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Many properties of crystalline solids are controlled by the presence of point defects. Traditionally the
concentrations of these defects are calculated using mass action laws that describe the reactions among
the defects and with the environment. This formulation, however, is not applicable in the high-defect-
concentration regime because it is based on assumptions that are valid only at the limit of dilute defect
concentration. In the present work a statistical thermodynamic approach is used to develop a defect
chemistry formulation that has general applicability at all levels of defect concentrations. This is accom-
plished by deriving an expression for the virtual chemical potential of point defects from the Gibbs free

energy that includes contributions from short-range and long-range Coulombic interactions, and from a
configurational entropy that incorporates generalized exclusion effects. By balancing the chemical po-
tentials of different species and the environment as required under thermodynamic equilibrium condi-
tions, one can derive equations that govern the concentrations of defects. At the limit of low defect con-
centration, the current approach is shown to be equivalent to that of the traditional theory. This formu-
lation is demonstrated by working out an example in detail using undoped CeO, z as a model system.
The concentrations of different species are calculated as functions of T and Po using a numerical rou-
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tine based on the conjugate gradient algorithm. The oxygen deficiency 5 is obtained as the net concen-
trations of all oxygen vacancy containing species, and is found to be in good agreement with literature
data. The effects of defect interactions and exclusions are discussed, and the thermodynamic activities of
different species are calculated as functions of environmental parameters.

I. INTRODUCTION

Many properties of technologically important crystal-
line solids are controlled by the presence of point defects.
These properties include color, diffusion, electronic and
ionic conductance, luminescence, and magnetic suscepti-
bility. As such, the study of the relationships between
material properties and point defects is an area of active
research. ' Of central importance in these investiga-
tions is a quantitative knowledge of point-defect concen-
trations as functions of material compositions and envi-
ronmental parameters. To date this understanding is
provided by a defect chemistry formulation that has been
described in detail by Kroger and Vink. ' In this ap-
proach the defect concentrations are governed by a set of
simultaneous equations, which include those that are de-
rived from mass action laws describing the quasichemical
defect reactions, and those that define additional physical
constraints such as electrical neutrality, mass, and
structural conservations.

The traditional defect chemistry formulation makes
use of the assumption that the neighboring point defects
are far apart. Under this idealized condition the
derivations are simplified by arguing that the interactions
among the defects are negligible, and the spatial locations
of the defects are random and statistically uncorrelated.
It was then recognized that charged defects, such as
those found in ionic crystals, can interact via long-range
Coulombic forces. This small but non-negligible effect is
accounted for by the Debye-Hiickel correction, in which

the charge of a defect is found to be screened by that of
other defects close by. ' In any case, because of this
basic assumption of large defect separation, the tradition-
al approach is applicable only in the low concentration
regime up to a level of —10 mol fraction defect con-
tent. ' ' In actual practice, however, it is not unusual to
find materials that have a large defect content. For ex-
ample, ZrOz is often doped with 0.2 mal fraction yttrium
for fuel cell applications, ' which results in a highly de-
fective crystalline lattice that contains a large number of
aliovalent substitutional yttrium ions as well as their
charge-compensating oxygen vacancies. ' ' Indeed it
has been recognized that there are strong scientific as
well as technological incentives to develop a defect theory
that has general applicability, even in the high-defect-
concentration regime. In order to accomplish this objec-
tive, however, it is necessary to first identify the causes
that lead to the break down of the traditional theory.

It is clear that in the case of high defect concentra-
tions, more defects are crowded together. The Coulom-
bic interactions among the charged species then become
stronger and can no longer be adequately approximated
by the Debye-Huckel correction. In addition the spatial
locations of the defects are no longer statistically un-

correlated because of the exclusion effect, in which the
presence of a defect excludes others from occupying or
sharing the same region in the lattice. A general defect
theory thus needs to account for these two effects: in-

teractions and exclusions.
In the past decades a number of forrnalisms have been
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proposed to treat high-concentration point-defect chem-
istry. Rau studied the defect chemistry of CuzS as func-
tions of T and Ps using a set of modified mass action
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equations. ' These equations are corrected for the ex-
clusion effect by directly subtracting the sites already oc-
cupied by existing defects from the total number of lattice
sites. This approach, however, does not account for the
effect of defect interactions. Its treatment of the ex-
clusion efFect is also too simplistic.

Libowitz studied the sulfide and hydride systems '
using an approach similar to that of the Ising-Langmuir-
type thermodynamic functions. ' Here the defects are
assumed to be randomly distributed, and only those that
happen to be nearest neighbors contribute a fixed amount
of energy to the total system Gibbs free energy. Fong
made further refinement with the inclusion of the Debye-
Hiickel correction. This approach, nevertheless, does
not provide a configurational entropy that properly ac-
counts for the defect exclusion e8'ect, neither does it
properly account for the long-range Coulombic interac-
tion efFect.

Atlas introduced the "spacing statistics" to treat non-
stoichiometric fluorite structured oxide systems.
This formalism had been reviewed by Manes. In this
approach a mathematical "spacing rule" is used to divide
the lattice into space-filling subzones, such that each of
these zones contains exactly one oxygen vacancy. A
subzone of the ith spacing level then encloses C; lattice
sites and corresponds to a specific energy level. An
overall partition function is obtained based on the ener-
getic contributions of all the subzones. This formulation
has been used to calculate various thermodynamic quan-
tities as functions of vacancy concentrations. It, howev-
er, does not describe the relationships between defect
concentrations and environmental parameters such as
P&, and is diScult to be extended to situations in which2'

multiple defect species are present. In addition, this
methodology appears to have used an incorrect expres-
sion for the configurational entropy S„„fwhich is derived
from 0, the number of ways to arrange all the subzones
in the lattice:

(8+n;C; —g n„C, )
F =O, l

where 8 is the total number of oxide ion lattice sites, n; is
the number of subzones of the ith level, ~,. is the lattice
space (normalized to C, ) available to n, , C,. is one level
larger in size than C;+i and g; or multiplies over all
the (L + 1) spacing levels. It is noted that Q,. is obtained
based on a process in which the largest subzones are
placed into the lattice first, followed by the next smaller
subzones, and so on down to the smallest subzones. In
this way the co; expression is acquired by subtracting
from 8 the lattice space that is already occupied by
subzones that are larger than C;. Hence the g„o,. term
This expression is nevertheless unsymmetric with respect

to subzones of difFerent sizes, which suggests that the
value of S„„f(=kslnQ) depends on the order in which
the different sized subzones are placed into the lattice.
Since a proper thermodynamic state function, such as en-

tropy, should be independent of the path taken in the cal-
culation, it is clear that 0 as defined in Eq. (1) does not
give the correct S„„f.

