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Structural and dynamical properties of the anharmonic Fibonacci-chain quasicrystal have been stud-
ied using the unsymmetrized self-consistent-field method. Nonlinear integral equations forming the
basis of this method are reduced to a set of transcendental or algebraic equations for the moments of
one-particle functions. In the lowest orders of anharmonicity, these equations have been solved for an
arbitrary one-dimensional model of various atoms interacting with the nearest neighbors. Herewith, the
thermal expansion, the variances of the atomic positions, and high-order moments have been expressed
in terms of the second, third, and fourth derivatives of the interatomic potentials. Quantum corrections
have been calculated as well. The general results have been applied to the system with two kinds of
atoms alternating with each other in a Fibonacci sequence. The interatomic distances, thermal expan-
sions, and effective amplitudes of anharmonic atomic vibrations are calculated versus the temperature.
The influence of anharmonicity on the thermodynamic functions of the Fibonacci chain is also discussed
as well as possible applications to some real solids.

I. INTRODUCTION

During the last decade, it had been ascertained that,
along with crystalline and amorphous solids, there exist
quasicrystals. ' They constitute a different kind of
solids, which have long-range order but do not possess
exact translational symmetry. ' Owing to an aperiodi-
city, the Bloch theorem is not fulfilled, making the
theoretical study of electronic and atomic properties of
quasicrystals very complicated. That is why one-
dimensional models of quasicrystals are currently draw-
ing considerable attention. In general, one-dimensional
models are of great importance in solid-state physics.
Among atomic properties of such models of quasicrys-
tals, various characteristics of vibrational spectra ' and
the dynamical structural factor' have been studied for
Fibonacci chains. However, on account of the above-
mentioned diSculties only the harmonic approximation
has been utilized and hence anharmonic effects have not
been investigated. At the same time, research into anhar-
monic effects is of topical interest, since they cause such
important phenomena as thermal expansion, deviation
from the Dulong and Petit law at high temperatures, etc.

In this work we present a calculation of the influence
of anharmonicity of the atomic vibrations on the proper-
ties of the Fibonacci chain. For this purpose we use the
unsymmetrized self-consistent-field method, ' ' extend-
ing it to arbitrary arrangements of various atoms in-
teracting with nearest neighbors in one dimension.

p,.(r, ,r, )=w;(r, ) l —
2 [g;(r;)—g;]

12m;8

Here 8=kT, m, is the atomic mass,

u, (r, )
w;(r; ) =exp

u;(r; )
exp — dr; 2

is its classical one-particle probability density, u;(r, ) its
classical self-consistent potential, g;(r; ) the quantum
correction to them, and

g;= Jg;(r, )w, (r;)dr, .

For the arbitrary one-dimensional (r;~x;) system of
various atoms interacting with nearest neighbors is
shown in Fig. 1, these functions obey the following equa-
tions

tional principle. In the present paper we use the quasi-
classical approach; in the coordinate representation the
diagonal elements of the one-particle density matrix of
the ith atom are then of the form

II. GENERAL APPROACH

In the most general case, the unsymmetrized self-
consistent-field method is based on nonlinear
integrodifferential equations for the one-particle density
matrices and the self-consistent potentials of atoms. '

These equations satisfy the Bogoliubov statistical varia-

oC)$ oo oQ

FIG. 1. One-dimensional model with an arbitrary composi-
tion of various atoms.
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u;(x;)= g u J(x;)= g f4;, (~x; —x, ~}w,.(xj)dxj ——f Ci j(~x;—x, ~)w;(x;)w,.(xj)dx;dx,
1

J =1+1 J =+1

g, (x, )=g(x, )+ (u,.g,.
—u, g, )+—g ( u;, (x;)—f4; g wjdx, +—f@i(,w, wjdx, dxi

m,

(4)

(5)

where 4,- are the interaction potentials, and

Bu; 1 Bu;

2e a,
It should be noted that the functions g; contain correc-
tions to the one-particle probability densities (2) defined
by the classical self-consistent potentials u; (6) and to
these potentials themselves.

