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Localization properties of quasi-one-dimensional conductor networks in a random magnetic field
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We investigate the localization of electrons on a ladder-shaped quasi-one-dimensional network of
clean wires, with a quenched random magnetic flux across each of its square plaquettes. In the weak-

disorder regime, the localization length g is much larger than the side of the plaquettes. Using perturba-
tive analytic techniques, we derive scaling laws of the form g-1/w, with w being the width of magnetic
disorder. The critical exponent a assumes different values in various energy ranges: a =4 when only one
channel is open, a=2 when both channels are open, a= 1 around external and internal band edges. The
corresponding scaling functions and amplitudes are accurately determined by numerical simulations.

Magnetic disorder and potential disorder thus pertain to different universality classes.

I. INTRODUCTION

There is a growing interest in the study of electron lo-
calization in the presence of a random magnetic field. '

This problem has been suggested in the past, merely as an
alternative kind of disorder. Within the tight-binding
approximation, unlike in the Anderson model, where dis-
order is implemented through random site energies, mag-
netic disorder is implemented via random phases in the
hopping matrix elements. These phases are usually
chosen as independent variables, drawn from a common
probability distribution, characterized by its width w.
Most efforts so far have been directed toward the study of
two-dimensional (2D} systems. One of the main motiva-
tions for these investigations is the question of whether
such a system exhibits a mobility edge. Beside its own
academic interest, this problem is related to some recent
attempts to interpret the v= —,

' anomaly observed in the
fractional quantum Hall effect. A good exposition of
these topics can be found in Ref. 6.

Much less effort has been directed toward the study of
1D or quasi-1D systems in the presence of random mag-
netic fluxes. The authors of Ref. 6 quote an unpublished
work by some of them, on a ladder-shaped network with
random fluxes. As expected, all the eigenstates are
found to be localized, and the conductance, as given by
the Landauer formula, obeys a roughly log-normal distri-
bution. Yet the presence of random magnetic fluxes is a
novel kind of disorder, which can be expected to lead to
new physics, with respect to the usual theory of localiza-
tion, at least as far as quantitative aspects are concerned.

This is essentially the point of the present paper. We
investigate the propagation of noninteracting electrons
on a ladder-shaped network of quantum wires, with an
independent random magnetic flux across each of its
square cells, or plaquettes. This model is especially con-
venient for analytic perturbative calculations, since it can
be recast in terms of an infinite produce of independent

transfer matrices (as far as we know, there is no such for-
mulation for tight-binding models with magnetic disor-
der}. A novel kind of scaling behavior is predicted, con-
cerning especially the divergence law of the localization
length g as the strength of magnetic disorder tv tends to
zero. This paper is organized as follows. In Sec. II, we
present our model for a network of quantum wires, which
is adapted from previous works, ' and we discuss its
dispersion relation in the presence of a constant magnetic
field. Section III contains our analytic and numerical re-
sults. We derive a weak-disorder expansion of both posi-
tive Lyapunov exponents. The outcome assumes several
difFerent forms in various energy ranges (one open chan-
nel, two open channels, external and internal band edges}.
These predictions are corroborated by accurate numeri-
cal data. Section IV closes up with a short summary and
a discussion.

II. THE MODEL

A. Generalities

We consider a ladder-shaped network of clean con-
ducting wires in a quenched random transversal magnetic
field. We express magnetic fluxes in units of A/e, so that
the flux quantum reads 40=2~. We set the length of the
wires, i.e., the side of the square plaquettes, equal to
a =1. Each plaquette embraces a magnetic flux which
we denote by 2P„. Figure l illustrates our notations and
conventions. We choose the gauge such that the vector
potential is parallel to the axis of the ladder; it is taken to
be constant along each wire, and reads A =P„between
the points P„,and P„,and A = —P„between the points
Q„,and Q„.