This work describes a defect chemistry formalism of
general applicability in inorganic crystalline solids. The
focus of this approach is an expression for the virtual
chemical potential of point defect. This expression is de-
rived by considering a system Gibbs free energy that in-
corporates both the short-range as well as the long-range
Coulombic defect interactions, and a configurationa1 en-

tropy that incorporates the generalized defect exclusions.
The defect chemistry can then be established in a manner
similar to that of the traditiona1 approach, in which the
chemical potentials of different species and the environ-
ment are balanced, as required under thermodynamic
equilibrium conditions, to arrive at a set of equations that
govern defect concentrations. The applicability of this
formulation is demonstrated in two ways. Firstly it is
shown that, at the limit of low defect concentrations, the
current formulation is equivalent to the traditional defect
chemistry formulation. Secondly a detailed example is
worked out to study the defect chemistry of non-
stoichiometric Ce02 s (5 is the oxygen deficiency) as
functions of T and Po . The defect concentrations are
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calculated using a numerical routine based on the conju-
gate gradient algorithm, which is briefly described in
the Appendix. In the example, the oxygen deficiency 5 is
obtained as the net concentrations of all oxygen-
vacancy-containing defect species, and the results are
compared with literature data. The effects of defect in-
teractions and exclusions are examined, and the defect
thermodynamic activities are calculated as functions of
environmental parameters.

The undoped ionic Ce02 & is selected here because it is
a well studied system. Its lattice can sustain high degree
of nonstoichiometry over a large range of Po without

2

undergoing a phase change. ' Under reducing atmo-
sphere it is oxygen deficient and contains several point
defect species. ' ' It should be emphasized that the
intent of this work is to develop a general defect chemis-
try formalism that is applicable even in the high-defect-
concentration regime, but not to study the point-defect
chemistry of the Ce02 system, which is a well researched
to 1c

II. BASIC FORMULATION

In this section the system Gibbs free energy 6 is de-
rived as a function of point-defect concentrations. This is
carried out with the incorporation of defect interaction
and exclusion efFects. The fiuorite structured CeOz (Ref.
41) is used as a model system. It is known that the defect
chemistry of the oxygen deficient Ce02 & in the P
range of interest may be described using five different
point-defect species: the reduced cerium ion Ce~,'
two types of oxygen vacancies at diferent charge states,
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VQ and VQ; and two types of defect pairs formed by the
association of Cec, with the appropriate oxygen vacan-
cies, (CeVo} and (CeVo} . (Note that in this paper the
phrase "point defect" is used loosely and refers to both
simple defects that occupy only a single lattice site, as
well as defect complexes that are formed by the associa-
tion of more than one simple defects. ) Also present in the
lattice are the host cations Cec„and host anions OQ.
The point defects are denoted by the Kroger-Vink nota-
tion, ' in which the main letter identifies the defect
species, the subscript gives the lattice location, and the
superscript gives the effective charge with respect to the
perfect lattice (" " =+~e[, "'"=—

~e~, and "X"=0,
where

~
e

~
is the electronic charge). Henceforth in this pa-

per, unless otherwise specified, the word "charge" refers
to the effective charge. Here it is interesting to note that
Cec, is often thought of as formed by an electron polaron
sitting on a Cec,. ' ' ' Figure 1 shows schematically
a planner projection of the Ce02 lattice containing the
above-mentioned defect species.

Let us now consider a perfect Ce02 lattice that has N,
cation sites and N, anion sites, such that N, =2N, from
structural consideration. The introduction of point de-
fects into this otherwise perfect lattice results in a change
in the system Gibbs free energy. This is expressed below
with the configurational entropy term separated out ex-
plicitly: ' '

G = g n, (g, ) —TS„„

=G*—k~ T lnQ,

where n is the number of a-type defect that has mean
free energy of formation (g ), g sums over all species,
0 is the number of ways that all these defects can be ar-
ranged in the lattice, S„„f=k~lnQ is the configurational

entropy, and kz and T have their usual meanings. Notice
that (g ) here still contains nonconfigurational com-

ponent of the formation entropy.
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FIG. 1. Planner projection of the fluorite structure of a Ce02
lattice that contains various species of point defects and defect
complexes. The envelopes show two different possible ways of
de6ning the extent of the short-range interaction due to the

(CeVo) pair. Region I is inside the envelope, and region II is
the rest of the lattice.

A. Free energy of formation of a single defect

The formation free energy of a defect is commonly
thought of as having contributions from two classes of in-

teractions. ' The first class is the short-range interac-
tions between the defect and its neighboring ions such as
the Lennard-Jones-type force. ' In general, the
strength of this class of interactions is considered to be
negligible except in the immediate vicinity of the defect.
This can be seen from the fact that these interactions are
partly responsible for the local lattice distortion, which
typically has a strain field that falls off rapidly as 1/r
(Ref. 48) (r is the distance) such that the displacement of
the lattice ions become negligible beyond the nearest
neighbors. The second class is the Coulombic interac-
tion between charged defects. This interaction has very
long range because its associated potential field falls off
relatively slowly as I/r. It should be noted that the
host lattice ions, because of their neutral charge states, do
not take part in the Coulombic interaction.

Let us now draw an envelope about a defect that
defines the extent of the associated short-range interac-
tions. Inside this envelope is region I and outside it is re-
gion II. Figure 1 shows two possible choices of such en-
velopes that enclose a (CeVo)' pair The o. uter dash-line

envelope encloses all the nearest-neighbor sites to this de-
fect. The inner solid-line envelope, on the other hand,
contains only the sites occupied by the defect itself. The
latter case, while rather simplistic, turns out to be a con-
venient choice for the calculation purpose, and is the
choice used in this work.

As a result of the definition of the envelope, the forma-
tion free energy g may now be written as having two
components:

g.=g'. +g". . (3)

Here g includes all the contributions due to interactions
inside the envelope. Note that this includes both the
short-range and the Coulombic interactions. On the oth-
er hand, g" essentially contains only contributions from
the Coulombic interactions between the reference defect
and all other charged defects present in the rest of the lat-
tice. This is because the strength of the short-range in-

teractions are negligible in region II.
Since g' does not have any contribution from outside

the envelope, its value depends only on the defect and the
lattice structures inside the envelope. As a result it may
be considered to be a constant that is independent of de-
fect concentrations. The same, however, cannot be said
of g ",which is clearly a strong function of defect concen-
trations because of the contributions from interaction
with all the other defects in the lattice. Since g is ex-
pected to approach zero when there are very few defects,
Eq. (3) then suggests that g —=g in the limit of low de-
fect concentrations. Thus in principle g' may be deter-
mined experimentally by measuring g under carefully
controlled conditions of low defect concentrations. It
may also be obtained using well established computer
codes such as HADES (Refs. 51—53) or CASCADE (Refs.
54—59) whose applicabilities have been demonstrated in
previous work on various ionic systems including the
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fluorite structured oxides. In the case where there is a
significant electronic contribution g may be calculated
using the ICECAP code.