In the case of an infinite system, —~ (i ( (x. For a
semi-infinite chain, Eqs. (4) and (5) are valid at i ~2,
while

I

determined by the usual formula
' 1/2

m;0F= g ~ —Hln
27rfi2

i} u;+
24m;9 &~2

8 (j i} u;

2 BO gxz

Di8'erentiating it gives the internal energy

8 A' ~ u(E= g —+u, +
2 ' 12m 0

(14)

u, (x, ) —f4iz(x, —xi)w, (xz)dxz

412W1 W28X 1'2

(i«i ) =ki«i)+-,'(u i(i —
u i(i }

(7)

and other thermodynamic functions. Corrections to
them can be calculated using statistical perturbation
theory. It should be noted that the main anharmonic
terms are included in (4)—(14).

III. CLASSICAL APPROXIMATION
m1

g
42u i xi ) f@1242w2 x2

m28

1+— 4,

gnaw

i w zdx i dx &2
(8)

In (4) and (7) we change the independent variables

X;+1—X; =a;;+1+q, +1
—

q, ,

considering that

(15)

In Eqs. (4) and (5) for a system of N atoms, 2 &i & N —1,
and equations similar to (7) and (8) can be written for the
Nth atom.

The solution of (4), (5), (7), and (8) enables one to calcu-
late the statistical averages of various functions of atomic
coordinates

+i r', i+I +~u', '+l(~)

where r;, +, is the minimum point of the interatomic po-
tential 4;;+, (i.e., static equilibrium spacing).

Expanding the interaction potentials in a power series
of the relative atomic displacements q;+, —

q, , (4) takes
the form

$2

12m, 0
(9)

i Iu;(q;)=u;ii+ g —,&'iq;,
1~1

(17}

In particular, (9) gives the average interatomic distances
where

~i, i+ i
= '(xi+i

and the variances of the atomic positions

D, =((,—(, ) )'),

(10)
l; l

( —1)'@';+i'(& +i)q;"+i
k&0

(18)

which express the efFective amplitudes of the atomic vi-
brations.

One can see that the solution of (5) and (8) possesses
the property

(12)

Because of this and also owing to the second terms in the
right sides of (4) and (7), the Helrnholtz free energy is

+ ( —1)"N,"+,",'(a. . . )q, , i ~ 0 .

(19}
Relations (17) and (19) together with (2) and

q, =f,"w;(q, )dq, , k~ 1; q, =0 (20)

constitute a set of transcendental equations for the aver-

age interatomic distances (10) and the moments (20) of
the one-particle functions in the classical approximation
(2).

Further, we consider the case of weak anharmonicity
restricting ourselves to its lowest orders; then the equa-
tions are linearized and we get their solution
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~
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2

f 12 «;-I, +f; +I)'

38 ~ 38

f 12
'
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Here

f —@II(pOj ) g
—@III(rOJ ) / @IV( 0

) (25)

(23}

(24)

I

cases. Below we shall apply the equations derived to the
anharmonic Fibonacci chain.

F =—g V —8ln . ——'9'q. + V'q.
m, 8

0 2 0 ~2~i P 2 i 24 4i
I 2

1 4
Eo=—g 8+ g —V, q~l I

(26)

(27)

One can see from (21) that the thermal average of the
distance between two neighboring atoms depends not
only on the interaction between them but also on the in-
teraction of each of these atoms with its other neighbor.
It follows from (22) that in the harmonic approximation,
the effective amplitude of the thermal vibrations of an
atom in the model considered is determined only by its
interactions with the nearest neighbors. The anharmonic
renormalization brings about the dependence of this am-
plitude on the interactions between its nearest and next-
nearest neighbors as well. Inserting (17) and (18) into (13)
and (14}we obtain the classical zeroth-order approxima-
tion

IV. QUANTUM CORRECTIONS

9iP2
g;(q;)=92+ 73— 1;2 2 ~Ps

q;
— (P2') q;

—
q; .

(28)

We try the solution of (5) and (9) in a similar form:

g;(q;)=g;(q;)+g(q;)

=g;0+k'Iq + lkzq'+ 'k'3q-
Then, the correlation moments in (11)are written as

(29)

Now we proceed to solving Eqs. (5) and (8) and calcu-
lating the quantum corrections to the nearest-neighbor
distances and variances of the atomic positions. In the
lowest order of anharmonicity, (6) is equal to

q;k q';K=q;P e;—P+q;C q;—kl—(3O)

with the interatomic distances and moments being deter-
mined by (21)—(24).