Following our previous works, we write the wave
functions along the wires as fo11ows:
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P
n —1

(c,d )

n
The six amplitudes Ia„,b„,c„,d„,f„,g„} which de-

scribe the wave function in each plaquette are related by
six linear equations, namely,

continuity at P„:

e "(a„e'"+b„e '")=f„e'"+g„e'&n

=an+ ~+bn

continuity at Q„:
—

iPn
e "(c„e'"+d„e '")=f„+g„=c„+,+d„+,

FIG. 1. Schema of a portion of the ladder network, showing
the notations and conventions used in this paper. current conservation at P„:

(2.2)

from P„,to P„:
n

"
[a eik(x —n+1)+b —ik(x —n +1)

jn ne

from Q„, to Q„:
n "

[c eik(x —n+1)+d e
—ik(x —n +1)]

n n

(2.1)

e "(a„e'" b„e —'")+f„e'" g„e —'"=a„+) b„+—)

current conservation at Q„:

e "(c„e'"—d„e '")+g„f„=c„—+) —d„+) .

an

Two of these equations can be used to eliminate the
transversal amplitudes f„and g„. It is advantageous to
recast the remaining four relations among the longitudi-
nal amplitudes in the following form

a„+
from Q„ to P„:

ik +g ~k

where k is the momentum of an electron with energy
E =Pi k /(2m)

Cn+1

dn+1

b„= T(it)„ )
Cn

where the 4X4 transfer matrix T(P„)reads

(2.3)

2i sink

(cosk +2i sin k)e'~+'"
—coske'&+"

iP+ik

iP+ik

coske Iy- k

(
—cosk +2isink )e'('

—e iP —ik

e iP —ik

—e
—iP+ik

e
—i P+ik

(cosk+2isink )e '&+'k

—coske

e
—i/ —ik

e
—iP —ik

coske '& '"

—cosk +2isink )e

(2.4)

It is worthwhile noticing that the transfer matrix
T(it)„ ) attached to the nth plaquette only involves the
corresponding magnetic flux P„. The propagation across
N cells of the network is therefore described by a product
of N independent random matrices, of the form

For further convenience, we suppose

Ret ~0, ~lmt~ ~ m . (2.7)

I

4 cosh t —12 cosk cosP cosht+9 cos k +4cos P —5=0 .

(2.6)

n=1

B. Dispersion relation in a constant magnetic field

(2.5) The quadratic equation (2.6) has two roots, namely,

2 cosht) =3 cosk cosP+(1+4 sin~((}—9 cos k sin P)'~

(2.g)

Let us first investigate the situation of a network in a
constant magnetic field. A11 magnetic cruxes are then
equal to the same number P. We are thus led to diagonal-
ize the constant transfer matrix T(P). Using the notation
A, =e' for its eigenvalues, we obtain the following relation

2 cosht2 =3 cosk cosP —(1+4sin (()
—9 cos k sin (())'

so that the four eigenvalues of the transfer matrix read—t~e ', e ', e ', ande
The dispersion relation is obtained by substituting
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t, = real+in

I II III

real real

(3.2)

We also introduce for further reference the dimensionless
ratio

t& = real+i@ real+i7r real

P2
(3.3)

cos k

FIG. 2. Schema of the band structure of the network in the
absence of a magnetic field, illustrating the definition of the
various energy regions, and the ranges of the variables t

&
and t2.

t ~iq in Eq. (2.8), where q denotes the Bloch momentum.
The spectrum thus consists of two intervals, namely a
right band (1—2~cosg~ & 3 cosk «1+2~cosg~ }, corre-
sponding to having q2 real, and a left band
(
—1 —2~cosg~ &3cosk & —1+2~cosg~), corresponding to

having qj real. Every real wave vector corresponds to
the possibility of propagation through an open transverse
channel The .two bands overlap for ~cosP~ ~

—,'. It that
case, two channels are open in the central region of the
spectrum (1—2~cosg~ «3 cosk « —I+2~costt}~ ).

In the absence of a magnetic field, the dispersion rela-
tion derived above assumes the form

2cosht& =3cosk+1, 2cosht2=3cosk —1 . (2.9)

The spectrum thus consists of two partially overlap-
ping bands, namely ( —1 & cosk &

—,
' ), and

( —
—,
' &cosk &1). This band structure, shown in Fig. 2,

determines three regions, namely two lateral one-band re-
gions (I) and (III), where only one channel is open, and a
central region (II},where two channels are open.