In order to evaluate g
' it is noted that all defects may

be thought of as being made up of a few basic "building-
block species, " each of which is a simple defect occupy-
ing a single lattice site. These building-block species may
be further classified into the cationic type that sits on the
cation sites, and the anionic type that sits on the anion
sites. In general, any defect may be thought of as consist-
ing m, cationic building-block defects, and m, anionic
ones. Using this concept, all the point defects shown in
Fig. 1 may be constructed with just three building-block
species: Cec„Vp, and Vp. For example, Cec, is made

up of m, = 1 cationic Cec, and no anionic building-block
defect, whereas (CeVo)' is made up of m, =l cationic
Cec, and m, =1 anionic Vp. Consequently a g" expres-
sion can be written by summing over the Coulombic in-
teractions between the constituent building-block defects
and all the other defects (also considered as made up of
building-block defects} outside the envelope:

4ns„sogn= g Q& (a& )

P, =1,m,
C

+ g Qp(as )
p =1m j{KI & j

a

where g& = 1,m, sums over all the m, cationic
C

building-block defects inside the envelope, a& denotes

their respective lattice locations, Q& (an't ) denotes their
C C

respective charges, and gji =i,m„a&, and Qji (aji )
a a

have similar meanings for the anionic building-block de-
fects. Here g-&I sums over all lattice sites outside the
envelope (jEI indicates that j site is not inside region I
defined by the envelope), Q (j) is the charge at site j, R, japj
is the distance between sites a& and j, and c.„and eo are
the relative dielectric constant and the permittivity of
free space, respectively. The first term on the right-hand
side of Eq. (4) is the contribution from the cationic
building-block defects, and the second term is that from
the anionic ones. Note that here g" does not have any
contributions from the host ions or from the neutral
building-block defects because they have Q (j)=0.

It should be noted that in this paper the defect charges
are assumed to be point charges that are integral multi-
ples of ~e~. It is further assumed that the same charge is

carried by a defect whether it is an isolated defect or acts
as a building-block of a defect complex. In other words,
an isolated Vo and the constituent vacancy in (CeVo)"
are both assumed to carry the same charge of +~e~.
Strictly speaking this assumption may not be correct. It
is known, for example, that Vp may be formed by an
electron trapped in an oxygen vacancy. The captured
electron does not stay on the vacated anion lattice site,
but is instead delocalized and distributed among the sur-
rounding cations. As a result, it is conceivable that Vp
and its surrounding cations may all carry fractional and
distributed charges. This electron distribution may be
further distorted in the case of (Ce Vo )" when there is a
Cec, sitting right next to Vp.

In addition, it is recognized that the present formula-
tion may require further modification in order to account
for the effect of polarization, ' which can have
significant contribution to the defect formation and in-
teraction energies. In the current frame work, the polar-
ization energy may be included as a constant and integral
component of g'. This component, however, may have a
range that extends beyond region I. This definition, while
workable in the dilute limit, is nevertheless unsatisfactory
at higher defect concentrations, at which point the defect
interactions can cause non-negligible changes in the po-
larization energy. In the case of g ', an attempt is already
made in this work to account for the polarization effect
by incorporating c, into the calculation of the Coulombic
interaction energy [for example, see Eq. (4}].

The above-mentioned complications due to the distri-
buted charges and the ionic polarization, however, are
beyond the scope of the current paper. It is the author' s
opinion that the inclusion of these efFects would not
significantly alter the conclusions of this paper.

B. Mean free energy of formation

The mean value of g may be obtained by averaging
over all a-type defects:

(g. &=&g.'&+(g."&,

where ( ) indicates a mean quantity. Since g' depends
only on the structure inside the envelope, which is the
same for all a defects, one has

(gI ) gI

Furthermore, all a defects contain the same constituent
building-block defects. Consequently one obtains from
Eq. (4):

4ne, EO(g" &= g Q& (a& }
P =1,m

sll sites ( Q (J})

jalap ap j
C C

&Q(j}&

jEI;jssaS att jR
C C

sB sites ( Q (j})

P =1m jalap ap j
a a

(Q(j))
j E-I;jRap ~p jR

a a
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where ( Q(j) ) is the mean charge at site j. Here each of the g, terms on the right-hand side of Eq. (4) has been extend-
ed into the envelope by appropriately compensating for the additional contributions. Thus the g ~z terms sum over
only those sites inside the envelope, and the g"~,""'terms sum over the whole lattice except site ap. Note that in Eq.J Qp

(7) the region I contributions always cancel each other out as long as the same lattice is consistently used inside the en-
velope. Thus any region I lattice may be used in this calculation. It is thus convenient to assume a perfect lattice inside
the envelope. This also allows one to avoid the diSculty of not knowing the actual lattice structure inside the envelope,
which may be highly distorted by the presence of defect.

It turns out that ( Q(j) ) in Eq. (7) can have only one of two different values. It can either be the mean charge at the
cation site (Q, ), or that at the anion site (Q, ). These (Q ) values are constants that may be obtained by averaging
the charges of all building-block defects over the respective sublattices. One can then further divide each of the right-
hand side terms in Eq. (7) into two parts that sum over, respectively, the cation and the anion sublattices:

cation sites4.„.,&g.")= y g, (., ) &g, )
P =1,m J ~ap ap JC

C C

+&g. )
Ja ~p Ja

Qp (ap ) (Q, )
P =1,m

cation sites

j E-I;j Pap
C

+(g. &

p Jc Ja EI ape Ja

+ g Qp(ap ) (Q, )
P =1,m

cation sites anion sites

+&g. )
j Qp J j ~ap ap Ja

a a a

Qp (ap ) (Q, )
P =1,m

cation sites

jeI ~p j,
C

+&g. &

anion sites
1

EI J Nap &p J
a

From the overall charge neutrality condition one has

&g, &+2(g. ) =o.
Substituting Eq. (9) into Eq. (g):

(9)

4me„eo(g" )=(Q, ) g Qp (ap )

P =1,m

cation sites

j Nap p
C

anion sites

Jc R,
C

+ X gp(ap )

P =1,m

cation sites

Jc
R,

p c

anion sites

j Nap
a

R,
a

Qp(ap )

P =1,m

cation sites

j EIj,/ap &p j
C C

anion sites

J EI R
C

X g, (a, )

P =1,m

cation sites 1

j EI ~ip Jc
a

anion sites

2 . . R
Ja EI;Ja&ap ap Ja

a

(10)

Equation (10) now can be simplified using the Madelung constants. Let us first write down the Coulombic energy U
due to the interactions between the real charge of a reference host Ce4+ cation (i.e., Cec,) and the real charges of all the
other ions in a perfect Ce02 lattice:
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4m.c.„c.p U =q,
cation sites

j Aa&
C

R,
p c

anion sites

+
Ja

R,
C

=qc, qc

cation sites

j Aa&
C

R,
C

anion sites

jJa

1

R,
C

=q,M, ,

where M, is the Madelung constant associated with the reference Ce + cation located at a& site, and q, =+4~e~,
C

q, = —2~e~ are the real charges carried by the Ce + and 0 host ions, respectively. Here the overall neutrality re-
quirement for the real charges, q, +2q, =0, has been used in the derivation of Eq. (11}. In a similar manner one may
write down the Coulombic energy of a reference host 0 anion (i.e., Oo } located at a& site, from which the associated
Madelung constant may be found to be

M, =q,
cation sites

C
El

anion sites

X2 . ~, R,
(12)

Note that it is again assumed here that all the ions are point charges. For delocalized charges, one may need to use the
Ewald procedure ' to calculate the Madelung constants instead of using the expressions given in Eqs. (11)and (12).