One can deduce from the general expressions derived
here the following special cases: the infinite and semi-
infinite monatomic (as well as diatomic) linear chains, the
semi-infinite chain with adsorbed atoms, and the chain
with substitutional impurities, which have been studied in
the past ' using special forms of equations for those

gi28 (g —1,;
—g, +1)8

qlgl 2f & qlfl 2(f +f )
(31)

q;g —
q, P= —8. (32}

with correlations between g,. and necessary values being
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(,.O-P2, k2-- —(V2) /9; k3 = —3%2%3/6) (33)

Here we taken into account that q; =0 (20).
Inserting (28) and (29) together with (17) and a power

series for g(q) into (5) and (9) we see that
~)~2

k', =9'3 — +blk',

with b k' obeying the following equations,

(34)

f12g23 f23g 12

m2(f)2+f23) 2

3 f23g34 +f34g235k = Ak+- y 235k
m, m3(f 23+f34)

(35)

hk'= m;
f, ; )bk' '+ fi, i —lgi —l, i —2+fi —li 2g,

—i, i —1

m;-1(f, -1+f -1, ' —2) .
m. fi, i+Igi+ 1,i+2 fi+1, i+2gi, i+1f ' '+f

m +)«,;+)+f +l, i+2)
1 3

Consequently, one can see that the first quantum
corrections to the variances of the atomic coordinates are

aD~=
12m;8

(36)

Corrections to the interatomic distances are defined by

~~ii+1 , ( 5+1 'K' ~

12g2 m;+1
(q;+)4';+)+~k'"q'+) )

1
(q, g+bk'q; )

I

(37)

Elimination of b,k' and hk'+' in (37) with the help of
(35) gives

A' (m;+m, +, )g, , +,
24m, m, +)f, , +)8

(38)

The quantum correction to the Helmholtz free energy
of a chain (per N atoms) is of the form

f;;~)(m, +m;+1)
249, 1

m m +1
(39)

V. THE FIBONACCI CHAIN

Equations derived in the preceding sections are appli-
cable to any one-dimensional atomic model in which the
nearest neighbors interact. Consequently, to study
anharmonic effects in the Fibonacci chain we only have
to choose a special alternation of atoms of two kinds. It
is well known' that the Fibonacci chain can be generated
using the following inflation rule

An A n + lBn+1& Bn An +1

where A and B are the kinds of atoms or interatomic
couplings. In any generation, the numbers of the ele-

3/5+ 1

2
(41)

Formulas (23)-(27), (38), and (39) show that calcula-
tions of integrated properties of any one-dimensional
model with nearest-neighbor interactions need the partial
values related to various clusters, up to six-atom clusters.
These partial values are necessary to compute the mean-
square relative atomic displacements, which in the ap-
proximation used are

D,J =D;+D (42)

In the Fibonacci chain, the number of different k-atomic
clusters is'

C(k)=k+1, k =1,2, 3, . . . ,

with "monatomic clusters" being the atoms A and 8
themselves, whose fractions come to 71 and 72, respective-
ly, where

3/5 —1
7 =7—1=

1 (44)

Let us enumerate all necessary clusters and their frac-
tions:

(a) k=2: AB,BA r2, A A r3,
(b) k=3: ABA w2, AAB, BAA r3,. BA8 r4;
(c) k=4: BA AB, A ABA, ABA A r3, ABAB, BABA

74)
(d) k=5: ABAAB, BAABA r3, ABABA, AABAB,

8AB A A 74,
' A AB A A 75,

(e) k=6: ABA ABA r3; A ABABA, ABABA A,
BAABAB, BABAAB 74, AABA AB,BAABAA 7~.

71' l 2y 3y o e ~ e

ABAABABAABAABABAABABA. ..