III. THE LYAPUNOV EXPONENTS:
ANALYTIC VERSUS NUMERICAL RESULTS

In order to model the presence of quenched disorder,
the magnetic fluxes P„across the successive plaquettes
are taken to be independent random variables, which we
assume to be drawn from a common even-probability law
r (P }dj. In this situation, the Furstenberg theory of ma-
trix products tells us that the main quantities of interest
are the Lyapunov exponents of the product (2.5), in the
thermodynamic limit of an infinitely long ladder. The
system has two positive Lyapunov exponents, that we
shall denote by y, ~ y2 ~ 0, and two negative ones, name-
ly their opposites —y, and —y2. As a consequence, all
the eigenstates are exponentially localized, and the locali-
zation length is given by

which is a characteristic of the shape of disorder, some-
times referred to as the kurtosis of the distribution.

A. Numerical procedure

The algorithm that we have chosen in order to evaluate
numerically both positive Lyapunov exponents of the
problem has been used extensively in the context of the
Anderson model. ' It consists in calculating two
"infinite" sequences of four-component vectors I U„ I and

I V„),defined by the recursion relations

U„=T(P„)U„,, V„=T(P„)V„ (3.4)

where ~~U„X V„~~ denotes the area of the parallelogram
spanned by the two vectors.

The Lyapunov exponents defined by Eq. (3.5) are self
averaging quantities. From a practical viewpoint, the ac-
curacy of the numerical procedure is only limited by sta-
tistical errors, which decay as n ', by virtue of the law
of large numbers. By performing an orthonormalization
of the system I U„, V„j at regular steps during the calcu-
lation, this algorithm can be run up to n =10 -10,
without developing either overflows or appreciable
rounding errors.

Most of the numerical data to be presented later on
concern one of the following two types of disorder:

The rectangular distribution

r„,t(P) = 1 for—1rw 1rw

2
(3.6)

which corresponds to

7TW 7TW 9
P2 s P4 s &4 =

12
' 80 S

(3.7)

For the value w =1, we have a uniform distribution of
the magnetic fluxes, which has been considered, e.g. , in
Ref. 4.

The binary distribution

with some initial conditions Uo, Vo. The Lyapunov ex-
ponents y &

and y2 are then given by the following limits

y, = lim —in//U„f/, y, +y2= lim —in//U„X V„//,
1 1

n~cc n n~oo n

(3.5)

1

y2
(3.1) rh;„(p }=—,

' [5(p—W}+5(p+ W}], (3.8)

In the following, we shall be mostly interested in the
quantitative behavior of the Lyapunov exponents in the
regime where the random fluxes are small ( ~P„~ && 1). In
this weak-disorder regime, physical quantities only de-
pend on the first two even moments of the distribution of
the random magnetic fluxes, namely

which corresponds to

P2= W, P4= W, %4=1 . (3.9)

Figure 3 shows the global behavior of both Lyapunov
exponents against cosk, for a rectangular distribution
with various values of the width w, going from w =0 (no
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1.0magnetic field) to w =1 (uniform distribution of the mag-
netic fluxes). Various features visible on these plots will
be explained by the quantitative results which fo11ow.

(a)

B. Analytic weak-disorder expansion
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(3.10)1 ~2 2

using the variables defined in Eq. (2.9}. The conditions
(2.7}ensure that we have y, & yz & 0, as it should be. The
expression (3.10) is, of course, the zeroth order of the
weak-disorder expansion that we are going to derive.

Along the lines of Ref. 14, we first transform the ran-
dom transfer matrix T(P) in the basis where the unper-
turbed matrix T(0) is diagonal. Using again the notation
(2.9), we obtain

T(P)=M 'D (P)M, (3.11)

0.1—
l
/

0 I I

0 0.2 0.4 0.6 1.21.0
COS

FIG. 3. Plot of the Lyapunov exponents y& and y& against
cosk, for several values of the width m of the rectangular distri-
bution of the random fluxes.