Substituting the expressions of the Madelung constants in Eqs. (11)and (12) back into Eq. (10) one then obtains

&g" &= &Q, &,
47TE Ep

where X is a function whose value depends only on the structure inside region I. It is given by

M, Mg cation sites

X Qp(a, )+ '
X Q, (a )- X Q, (a, ) X

q p, =1, , qa p =1m p =1m, j &Ij Aa& t2p j,
C C

anion sites

X
j EI R

Q J

(13)

Qp (ap )

P =1,m

cation sites

j GI a&j
C

anion sites

j~ &I;j Aa&
a

R,
C

(14)

Here X can be viewed as a measure of the strength of
the Coulombic force on the a species. Combining Eqs.
(5), (6), and (13), the mean free energy of formation per a
defect is obtained:

&g &=g.'+ &Q, & .
47TG Cp

(15)

Notice that g, X are both constants whose values de-
pend on the characteristics of the a species only. Thus
the concentration dependence information of &g & is all
contained in & Q, &.

C. Con6gurational entropy

lnQ= g lnQ (16)

where 0 is the number of ways that n a defects may be

The configurational entropy as defined in Eq. (2} is
given by S „f=kzlnQ, where 0 is the total number of
ways that all defects may be arranged in the lattice. This
may be written as

arranged in a lattice that already contains all the non-a-
type defects, g sums over all defect species.

Let us first consider the introduction of a single a de-
fect into a lattice that already contains many different de-
fects, which may include some a defects. Let 8 be the
total number of ways that an a defect may be arranged in
a perfect lattice. One may find that each of the preexist-
ing defects makes several of the 8 ways no longer possi-
ble. In other words, several of the 8 ways have been
"excluded" from taking place. One can thus define an
"exclusion factor" A p, which is the number of ways of
placing an a defect in a perfect lattice that is being ex-
cluded due to the presence of a single P defect. This con-
cept is schematically illustrated in Fig. 2 for the case of
a=(CeVo)'. Here each of the envelopes represents an
"exclusion zone" that has been denied to (Ce Vo ) due to
a preexisting P defect. It can be seen that about Cec,
there are Z, such exclusion zones, where Z, =8 is the
coordination number of Oo sites about a Cec, site. '

Each one of these envelopes encloses both the Cec, and
one of its nearest neighboring Oo site. As a result there
are a total of A, ,

=Z, ways of arranging (Ce Vo )
0 ' Ce



870 S. LING 49

0- ()

(0—K3—, -C~

~ ~
( r ~ ]

rr f I&. /i
/
i ~

Q /i

D +i rh

0 (~3—()

i ~ . o
1i& p)r

)'A .~ ii'.
r r

0
Q G 0—W

0 Oo

0 Ce'

~o

It is then possible to obtain the configurational entropy
by substituting Eqs. (16) and (18) into the S„„&definition
of Eq. (2).

It is interesting to compare the 0 in Eq. (17) with the
0 of the spacing statistics in Eq. (1). It can be seen that
the 0 expression here is symmetric with respect to the
different defect species. In other words one can always
obtain the same S„„f=kzlnQ regardless of the order in
which the different defect species are placed in the lattice.

III. VIRTUAL CHEMICAL POTENTIAL
OF POINT DEFECT

FIG. 2. Planner projection of the CeO& lattice. Each dashed
envelope indicate one way of arranging the (Ce VQ ) pair that is

being excluded by the preexisting defects.
The virtual chemical potential of the a-species point

defect is defined as:

Pa
na

(19)

B +A n —gA sn)) !

n ! B +(A —1)n —gA &n& !
P

(17)

that is being excluded because of the presence of a single
Cec, . From Fig. 2 it can also be seen that

A(c v ) v- =Z. where Z. =4 is the coordination num-
(CeVQ), VQ

ber of Cec, about 00, ' and that

A. . . ,
. =(Z, +Z, —1). The values of A & for all

(CeVQ), (Ce VQ)'

the possible (a,P) combinations are listed in Table I. It is
interesting to note that the approach taken in this work
focuses on the concept of generalized exclusion in which
it is the ways of placing defects that are being excluded,
rather than the traditional concept in which it is the sites
that are being excluded.

Taking into consideration the generalized exclusion
effect described above, the number of ways to arrange n

a defects then becomes

It is worth noting that p is called the "virtual chemical
potential" instead of "chemical potential" because the
partial derivative in Eq. (19) requires that the numbers of
all other species be fixed while n is varied. As Gug-
genheim has pointed out, this condition cannot be
satisfied because the defect concentrations are not in-
dependent quantities due to the charge neutrality con-
straint. In other words, it is impossible to, say, remove a
positively charged defect without also decreasing the
number of some negatively charged defects. Consequent-
ly, p given in Eq. (19) cannot be measured experimental-

ly, but can nevertheless be viewed as a mathematical de-
vice that facilitates theoretical derivations and calcula-
tions. In defect chemistry formulation this charge imbal-
ance problem is customarily addressed by imposing an
additional constraint that requires overall charge neutral-
ity.

Combining Eqs. (2), (16), and (19), one has

Using Sterling's approximation, one obtains

lnQ -=B +A n —gA &n&
P

Xln B +A n —g A &n&
—n lnn

P

8 lnQp
P =P,' ksT g-

Bn

where

aG*
anna

(20)

(21)

B +(A —1)n —g A &n&
P

Xln B +(A —1)n —g A &n))
P

(18)

Here p' may be obtained by combining Eq. (21) with the
definition of G in Eq. (2) and the (g ) expression in Eq.
(15):

TABLE I. The parameters used in the defect chemistry calculations in nonstoichiometric Ce02
system, including A p, y, x '", and X . Z, =8, Z, =4, M, = —2.62X10 C/m, M, =4.27X10
C/m, and lo=ao/2=2. 706 A (Ref. 41).

Cec Vo Vo (Ce Vo ) (Ce VQ ) & max

Ce~,
Vo
Vo

(Ce VQ )

(Ce VQ )

1

0
0
Z.
Z.