FIG. 2. Sixth generation, Eq. (40), for the Fibonacci chain.

ments of such a system are equal to the Fibonacci num-
bers. For the sixth nontrivial generation, the sequence is
represented in Fig. 2. In the limit n ~ 0O the fractions of
the A and 8 elements form the golden section, i.e., their
ratio tends to
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TABLE I. Numbers ~;, the fractions of various clusters. We consider the infinite Fibonacci chain. Then, ac-
cording to (21) we get the thermal expansion of the aver-
age distance between two A atoms

v's —1

2
3—&s

2
&S—2

7-3&5
2

s&s —ii
2 g8

f(f +f'} (47)

The corresponding numbers ~; are given in Table I. It is
easy to see that

s&+~& =2&&+v3 =v&+2v3+ r4= 3s3+2w4

Such an expansion between AB atoms depends on their
other neighbors:

~aga=,~, for AABA
( +3 ')g'8
4f'(f +f')

=2v3+ 3&4+r5

=%3+4T4+ 27 g
4a„z = — for AB AB and BAB A .b g'8

2 t

(48a}

(48b)

~ ~ ~ (45)

In the static state, the length and internal energy of the
Fibonacci chain containing N »1 atoms are

Lp =N(r3rp+2rzr p )& Up = N(73e+2&p& ) ~ (46}

[For shortness we use rgg =rp rgg =rp e= 4„„(r—„„),e'= —4„~(r„a), and similar symbols are used for the
force constants (25).)

The quantum correction to the distance between two
neighbors (38) depends only on their kinds,

A' (m „+mz )g'
'49'12m„e '

24m„ma '8

From (22) and (42) we obtain the mean-square relative
displacements (MSRD) of atoms in the classical approxi-
mation

2

3f +f' g'
f(f +f'} f'

28 8 2 g'
& + g —g'

f+f 2(f+f } f+f f f+f

D~~ =, 1+ ~, ,
—h' for ABABA A and A ABABA;8 (7f +9f')8 g'

f' 16f'(f +f') f'

(50)

(51a}

Db 8
2(f +f')

f+3f'+ 8 2 g2
h + g-g'

f' f+f' f+f' f f+f'

+ f +f' 3f +f' 3f +5f'
f(f +f')' 4f'

2

for BA ABAB and BABA AB; (51b)

8 f+3f'+ 8 2 g ~ + g —g'
2(f+f') f' f+f' f+f' f f+f'

+f+f' 3f+f' +f+3f'
f(f +f')' 2f'

g

for AABAAB and BAABAA . (5lc)

The quantum corrections to MSRD
g2 1lg (m ~ +ma )

e' ~=
12 e

(52}
P7lg my my

as well as those to the interatomic distances (49) depend
on the reduced masses of the neighbors.

VI. NUMERICAL RESULTS AND DISCUSSION

«9a =— rog

4m 3f'*8'

2 (54)

At that, it is convenient to express the quantum correc-
tions (49) and (52) as

To perform numerical calculations we utilize the in-
teratomic potentials in the standard I.ennard-Jones form

12 ' 6

«g„=— r() Eg

4~ 3rpE'f '8'

4„„(r)=4(r; rp, e)=E

@„~(r)=4(r;rp,e') .

ro—2
r

(53) Dfa =
2 gQ

2m' 68*

2 2
A ro~

2~ 6c.'8
(55)
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Here

27TA I 27'
po+17lge roU 2e'm„m~/(m„+ms )

(56)

060

0.50

8 f, "of,„"of
E, E

I3f0g
g

E

IQ

E

(57)

Note that we reduce all force constants to the parameters
of the interatomic potential 4~& but not to those of 4»
since the AB bonds predominate.

The classical parts of the expansions (47) and (48) and
MSRD (50) and (51) can be expressed in terms of dimen-
sionless parameters (57) as well. Then, the relative
thermal expansions and MSRD are functions of the di-
mensionless temperature and depend on ro/ro, E'/e, A,
and A'.