2 sinht, 2 sinht, 2 sinht, 2 sinht,

2 eik 2 e
—ik 2 eik 2 e

—ik

2 sinht~ 2 sinht~ 2 sinht~ 2 sinhtz
(3.12)

e —eik 1 ll
e

—ik e 1 1 sk —ik

2 sinht
&

2 sinht
&

2 sinht&

ik 2

2 sinht~

2 sinht&

eik e 2 e
—ik e2f —ik 2

2 sinhtz 2 sinhtz 2 sinht~

e ' —e ' e
—ik

e —e e ' —e'2 ik 2 eik
M

4i sink
(3.13)

e
—ik l —ike

—ik e2 7

e
—ik e 2

e 2 eik ike' —e 2 eik

In the weak-disorder regime, i.e., when the width of
the distribution of the random

cruxes

is small, the
Lyapunov exponents can be expanded in a systematic
way in terms of the successive moments of this distribu-
tion. Weak-disorder expansions have been known for a
long time, for the tight-binding Anderson model, "or the
vibrational spectra of random harmonic chains a re-
cent review of these topics can be found in Ref. 13. In
the present case, we are going to derive such an expan-
sion, up to the fourth order included, following closely
the approach described in Ref. 14. This paper presents
the basis for a perturbative expansion of the Lyapunov
exponents of products of independent random matrices of
any size, and gives explicit expressions of the results up to
the fourth order.

We emphasize that this approach is a priori only mean-
ingful out of the spectrum of the network. Predictions of
physical interest concerning the Lyapunov exponents on
the spectrum can only be reached by means of an analytic
continuation of the outcome of the perturbative analysis.
We shall come back to this important point later on.

We start by considering a momentum k such that
cosk & 1. In the limit of a vanishing disorder, we have
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and

D(P)=

t1
cosine

'

f1+f2
e

i sing
2 sinht2

1 2

i sing
2 sinht2

f1+f2
i sing

2 sinht,

tz
cosine

'

'z2 1

i sing
2 sinht,

f2 1

i sing
2 sinht2

cos(t)e '

—t1 —tz1 2

i sing
2 sinht2

i sing
2 sinht,

—f1 —fz1 2

i sing
2 sinht,

cosine

(3.14)

The derivation of the weak-disorder expansion of both Lyapunov exponents up to fourth order is a lengthy applica-
tion of the general approach exposed in Ref. 14. This calculation presents no peculiar diSculty, except the following

point. The average of the matrix D (P) over disorder is not D (0), but rather

f1+7
e

f2+7.
e

D(P)=
0 0

0 0
—t +T2

(3.15)

with

P2 1r= ln( cosP)= — + (p —3p )+
2 24

(3.16)

Our final result is the following

P2 PC 2 (
'i '2

1 )4

32sinh t, sinh t2e '(e ' —e ')2 2t 2t —2t (3.17)

cosht, cosht2 —1
T2 2+@2 2 ht ht +P4

(e 1 2 1)21 (
ti+t~ 4

f1 +tz . 2 . 2 2t1 +2tz
6sinht& sinht2e ' ' 32sinh t& sinh t2e

(e ' —1)4 2(e ~ —1)2(e ' 2 —1)2
P2

32sinh t, sinh t2 e '2(e '2 e '&) e '&+'2(e'& e '2)

2(e ' ' —1) (e ' ' —1)
f1+fz 2 fz t1

t +2f f1 —fI 2(e l e 1)
+ s ~ ~ (3.18)

%"e recall that this result has been established under the
assumption that both t, and t2 are real, and that these
conditions are only met for cosk & 1, i.e., out of the spec-
trum. In order to obtain information of physical interest,
we have to reach the spectrum of the system, and there-
fore to perform an analytic continuation of the results
(3.17), (3.18). The Lyapunov exponents are given by the
real parts of the analytically continued expressions. In
the next subsections, we describe various regimes in de-
tail, and compare our analytic predictions to numerical
data. As it turns out, five different cases have to be con-
sidered.

C. The one-channel regions (I) ( —1 & cosk & —
3 ) and (IH)

(3 & cosk &1)

In these two lateral regions of the spectrum (see Fig. 2),
one of the t variables is real, and the other is imaginary.
In other words, only one transversal channel is open. %e
consider for definiteness region (III). We thus have t,
real positive, whereas t2=iq2, with q2 being the Bloch
momentum of the single band.