1

1

1

Z, +Z, —1

Z, +Z, —1

1

1

1

Z, +Z, —1

Z, +Z, —1

0 0 1

1 1 2
1 1 2

Z. Z. Z.
Z. Z. Z.

—M, /4
—Ma—M, /2

—M, /4 —M, 5 I el /2),
—M, /4 —M, /2 —3/e//2)0
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lu'=g'+ X &Q, &+ gXpnp
1

47TG„Ep

in''. =in y.+(A..—1)x.—g A. ~p
P

Differentiating Eq. (18) with respect to n~:

(22) +A ln

y +A ~ —gA pxp
P

y +(A —1)x —g A
P

8 lnQp =5 pin

Bp+(Ap p 1)n—p Q—Ap mr

+(5~pAp p Ap ~—)

Bp+ Ap pn p gA—
p n

Xln
Bp+(Ap p 1}np——g Ap rn

r

(23)

na na

B +A n —QA~pnp
+A ln

B +(A, —1}n g—A pnp
P

Br+Ar. r"r +Ar. p"p
—QAr ln

Br+(Ar r
—1)nr —g A pnp

P

(24}

where 5 p is the Kronecker delta function. Summing
over all defect species one gets

B +(A —1}n gA—
pnp

BlnQp '
p=ln

yp+Ap. p"p X Ap, rxr
—QAp ln

y p+ (Ap p 1)x—p
—g Ap rxr

r

(29)

Note that A pAAp . In Eq. (29), V can be viewed as a
measure of the fraction of lattice space that is not exclud-
ed by the preexisting defects and hence is still available to
the placement of a defects. Substituting Eq. (28) back
into Eq. (20) an expression for the virtual chemical poten-
tial of point defect is obtained:

r

xa
p =p*+kpTln (30)

Note that p' contains all the information on the interac-
tion effect (including that of both the short-range and the
long-range Coulombic interactions), whereas 7 contains
all the information on defect exclusion effect. As a conse-
quence the p expression shown in Eq. (30) allows one to
turn these two efFects on and off individually in order to
study their separate efFects.

It is interesting to note that traditionally chemical po-
tential is formally expressed as:

Let us define the normalized defect concentration, x:
p.=p. o(T,P)+k, Tlna. , (31)

na
a (25}

It is noted that B is in general an integral multiple of the
total number of cation sites N„hence it is convenient to
define the normalized quantity

where p o(T,P) is a constant whose value is defined by
the chemical potential of the a species in a reference state
of well defined T and P, and a =y~ is the activity of a
species. Here y is the activity coefficient. Let us make
the identification

B

C

I
I aO Na

(26} Combining Eqs. (27), (30), and (32) one has

(32)

The y values of difFerent defect species are listed in
Table I. One can then rewrite Eqs. (22) and (24) in terms
of x andy:

p' ——g'+ Z &Q, &+ 'gXpxp1

7TcqFo p

xa
p =p.,o+5p.'+kaTln

x 5p=p o+k~Tln exp
a BT

where

(33)

(27}
1

4~&r~o

, a&@, &

X &Q, &+
. P xa

(34)

8 inQp V
=ln

Bna xa

where 9' is a function of x given by

(28}
Here 5p' can be looked upon as the change in p' due to
Coulombic interactions among the defects. This is equal
to the change in the free energy required to form a a de-
fect. An expression for the defect activity can then be ob-
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tained by comparing Eqs. (31) and (33):

x 5p*
a~=

&
exp

a BT

IV. APPLICATION TO NONSTOICHIOMKTRIC
CERIUM DIOXIDE

(35)

are also consistent with the definition of the Raoult's law,
since )M &&~@ „when x && ~x

&&
(=l=y ~), and

Ce Ce Ce Ce Ce

)((o&&~(uo&:, when x && ~x x"{=2=y &&). Here x,. '" is
0 0 0 0 0

the maximum possible normalized concentrations of the
i-type host ion in a perfect lattice.

Substituting the )((, expression of Eq. (30) into Eqs.
(40)—(43):

This section uses the expression for virtual chemical
potential of point defects derived in the previous section
to formulate equations that govern the equilibrium defect
concentrations. This study is carried out using the un-

doped nonstoichiometric Ce02 & as a model system.

A. Equations governing defect concentrations

The reactions between the defects in Ce02 & may be
described by the following quasichemical equations:

X .. X

VO CeCe

xv. . x i V

ln
0 Ce 0

Py. . 9 i xv.
0 Ce 0

—ln
ypx0

x
CeCe—1n

yc
Ce

Xpx
—21n

x
CeCe

yc, x
Ce

gz

kBT

kBT
'

(46)

(47)

Oo +2Cece~ —,'02+ Vp+2Cece ~

Vp +Cece~ Vo +Cec, ,

Ceo, + Vo~(Ce Vo)',

Cec, + Vo ~(Ce Vo )
" .

(36)

(37)

(39)

(cev )' v" ce
ln

0 0 Ce

(Cev(&)' V'0 Cec

x(c v )x
ln

gB1

gB2

kBT

(48)

(49)

p x+2p x 2po +pv" +2pc '
Oo Cece 2 2 Vo Cece

(40)

Equation (36) describes the formation of Vo and Ceo, by
the reaction of the solid with environmental oxygen; Eq.
(37) describes the equilibrium reaction between oxygen
vacancies of different charge states; Eqs. (38) and (39) are
the reactions that form, respectively, (Ce Vo )' and

(Ce Vo ) defect pairs. At thermodynamic equilibrium
the sum of p 's on the left-hand side of each of reactions
(36)—(39) is exactly equal to that on the right-hand side.
Thus one has

Here gz, g2, gB&, gB2 are the reaction free energies of the
reactions shown in Eqs. (36)—(39), respectively, (note the
correspondence with the g's defined at low defect concen-
tration limit in Eqs. (64)—(67) of Sec. IV C). In particular

gB„gB2 are the binding energies of the two different de-

fect Pairs. The ideal gas relationshiP, Pp =kB T lnPO,
2 2'

has been used in deriving Eq. (46). It is interesting to
note that every x in the above equations is accompanied

by its corresponding 7 in theform of thex /9' ratio.
The reaction free energies are given by

p . +p x p "+p
P eCe P ece

p v,. +pce,', p(c.v, )

(41)

(42)

pv. . + pc ppx pc x
0 0

VO Cece OO CeCe

p .. +p p . p x
0 Ce 0 Ce

P V' PC P(Ce V )
(43)

Here the subscripts of the p's indicate the identity and
the charge state of corresponding species, pp is the

2

chemical potential of oxygen in the environment. From
Raoult's law ' one has

gBi

gB2

P(C V )' P V" PCe,

P(C V )x PV PC',

In addition, one has the charge neutrality condition

2X .. +X . +X . —X
0 0 0 Ce

(51)

p x p x+kBTln
Ce Ce

x
eCe

yC x
Ce

(44) and the structural conservation conditions

max
x =X,x+X +X, . +X, x (52)

x
0

ppx pQx +kB T ln
0 0 ypx0

(45)

where )M s (i =Cec, or Oo) are the virtual chemical po-
tentials of host ions in their reference states. These are
taken to be constants. Note that x s in Eqs. {44)and (45)
are divided by their respective y s in order to conform to
the definition of )M shown in Eq. (30). These expressions

5 x .. +x. +x . +x
0 0 0 0

(54)

The oxygen deficiency 6 may then be obtained by sum-

ming up the concentrations of all oxygen vacancy con-
taining defect species:
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B. Reaction free energies

The mean charges ( Q, ) and ( Q, ) may be obtained by
averaging the charges of all building-block defects over
their respective sublattices:

c' + (c v i+ (c v )")Qc'

Combining Eqs. (27), (50), (55), and (56) the reaction free
energies may be written as functions of the defect concen-
trations. This is shown below in matrix form:

X g

Ce

XV"
0

= —2&g. )

v"+ &c v ) Qv" v +
&cev )" Qv0 0 0 0 0 0

(55)

gB1

gB2

gB1

gB2

47TE, Cp
XV0

X(cevp).