We have studied two cases: (1} small A atoms and
large 8 atoms; (2) large A atoms and small 8 atoms. In
the first case (Fig. 3},we adopt

are the de Boer parameters for the A A and AB pairs of
atoms, and

0. 40
tA

O

Z'

0 30
CL

X

0 20

I I I I I I I I I
)

I I I I I I I I I
1

I I I I I I I I I

0.00 0. IO 0.20 0.30

ro/ro=1. 08, e'/e=1. 39, A=0. 17, A'=0. 99 . (58)

These parameters correspond to Ar and Xe, using the
known rule

k T
FIG. 4. Thermal expansions of the Fibonacci chain drawn in

Fig. 3: (1) 10ha»/ro, (2) 10ha»/ro, (3) 10ha»/ro, (4)
1061./Lo.

0. 60
0 0 0

pp lgs=(pgg+pss)/2, E —e„z—y E„„ezra (59)

In Fig. 4 we show the relative expansions of the intera-
tomic distances ba„z/ro, Aa„'z/ro, and ba„z/ro and
that of the length of the Fibonacci chain

O. 60

AL/LO=N [r3(ha„q+2ba„'s )+2r4ga„j/L (60)
I

I

3

(It is known that in the harmonic approximation there is
no thermal expansion. ) The MSRD in this model are
plotted in Fig. 5. Here we represent also Dz„ in the har-
monic approximation to demonstrate the harmonic
effects.

In the second case (Fig. 6),

0 40

polro=0. 926 E /E=0. 719 A=0.053 A =0.099

(61)

0. 20

The relative expansions and MSRD of this model are
drawn in Figs. 7 and 8, respectively. For comparison we 0 OO

I I I I I I I I t I I I I I I I I I | I I I I I I I I I

000 O. IO O. 20 0 30

A 8
ro ro

FIG. 3. Fibonacci chain consisting of small A and large B
atoms.

kTr gI

FIG. 5. Mean-square relative displacements of atoms in the
Fibonacci chain with small A and large B atoms: (1) 100D» /ro
(1') the same in the harmonic approximation, (2)
100Dg~ /ro = 100Dqg /ro, (3) 100Dq~ /ro.
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0 50

A. B J
r' r0 0

FIG. 6. Fibonacci chain consisting of large A and small B
atoms.

O. 40

show also the harmonic approximation for D„„.
So, we have solved the basic equations of the quasiclas-

sical method of the unsyminetrized self-consistent-field
for a one-dimensional model of a solid with an arbitrary
composition of various atoms interacting with their
nearest neighbors, taking into account weak anharmoni-
city. After that we have applied these general results to
study anharmonic efFects in the Fibonacci-chain quasi-
crystal. Just the anharmonicity is responsible for the
thermal expansion of solids, in particular, quasicrystals.
Besides, one can see from Figs. 5 and 8, that at constant
pressure the effective amplitudes of the thermal atomic
vibrations are enhanced as a consequence of the anhar-
monic efFects. Our method enables one also to investigate
the influence of the anharmonicity on thermal properties
of quasicrystals. For instance, it leads to a deviation
from the Dulong and Petit law at high temperatures.

O. 30

0.20

O. I 0

I I I I I I I I I t I I I I I I I I I ] I I I I I I I I I

0 00 0.10 0. 20 0.30

0. 50
FIG. 8. MSRD in the Fibonacci chain with large A and

small B atoms. Designations are the same as in Fig. 5.

O. 40

Z'
0.30

0. 20

O. IO

In our calculations we have employed the Lennard-
Jones potential with parameters which correspond to Ar
and Xe, just because the interatomic forces are known
better for rare-gas solids. Although derived for one-
dimensional models of quasicrystals, our results may be
applicable to higher dimensions, since some multicom-
ponent alloys based on Al reveal just the one-dimensional
quasicrystal behavior. Unfortunately, thermal ex-
pansions of their interlayer distances have not been mea-
sured. A realization of such measurements and compar-
ison of data with our results will allow one to obtain in-
formation about force constants in these substances. In
conclusion, we note that the Fibonacci sequence occurs
not only for quasicrystals but sometimes also for thermal
expansion of the interplanar distances of certain crystals
with surfaces.

I I I I I I I I I f I I I I I I I I I
f

I I I I I I I I I

0.00 O. IO- 0.20 O. 30
&CENO%'I.KDGMKNTS

FIG. 7. Thermal expansions of the Fibonacci chain with
large A and small B atoms. Designations are the same as in Fig.
4.
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