The largest Lyapunov exponent is y, =t„up to small
corrections, which can be directly read from Eq. (3.17).
In order to obtain y2, and hence the localization length,
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y2=ttt~[ A ( cosk)+It. 4 A4( cosk)] . (3.19)

we have to continue analytically the perturbative result
(3.18). Since t2 is imaginary, neither the term of order
zero nor the term proportional to pz contribute to y2. As
a consequence, only both kinds of fourth-order terms,
proportional to pz and to p4, contribute to yz. We thus
obtain

consecutive transfer matrices

II =D(ttt )D(Q )D(ttt )D(ttt )D(ttt )D(P, ) . (3.22)

It turns out that the product II6 decomposes, via a
change of basis, into two 2 X 2 blocks. We have indeed

P 0
(3.23)

Explicit, albeit not very illuminating, expressions for the
amplitude functions A and A4 can be derived by taking
the real part of Eq. (3.18).

We thus arrive at the conclusion that the inverse locali-
zation length vanishes as w . Moreover, the prefactor of
the g- I /ttt law is not universal, since it involves explic-
itly the kurtosis K~ defined in Eq. (3.3},and thus depends
on the shape of the distribution of the fluxes.

D. The two-channel region (II) ( —
—,
' & cosk ( 3 )

In this central region (see Fig. 2), both bands of the sys-
tem overlap in the absence of a magnetic field: both
Bloch momenta q& and q2 are real, i.e., both transversal
channels are open. The general weak-disorder result
(3.17), (3.18) does not yield directly any quantitative in-

formation about the Lyapunov exponents in this region.
Indeed, perturbative techniques of this type are known to
break down when two of the unperturbed eigenvalues,

t) E~
such as e ' and e ', have equal moduli, and more general-
ly when the width of disorder becomes comparable to the
difference between these moduli. A more sophisticated
degenerate perturbative approach is needed there, as ex-
plained, e.g. , in Ref. 15 for the case of 2X2 matrices. In
the present case of 4 X4 matrices, we can assert from the
general structure of the problem that both Lyapunov ex-
ponents vanish proportionally to p2, namely,

with

1 0 0 1

1 0 1 1 0
0 1 —1 0
1 0 0 —1

(3.24)

and where P denotes the transpose of the matrix P.
Furthermore, the blocks which enter Eq. (3.23) are close
to the identity matrix for a weak disorder. More precise-
ly, to first order in the magnetic Quxes, we have

1 —Z —X+iYP= X+iY 1+Z (3.25)

with

—(At+ 24~+ 4s 6 20s —4e)—+—1

3

Y =It 6 44+0—e+ —'

3
«t 42+as 0 +Os 0e)+—1

(3.26)

X= Y=Z =0, XY=XZ = YZ =0,

where the dots represent higher-order terms in the mag-
netic cruxes. To the quadratic order, the statistics of
these random variables is as follows

y t
=p2Bt( cosk ) (1 = 1 or 2), (3.20) X = Y =4p2, Z =2p2.

(3.27)

without obtaining explicit expressions for the amplitude
functions BI.

E. The band center (cosk =0)

Because of the decomposition (3.23), we have

yl y2 (3.28}

We can provide a quantitative derivation of the result
(3.20) at the center of the spectrum (cosk =0). Indeed,
the degenerate perturbation theory mentioned in the pre-
vious subsection assumes a simpler form at this special
energy. The key point is that a judicious grouping of the
random transfer matrices D(P„} reduces them to 2X2
blocks. The outcome of this analysis reads

B/(0) =—2 V'3 —1 =0.210127 (1=1 or 2) .
ln(2+ &3)

(3.21)

The main lines of the derivation of the result (3.21) go
as follows. At the center of the band, we have t, =i~/3

6t ] 6t2
and t2=2in. /3. As a consequence, e ' =e '=1. This
observation suggests consideration of the product of six

(1—Zk)Sk t
—Xk+tYk

(Xk+iYk)Sk t+1+Zk

and we have

y = —
3tM + (( 1n

~
(X„+iY„)S„,+ I +Z„~ )),

(3.29)

(3.30)

where (( )) denotes an average over the stationary

where y is the positive Lyapunov exponent of an infinite
product of 2 X 2 matrices Pk. Equations (3.23) and (3.28}
are exact results, which hold beyond perturbation theory.
In order to estimate the Lyapunov exponent y to lowest
order in the weak-disorder regime, we use the following
standard procedure. " ' Define a sequence of two-
component vectors 8 k =(xk,yk ), such that
8'k =Pk 8'k „and introduce the ratios, or Riccati vari-
ables, Sk =xk/yk. These complex numbers obey the fol-
lowing rational transform
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distribution of the Riccati variables Sk, which is invari-
ant under the transform (3.29). The explicit constant
—3pz in Eq. (3.30) originates in the contribution to the
matrix P which is quadratic in the fiuxes, and has not
been written explicitly in Eq. (3.26). This constant has
been 6xed by using the identity detP = 1.

