symmetry of the lattice, scalar
properties have the same value for all nearest neighbors,
and vector and tensor properties can be determined for
all nearest neighbors by symmetry transformations of the
properties for one particular pair. Also, because of the
symmetry of the lattice, (qz )0=0. With one atom per
unit cell the components of the pair-autocorrelation ten-
sor are

ktt T 2e&„ef„(1—cosk R~ )

pp (~p lp ~0 ~ + 2
kn Pl COkn

(26)

where ek„and meek, are the eigenvectors and eigenvalues
of the dynamical matrix for the normal mode with wave
vector k and polarization index n. The sum is over the k
vectors in the first Brillouin zone and the three values for
n. The integrals in Eq. (24) are done by changing to cy-
lindrical coordinates and doing the angle integration
analytically, which give rise to modified Bessel functions.
The remaining two integrations are done numerically.

The approximate free energy for N particles is

specific heat cz and the equilibrium nearest-neighbor sep-
aration R„„are given as function of the temperature T.
The magnitude of quantum effects is determined by the
de Boer parameter

ad~ =Pi/(o &rn s), (28)

1.18
- UFA

1.17—
SC1

PT4

where m is the mass of an atom. A value of
ad& =0.02551 was used. It was calculated with
2' cr =3.709X10 cm and e, =235.95X10 ' ergs,
which are the recommended values for a model of solid
argon. ' The values for the different approximations are
for the volume V that causes the pressure to vanish in the
approximation considered and for the limit N= 00. For
comparison the EPMC values and their error estimates
are included. ' Note that quantum effects are neglected
in the anharmonic contributions to the UFA results, but
not in the other results presented.

1.16—
0

PT2

QHA

pFUF&=g ln[2sinh( —,'pRco&„)] 61' ln(e ~)0—, (27)
kn

CL

1.15 —EPMC

where the quantum-mechanical form of Fp is given and
6N is the number of nearest-neighbor pairs. The
constant-volume specific heat per particle cz, the volume
coefficient of thermal expansion az, and the isothermal
bulk modulus Bz were obtained by numerically
differentiating the approximate free energy.

In Figs. 1 and 2 the quantum-mechanical values for the

1.14—

1.13
0.0 0.1 0.2 0.3

kBT/t'
0.4 0.5

FIG. 2. Zero-pressure nearest-neighbor separation versus
temperature for a Lennard-Jones nearest-neighbor solid.
adg =0.025 51.
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FIG. 3. Classical constant-volume specific heat per particle
versus temperature for an fcc Lennard-Jones nearest-neighbor
solid.

FIG. 5. Classical isothermal bulk modulus versus tempera-
ture for an fcc Lennard-Jones nearest-neighbor solid.

0,5

QHA
+ .

MC

0.2
0.1 0.2 0.3

kBT/e
0.4 0.5

FIG. 4. Classical volume coefficient of thermal expansion
versus temperature for an fcc Lennard-Jones nearest-neighbor
solid.

In Figs. 3 through 5 the classical values of cv, az, and

BT are given as functions of the temperature T for the
limit N = Do. Note the relatively small range of values on
the vertical axis of Fig. 3. The CCE and CEM values for
BT are not given since they would be almost indistin-
guishable on the graph from the UFA values. The lines
between the crosses in Figs. 3 through 5 are guides to the
eye. At each of the six temperatures for which results are
given, the same volume was used for all approximations.
The values used, which are given in Ref. 20, are those
that cause the pressure I' to vanish in the CCE. At
kiiT/s=0 5, whe. re the difFerence from zero is greatest,
the UFA value for Pcr /s is 0.064 and the MC value is
0.018. For comparison Po3/a=0. 0015 at one atmo-
sphere.

The classical MC estimates included are for a system of
108 particles with periodic boundary conditions. Each
data point was obtained with a simple of 10 steps per

particle. No extrapolation to the thermodynamic limit
was made. The estimates are consistent with earlier MC
results, but since they involve a larger sample the es-
timated errors are smaller. Error bars representing one
standard deviation are included where they can be seen
beyond the plotting symbols.

IV. CONCLUSIONS AND DISCUSSION

It is clear from Figs. 1 and 2 that only the UFA and
ISC are accurate at all temperatures from absolute zero
to ksT/a=0. 5. For comparison k~T/s equals 0.49 at
the experimental atmospheric-pressure melting tempera-
ture of argon, which is 83.8 K. The curves labeled QHA,
PT2, and PT4 suggest that the perturbation theory ex-
pansion is not converging for this potential, although the
convergence is much better for the Morse and Rydberg
potentials. The neglect of quantum effect in the anhar-
monic part of the UFA is not likely to be significant for
the value of the de Boer parameter used here, but it is ex-
pected that it would be significant for a model of solid
neon. The inclusion of these neglected quantum effects is
planned for a future publication. It is clear from Figs. 3
through 5 that the CCE and CPE3 are the most accurate
of the approximations based on independent sites.

It is convenient to introduce the concept of layer of ap
proximation as distinct from order of approximation. A
higher layer of approximation is to be associated with an
additional set of equations to be evaluation, while the or-
der of an approximation is associated with accuracy
through a particular power of some ordering parameter,
such as the X introduced in Sec. II. For example, in per-
turbation theory the potential energy is expanded in
powers of the displacements of the particles from their
lattice sites, and the cubic terms are considered to be of
order k, the quartic terms are associated to be of order
A.2, etc. The QHA is the first layer of approximation, PT2
is the second layer of approximation, and PT4 is the third
layer approximation. For the symmetric structure con-
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sidered here the contributions of order A, and A, vanish,
so that there are no additional sets of equations to be
evaluated in these orders. In self-consistent phonon
theory the first layer approximation is SC1 and the
second layer is ISC. The additional set of equations to be
evaluated in ISC is very similar to the additional set in
PT2. Only a leading second-order contribution from
Choquard's full second-order self-consistent theory is re-
tained in ISC.' ' '

The UFA is the first layer of approximation in the ex-
pansion discussed in Sec. II. An important conclusion of
this paper is that this first layer of approximation has the
same level of accuracy as the second layer of self-
consistent phonon theory. This is significant, since the
equations in the UFA are quite similar to those in the
first layer of self-consistent phonon theory. Specifically,
Eqs. (21), and (23) for the UFA are replaced in SC1 by

respectively. The same FORTRAN program was used to
produce both the UFA and SC1 results presented here,
and there are only 22 lines of code that differ for the two
approximations.

Finally, it should be mentioned that CPE3 is the
second layer of approximation in the expansion in which
the CEM is the first layer. The iInproved accuracy ob-
tained by going from the CEM to CPE3 seen in Fig. 3,
and the close relationship of the CEM to the UFA sug-
gests that the second layer of approximation that corrects
the UFA could significantly improve the UFA, if such an
improvement becomes desirable. The second layer' of ap-
proximation would be obtained by evaluating the terms
of order A, in the expansion in Eq. (15).
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