(C V )X

(57)

ax(c y

where Q, (=—)e)), Q .. (=+2(e)), and Q . (=+~e()
Cec '

Vp V

are the charges of the building-block defects, respective-
ly, Cec„V&, and Vo. Here the relationship between

(Q, ) and (Q, ) in Eq. (9) has been used. DifFerentiating

Eq. (55) with respect to the defect concentrations, one has

a(g) a(g) a(g) a&g)
ax ax . az

Ce 0 0

a&g, )
(56)

ax v. .
0

gB1

gB2

g "+~g ~ p x ~p x
Vp Cece 0 Ce

I ~ I I 0
~v- +g C.' gv JM

0 Ce 0 Ce

I I I
g(c v, ) gv,- gc.'

I I
(Ce Vp ) Vp Cec

(5g)

and the (L) matrix is

where the g "s are the concentration independent com-
ponents

3X, +X .. —X.
Ce 0 0

—3X, , —X, +X, , ,Cec Vp (Ce Vp )

2X, X. +X
Ce 0 0

4X,
0

2X ..
0

Vp

Vp

4X,.
0

2X .
0

Vo

Vp

2X, +X .. +4K,
CeC, Vp (Ce Vp)

X, , +X, —X,. +M, , ,Cec Vp Vp (Ce Vp )'

—X, , —X, —4X„, .
CeC Vp (Ce VO)

2X, , +2, +4/„, ,„0

, +X,. —X. +~
Cec Vp Vp (Ce Vp )

—X, —X.. +X
CeC VO (Ce Vp) (Ce VO)"

CeC VO

(59)

T
gB1 hB1

gB2 hB2

SB1

SB2

(60)

The free energies can be further separated into their
enthalpy and entropy components:

SR

hR

h2

hB1

hB2

hR
'

h2

hB1

hB2

X g

CeC

X
0

47TG„Kp Vp

X
(Ce Vp)'

(Ce Vp )

(62)

where h *'s and s*'s are independent of the defect concen-
trations. Substitute Eq. (60) back into Eq. (57):

hR SR

gB1 hB1

F2 hB2

T
SB1

SB2

(61)

where the reaction enthalpies are found to be functions of
defect concentrations and are given by

Notice that in the above derivations the defect concentra-
tion dependence of the entropy terms is assumed to be
negligible.

C. Correspondence to traditional defect theory

A good test for the validity of the current formulation
is to see if Eqs. (46)—(49) are equivalent to the well estab-
lished traditional mass action equations in the limit of
low defect concentrations. By setting x ~0, it is found
that (Q, ) —=0 from Eq. (55), p'=-g' from Eq. (27), and
in' -=lny from Eq. (29). Under these conditions the ex-
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pression for the virtual chemical potential in Eq. (30) is
simplified to

—2.5 5.0

'X
p -=g'+k Tl

Va
(63)

which is the Henry's law. ' From Eq. (57) one also ob-
tains g~ =—g„* g2

———g2 gz& =—gz& g&2=—gzz and from Eqs
(52) and (53) one has x x =—x ~&& (= 1=y &&) and

Cece Cece Cece

x x =-x x" (=2=y x), respectively. Using the y values

listed in Table I, it is easy to show that Eqs. (46)—(49) are
now simplified to

—3.0—

E

—35
g)

O

—4.0

— 4.5

E

— 4.0 ~
o

O

— 3.5

5 I I III I. ~ . I I I I I III ~ . I. ~ I I I I I III . a. I ~ . I I I I I III 30
10o 10" 102 10&

log]0 ( (unit of Io)

ln(Po~ x„..x, )= — +ln2, (64)

FIG. 3. Plots of M, and M, vs the summation radius r,
0

where r is in unit of Ip =2.706 A.

ln
0 Ce

XV0

g2

k~T
' (65)

ln

X
(Ce Vo).

X .. X
V0 CeCe

g81 Zc
(66)

ln
(CeVQ j

XV' XC0 Ce

Zga2
l

c

k~T 2
(67)

which are the traditional mass action equations. ' ' No-
tice that the defect concentrations here may also be writ-
ten in the form of the x /y, ratio, which parallels the
x /7 form of the general formulation shown in Eqs.
(46)—(49).

verge at r ) 100 (in unit of Io), and give

M, = —2.62X10 C/m, and M, =4.27X10 C/m.
To simplify the calculations, the X expressions are ob-

tained from Eq. (14) using the smallest possible short-
range interaction envelopes that enclose only the
building-block defects (for example, see the solid line en-
velope in Fig. 1). The exclusion factors A

&
are similarly

obtained using the smallest possible exclusion zones en-
closing the lattice sites occupied by the building-block de-
fects (see Fig. 2). In actuality the sizes of these envelopes
are functions of the short-range interactions, and are ex-
pected to be larger than those used here. Nevertheless, a
number of calculations carried out using zones of
difFerent sizes have shown that, while the defect concen-
trations obtained are modified slightly, the general con-
clusions presented in this paper are still valid.

V. RESULTS AND DISCUSSIONS B. Oxygen deficiency and defect concentrations

This section presents the results obtained from the ap-
plication of the general defect chemistry formulations
developed in the previous sections to the oxygen deficient
Ce02 & system. The defect concentrations are calculated
by solving the set of simultaneous equations (46)—(53) us-

ing the numerical algorithm described in the Appendix.

A. Parameters required for calculations

Using trial values of h* and s* as input parameters,
the defect concentrations are calculated and the oxygen
deficiency 5 has been obtained using Eq. (54). The values
of these input parameters are adjusted until a best fit (by
eyes) is obtained between the calculated and the experi-
mental 5 values. These best fit h ' and s" values are listed
in Table II. The calculated best fit 5 values are shown in

The parameters required for the calculations are listed
in Table I, which includes the values of A &, y, x '", as
well as the expressions for X . The expressions for the
reaction free energies, g's, are provided in Eq. (57). Also,
c.„=25 for Ce02, Z, =8, Z, =4, and the nearest neigh-
bor Oox to Cecx, distance is l0=2. 706 A. 41 In addition
the h *'s and s*'s (in the form of preexponentials) shown
in Eqs. (60) and (61) are needed as input parameters to
the calculations.