The distribution of the variable Xk+i Yk is isotropic in
the complex plane, at least to leading order in the ran-
dom fluxes, as a consequence of the expressions (3.27).
The Riccati variables therefore also share this property.
We thus set pk

= ~Sk ~, and we denote by F(p) the invari-
ant distribution of the moduli pk.

Assume for a while that these moduli obey a recursion
relation of the form

pa =pk i+e(p—l —i) (3.31)

F(p)= C
1+4p +p

(3.33)

for the invariant distribution of the moduli of the Riccati
variables, with

1 ~ pdp
1+4p +p

in{2+&3)
2&3

(3.34)

The last step consists in performing the average in the
right-hand side of Eq. (3.30). This cannot be done by a
naive expansion in powers of the disorder, since the
second moment {{p )) of the law (3.33) diverges logarith-
mically. One can instead average in the Srst place over
the uniform phase Hk of the product of complex variables
(Xk+i Yk )Sk, by means of the identity

f In~a +be'
~
=max( In~a~, ln~b~) .

2~d8
0 27T

(3.35)

where the e(pk, ) are small random variables, whose dis-
tribution depends on p», . Their distribution is charac-
terized by its first two moments e(p)=0, and

e(p ) =h(p ) &( 1. The stationary probability density
F(p), associated with the random process (3.31), has a
well-de6ned limiting behavior for a vanishingly small dis-
order, which can be evaluated in several ways. One can,
for example, write a linear integral relation following
Dyson and Schmidt, ' expressing the invariance of F(p)
under the transformation (3.31), perform a gradient ex-
pansion of this integral equation, and finally integrate the
differential equation thus obtained. We skip the details,
and only mention the following outcome

F(p)= C
(3.32)

hp
where the constant C is to be fixed by normalization.

Going back to the present problem, we expand Eq.
(3.29) to first order in the random variables Xk, Yk, and

Zk, and average over the phases of {Xk+iYk) and of
Sk „using the fact that they are statistically indepen-
dent, and that each of them has a uniform density over
the circle. We are thus left with an equation for the
moduli pk of the type (3.31). The result (3.32) yields after
some algebra the following expression

@=2(C —2)p2, (3.36)

which is equivalent to the announced formula (3.21).

F. Scaling law around external band edges (cosk =k I )

%e now look at the behavior of the Lyapunov ex-
ponents near the external band edges of the spectrum of
the unperturbed network, i.e., for cosk~k1 (see Fig. 2).
Consider the upper edge for definiteness. %e have
t, =in(2+@ 3) for cosk =1, whereas t2 =i@2, where the
Bloch momentum qz vanishes according to
q 2 =3{1 —cosk )=3k /2.

It turns out that the weak-disorder expansion (3.18) for
y2 is singular for t2~0, i.e., cosk~l. By keeping only
the most singular part of each term as t2 ~0, we get

2
P2 P2

y2=t2 1+ —
4

+
2~ 3t2 24t2

(3.37)

P2
r2 t260 2

~ (3.38)

The scaling law (3.38) can be recast in the following
equivalent form

1'2=% p2Fp

T

' cosk —1
(3.39)

which is more convenient for the reason that the scaling
function Fp(x) is everywhere smooth, even at the origin.

For x~+ 00, i.e., deep outside the band, the result
(3.37) implies

Fp(x)=&3x + 1

6V'x
V3

iq2+ (x~+ ~) .
216x

(3.40)

Conversely, for x ~—~, i.e., deep in region (III), the
second Lyapunov exponent vanishes as the fourth power
of the strength of disorder, according to Eq. (3.19). This
behavior corresponds to nonuniversal corrections to the
scaling law (3.39), masking the true falloff of Fp(x),
which we believe to be exponential.

Figure 4 shows a plot of the scaling function Fo, ob-
tained from data corresponding to rectangular distribu-
tions of magnetic cruxes, with various small values of
their widths w. An accurate collapsing of the data is ob-
served, as well as the behavior (3.40) for a large positive
scaling variable x, and the fast decay for a large negative
x. Figure 5 illustrates the convergence of y2(cosk =1)
toward the scaling behavior (3.39), as a function of the
width of disorder, for both rectangular and binary disor-
der. Both series of data accurately converge toward the
common value

This form strongly suggests the existence of a scaling re-
gion, de6ned by the conditions that both t2 and p2 are
small, where yz obeys a scaling behavior of the form

This leads at once to the result Fp(0)=0.76 . (3.41)
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or equivalently

VI
'= +P2FI

cosk —
—,
'

(I =1 or 2) . (3.43)

Here again, both scaling functions FI(x) are expected to
be everywhere smooth, including at the origin x =0.

Equations (3.17), (3.18) only allow prediction of the
asymptotic behavior of the scaling functions for
x ~+ ao, i.e., deep in region (III). We thus obtain

FI(x)=(3x)'i, F~(x)= (x ~+ ao ) . (3.44)
1

8(3x) i

On the other hand, for x —+ —~, i.e., deep in region
(II), Eq. (3.20) predicts that both Lyapunov exponents
vanish as p2. Hence we have

FIG. 4. Plot of the scaling function Fo(x) describing the
behavior of the Lyapunov exponent y, near external band
edges. The data correspond to rectangular distributions of the
random fluxes, with various values of the width m. The continu-
ous line for positive x shows the sum of the three terms given in
Eq. (3.40).

G. Scaling law around internal band edges (cosk =k —,
'

)

FI(x)=CI( —x) '~ (1=1 or 2, x~ —~), (3.45)

where the CI are two constants, related to the divergence
law as cosk~ —,

' of the amplitude functions BI(cosk),
which enter Eq. (3.20), namely,

8I( cosk)=CI( —,
' —cosk) '~ (I = 1 or 2, cosk~ —,') .

(3.46)

For cosk~+ —,', the spectrum of the network exhibits
internal band edges, which demarcate the two-channel re-
gion (II) from the one-channel regions (I) or (III) (see Fig.
2). Consider cosk =

—,
' for definiteness. At this special

point, t, vanishes according to t& =3cosk —1, whereas
we have t2 =in/2'

The weak-disorder expansion (3.17), (3.18) for both
Lyapunov exponents is again singular. In analogy with
the previous case, we are led to write down the following
scaling laws

Ci =0.17, Cq =0.10 (3.47)

Figure 6 shows a plot of both scaling functions FI(x)
and Fz(x), obtained from data corresponding to rec-
tangular distributions of magnetic fluxes, with various
small values of their widths m. A clear collapse of the
data is again observed, as well as the expected behaviors
(3.44) and (3.45) for large positive or negative values of
the scaling variable x. The fitted ( —x) ' laws shown
on the plots lead to the following values

P2
y I =t& GI (I =1 or 2), (3.42)
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FIG. 5. Plot of the ratio y2/Qp2 against Qpz, for both
binary and rectangular distributions of disorder, at the upper
band edge (cosk =1). The common weak-disorder limit of both
series of data is given in Eq. (3.41). The full lines show parabol-
ic fits to the data points with p~ & 0. 1.

0—2

X

FIG. 6. Plot of the scaling functions Fl(x) and F&(x) describ-
ing the behavior of both Lyapunov exponents near internal
band edges. The data correspond to rectangular distributions of
the random fluxes, with various values of the width w. The con-
tinuous lines for positive x show the asymptotic laws (3.44),
whereas those for negative x are fitted to the functional form
{3.46), with the constants given in Eq. (3.47).
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FIG. 7. Plot of the ratios yi/~pz against Qpz, for both
binary and rectangular distributions of disorder, at the internal
band edge (cosk =

—,'). The weak-disorder limits are the con-

stants F,(0}given in Eq. (3.48). The straight lines have been ob-

tained through least-squares fits.