The X expressions listed in Table I require M, andI, . These Madelung constants may be obtained from
their definitions in Eqs. (11) and (12) by carrying out the
summations over a spherical volume centered at the
reference site, and increase the sphere radius r until con-
vergence occurs. The results of these calculations are
shown in Fig. 3. It can be seen that the summations con-

This calculation Literature

h~ (ev)
h,* (eV)
h,*, (eV)
h,*, (ev)

5.00
0.17

—0.25
—0.15

4.67'
0.56'

—0.25

exp(sR /kz) (atm )

exp(sz /kz)
exp(s» lk& )

exp(~~~ /k~ )

'Reference 36.
Reference 59.

1.47X10'
2.83X10 '

1.0
2.21

3.73X10 '
2.38'

TABLE II. Comparison of the enthalpy and enthropy pa-
rameters used in the present study and that reported in the
literature.
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FIG 4. Plot of l. g, 5ovs0log, oPo at difFerent temperatures. 5
2

is the oxygen deficiency in Ce02 z. Solid curves are from calcu-
lations. Filled circles are experimental data compiled by Tuller
and Nowick, Ref. 35.

Figs. 4 and 5, which are plotted vs Po at fixed tempera-
2

tures. The experimental 5 values shown in these dia-
grams have been compiled by Tuller et al. These data
were originally measured by Bevan and Kordis, ' and
Panlener, Blumenthal, and Gamier, Iwasaki and
Katsura, and Ssfrensen. From Fig. 4 it can be seen
that the agreement is good in general, except in two re-
gions where the calculated 5 values are larger than that
of the experimental observations: at T~1300 C and
5& 10 '; at T ~900'C and 5&10 . Possible causes of
these disagreements will be discussed later in this section.

Plotted in Fig. 5 as a typical example are the calculated
concentrations of different defect species. This plot may
be roughly divided into three Po regimes, each of which

2

has the oxygen deficiency dominated by a different point-
defect species and hence, according to the traditional
theory, is expected to have a characteristic gradient to
the 5 curve. ' These gradients are also shown in the di-
agram as the hypothenuses of the triangles. The dom-
inating species at high Po (log, oPo & —5) is Vo which

2 2

gives a gradient of —
—,'. At intermediate

Po (
—5&logioPo & —10) Vo dominates and gives a

2 2

gradient of —
—,'. At low Po (log, oPo (—10), assuming

(CeVo)" dominance, the expected gradient is —
—,'. As

can be seen in Fig. 5 the gradients of the 5 curve in the
high and intermediate Po regimes agree well with the

2

predictions of the traditional theory. At low Po, howev-2'
er, the 5 curve bends over such that its gradient becomes
much shallower than the predicted value of —

—,'. This de-
viation from the traditional theory is clearly caused by
the strong interaction and exclusion effects that arise at
high defect concentrations (here 5 & 10 ').

It is noted in Fig. 4 that the experimentally observed 5
value rises sharply at T~900'C in the low Po range

2

when 5& 10 . In fact at T=800'C and log, oPo ——20

the 5 curve has a gradient close to —
—,'. According to the

traditional defect theory there are two defect species that,

C3

O

~ Vo

when dominating, may give rise to this kind of behavior.
The first species is (Ce Vo), which is the one that is be-
ing utilized in the current calculations. The second
species is Vo, which may be formed according to the re-
action:

Vo+Cece~Vo +Cec (68)

Based on this alternative Vo assumption, additional cal-
culations had been conducted. The resulting 5 curves
(not shown here) exhibit steep gradients close to —

—,
' in

the low Po regimes. These curves, however, do not bend
2

over until a fairly high 5 value of —l. 5, which, in princi-
ple, is an acceptable value in view of the fact that it is still
less than x '„"=2. This value, however, is clearly much

0
higher than the experimentally measured 5 shown in Fig.
4, which has, for example, maximum 5-0.3 at
T=1500 'C. As a result of this disagreement, the Vo al-
ternative has been ruled out. It can thus be concluded
that the oxygen deficiency in the low Po regime is dom-

2

inated by the (Ce Vo )" species. The observed discrepan-
cy in the low-T and low-Po regime may then be ex-

2

plained by the appearance of new crystalline phase not
accounted for in the current calculations, such as the
low-temperature Ce02 phase reported by Bevan and
Kordis. '

Figure 4 also shows that, at T ~ 1300 'C in the low PQ
2

regime when 5 & 10 ', the calculated oxygen deficiency is
slightly larger than the observed values. This may be
caused by the fact that the calculations have used the
smallest possible interaction and exclusion envelopes as
mentioned in Sec. VA, such that the values of both X
and A

&
are smaller than their actual values. It is ex-

pected that with larger envelopes the values of L and
A &

would become greater, which in turn may lead to a
better fit of the calculations to the experimental data.
This is because greater X values mean stronger defect
interactions that would bend the 5 curve over sooner, and

I I

—10 —5

logic Po2 (atm)

FIG. 5. Plot of calculated log, &p: vs log, oPo at T=1200'C.
2

Solid curve is the calculated 5, and filled circles are the experi-
mental data compiled by Tuller and Nowick (Ref. 35). The hy-
potenuse of the triangles have gradients indicated by the accom-
panying numbers.
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greater A & values mean larger reduction in the available
lattice space that would lower the maximum attainable 5
value.

Table II also lists the h * and s* values reported in the
literature for comparison purpose. It is noted that due to
the low x, ,

concentration (see Fig. 5) hs, and ss,0
were not able to be fitted. As a result their literature
values have been used directly in the calculations without
adjustment. From Table II it is clear that the agreement
between the values obtained in the present work and the
literature values is acceptable except in the cases of hz
and sz. This may be explained by noticing that these
literature values were obtained by applying the tradition-
al theory to the experimental data measured in intermedi-
ate Po regime, which was assumed to be dominated by

2

Vo. 3s 36 From Fig. 5 it can be seen that in this Po range
2

5&x . and that the oxygen deficiency has significant
0

contributions from other species, including Vo and
(CeVo)". Furthermore the 5 value here is greater than
10, indicating high defect concentrations that can lead
to behavior deviating from the prediction of traditional
theory. Together these factors may have led to an inac-
curate result acquired from analyses based on the tradi-
tional theory using the assumption of the complete domi-
nance by the Vo species.

C. Effects of defect interactions and exclusions

X
0 —1
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C)

0

IT)OX
IOq10 ~(Cevo)X9

B

I
I
I
I
I
I
I
I
I

I
I
I

I
I
I
I
I
I
I
I
1
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I
I
I
I
I
I
I
I
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I
I
I
I
I
I
I
I
I
I
I

—15 —10 —5 0

lagl o Po2 (atm)
FIG. 6. Plot of calculated log~ox, ,

„vs log~oPo . Calcu-

lations include the effects of (A) both interactions and ex-
clusions, (B) exclusions only, (C) interactions only, and (D) nei-
ther interactions nor exclusions (traditional theory).
T=1200 C.