Fi(0)=0.48, Fq(0) =0.22, (3.48)

for the constants CI. Finally, Fig. 7 shows the conver-
gence of both Lyapunov exponents exactly at the internal
band edge (cosk =

—,
' ), as a function of the width of disor-

der, for both rectangular and binary disorder. Both
series of data converge toward the common values

divergence laws of the localization length g in the weak-

disorder regime (w —+0), in various ranges of energy, are
diferent from those observed with potential disorder,
like, for example, in the usual tight-binding Anderson
model. Indeed, we find the divergence g- I /w in the la-
teral regions (I) and (III) of the spectrum, where the car-
riers are off'ered only one channel, and g-I/w in the
central region (II), where both transverse channels are
open. For potential disorder, g-I/w always holds in-

side the spectrum of quasi-1D systems, irrespective of
their band structure. In regions (I) and (III), the law

(3.19) is not universal, since it involves the kurtosis E4 of
the disorder, besides its width w. In region (II), the abso-
lute prefactors of the power law (3.20) have only been
determined at the band center [see Eq. (3.21)].

Still more interesting is the scaling behavior of the
Lyapunov exponents near internal or external band
edges, i.e., at the special values of energy where one new
channel is just opening. In the present case of a ladder-
shaped network, the maximal number of channels is
M=2, i.e., the width of the network. There are two
external band edges, and two internal ones. We have ob-
tained the law g-1/w at each of these points, as well as
the existence of scaling laws (3.39), (3.43) in their vicinity.
The corresponding scaling functions have been deter-
mined numerically in an accurate way. These results are
again in contrast with the g-I/w ~ law, characteristic
of band edges with potential disorder. "

To summarize the discussion, if we go continuously
from outside the spectrum toward its interior, we meet
the following sequence of exponents for the law of diver-
gence of the localization length (g- I/w ~)

whereas the Srst corrections to scaling are proportional
to the width of disorder in both cases.

a=O, 1, 4, 1, and2. (4.1)

This sequence is richer than the one observed in the case
of potential disorder, like, for example, the Anderson
model, namely

IV. SUMMARY AND DISCUSSION
a=O, —'„and 2 . (4.2)

We have investigated the localization of electrons on a
ladder-shaped network of quantum wires, with a random
magnetic flux in each plaquette. The magnetic fluxes are
assumed to be independent, and drawn from a common
even distribution. As in any model of 1D disordered con-
ductors, all eigenstates are exponentially localized. We
have therefore focused our attention on the weak-
disorder regime, where the localization length g= I/yz is
much larger than the side of the plaquettes, so that
universal features can be expected. In this regime, the
disorder is characterized by its width w &&1, and more
precisely by its first two moments, pz-w and p4-w .
We have examined in detail localization properties in this
weak-disorder regime, and derived a systematic expan-
sion of both positive Lyapunov exponents, and checked
the outcome of our analytic approach against data ob-
tained by means of extensive numerical simulations.

The most important result is that magnetic disorder in-
duces a novel universality class, in the sense that the

The present form of magnetic disorder leads therefore
to a new universality class of localization properties.
This makes such model systems very appealing. Among
further open questions of physical relevance, we can men-
tion strip-shaped networks, where the number M of cou-
pled wires is greater than 2. The number
0 ~ m (cosk) ~ M of open channels depends on energy in a
more complicated way; the question of how the diver-
gence law of g depends on M and m should be addressed.

Another direction of research concerns the combined
e8'ects of potential and magnetic disorder. One of the
most interesting questions concerns the influence of vari-
ous kinds of randomness on the localization length. Let
us denote them as follows: g~ with potential disorder, in
the absence of magnetic disorder, g's with magnetic disor-
der, in the absence of potential disorder, and g~+~ in the
presence of both kinds of disorder. In a strong uniform
magnetic field, it has been shown' ' that the violation of
time-reversal symmetry T leads to g~s =2/~, at least at
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weak disorder. With quenched disorder in the magnetic
field, the T symmetry is still violated, but not in such a
simple way. It is interesting to notice that, in the insulat-
ing regime of quasi-1D systems, the results of the present
work rather take the form in(+-21ngt„at least in the
one-channel regime, since we have g~ —1/w
))gv-1/w . How does gt, +~ compare with g~ and gv?
We hope to come back to these questions in the future.
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