The p, expression given in Eq. (30), as pointed out in
Sec. III, allows one to turn the effects of defect interac-
tion and exclusion on and off individually. Figure 6
shows the results obtained for T=1200'C using (A) both
effects, (B) exclusion effect only, (Q interaction effect
only, and (D) neither effect. Note that case (D) corre-
sponds to the traditional theory. For purpose of clarity
only the curves calculated for (Ce Vo )" are shown in Fig.
6, but the same observations described here are applica-
ble to all the other species.

Comparing curves (A) and (D), it can be seen that they
coincide at high Po where the defect concentrations are

2

—15 —5

Iagi o Pay (atm)

FIG. 7. Plot of calculated reaction enthalpies h vs log&OPo .
2

T=1200'C. The filled circles are the low-defect-concentration
limiting values h *.

low. Curve (A), however, begins to bend over and devi-
ate from curve (D) as Po is reduced to log, oPo & —6,

2 2

which, according to Fig. 5, occurs when 5 begins to
exceed 8 X 10 . It is interesting to note that this 5 value,
which indicates the level where the traditional theory be-
gins to break down, is consistent with Wagner's observa-
tion in CoO in which the defect concentrations were
found to deviate from the traditional ideal behavior at a
level of 6X10 . ' The same kind of deviation behavior
is also observed in curves (B) and (Q.

Curve (D) in Fig. 6 displays some behavior that is phys-
ically impossible. It rises monotonically with decreasing
Po and has log&ox~~v ~x )0 (i.e., x~ v ~x2' 0 (cevo)

»~z "z ~x =1) at log&oPo & —14. This clearly demon-(Ce Vo) 2

strates the well known inadequacy of the traditional
theory at high defect concentrations. Curves (A), (B),
and (Q, on the other hand, all bend over with decreasing
Po and do not exceed the limit of log, ox(c v ))( 0.

2 (ce vo )

This observation clearly shows that in the calculations
the interaction and exclusion effects can limit the defect
concentrations down to more realistic values. The fact
that curve (Q bends more than (B) indicates that interac-
tion is more effective in this regard than exclusion. It is
nevertheless worthwhile to remember that in nonionic
systems (for example, covalent crystals) in which the
point defects may be uncharged and that the Coulombic
interaction may become negligible, such that the high-
concentration defect chemistry can be dominated by the
exclusion effect.

The interaction effect influences the defect concentra-
tions by modifying reaction enthalpies through Eq. (62).
Using this equation the h values are calculated and plot-
ted in Fig. 7 as functions of Po at T=1200'C. Here the

2

h values approach that of h ' when defect concentrations
are low at high Po . As defect concentrations increase

2

with reducing Po, however, the h values begin to

change. The hz, h2 values become larger which, from
Eqs. (46) and (47), suggest that it is more difficult to form
Vo and Vo, respectively. The h~„h~2 values become
more negative which, from Eqs. (48) and (49), suggest
that it is easier to form (CeVo )' and (Ce Vo)", respective-
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FIG. 8. Plot of calculated exclusion functions P, vs log, oPo .
2

T= 1200'C. The filled circles are the low-defect-concentration
limiting values, y .

FIG. 9. Plots of 5p, vs log, oPo at T= 1200'C.

ly. It is noted that the net change in the enthalpies
(h —h ') at log, oPo = —15 is about 1.6 eV in the case of

hz, and —0.45 eV in the case of hs, . These values are
much larger than that calculated for the Debye-Huckel-
type corrections, which is typically of the order of 0.1

eV. ' '~ This indicates that Debye-Huckel-type correc-
tion is inadequate at high defect concentrations.

The exclusion effect influences the defect concentra-
tions by modifying exclusion functions V through Eq.
(29). Using this equation the 7 values are calculated and
plotted in Fig. 8 as functions of Pz at T=1200'C. Here

2

the 7 values approach that ofy when defect concentra-
tions are low at high Po . As defect concentrations in-

crease with reducing I'o, however, the P values begin

to drop. This drop is much more severe in the case of
(CeVo)' than that of the other species. The (CeVo)" is
the only case in which the drop of the curve plateaus out
at V, ,

„-6.8 around log&oPo ——15. This is con-
0 2

sistent with the fact that at low Po the lattice is dom-
2

inated by (Ce Vo )", as can be seen from Fig. 5. This also
indicates that a large fraction of the lattice is now devoid
of other defect species, and hence is available for the
placement of the (CeVo)" pair.

tains a Vo, this observation suggests that the magnitude
of the change in p' is strongly correlated to the type of
anionic component of the particular defect species. In
other words, those defects that contain Vo component
have the largest 5p,

' value, which are followed by those
that contain Vo, which in turn are followed by Ce&, that
does not have any anionic component.

From Eq. (35) it can be seen that the defect thermo-
dynamic activity a is a function of the defect concentra-
tions x~. Using this equation the defect activities are cal-
culated at T=1200'C, and the results are plotted as
functions of log, oPo in Fig. 10. At low defect concentra-

tions, the behavior of these curves is similar to that of
their x counterparts in Fig. 5. An examination of the
regimes of log, oPo ) —5 in these two diagrams shows

that the curves that correspond to the same species are
parallel to each other. This is not surprising because here
at low defect concentrations P =y, 5p'—=0 eV s—uch
that a ~x . This observation is consistent with Henry' s
law. In the regime of high defect concentration
(log, oPo (—10) V, deviates from y, 5p,' deviates from

2

0 eV, and as a result the curves in Figs. 5 and 10 are no
longer parallel.

The proportionality between a and x in the low-

D. Thermodynamic activity of point defect

Using Eq. (34) the changes in the virtual chemical po-
tentials 5p' are calculated at T=1200'C, and the results
are plotted against log, oPo in Fig. 9. Here it is found for

2

all defect species that 5p'~0 as log, oPo ~0, and that
2

5p' increases with decreasing log, oPo . This observation
2

demonstrates the positive correlation between 5@* and
the defect concentrations. From this figure it can also be
seen that, at constant Po, the 5p values appear to have2'
the following relationship:

&v" = &(c v i 5&&c v i"=~&v. ~I ce'0 0 Ce

Noticing that (CeVo) contains a Vo, and (CeVo) con-

—2

0

—5 ' I

—15 —10 —5

log&a Po2 (otm)

FIG. 10. Plots of log«p vs log, ohio at T= 1200'C.
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Vo

—6
I

—4

(CeVo)

I

Vo

Ce'ce '~

I

—2

log] p xn

I I

(CeVo)"
I

Po regime is (Ce Vo )", rather than Vo. The interaction
2

and exclusion effects are found to influence the defect
chemistry by modifying, respectively, the reaction enthal-
pies h's and the exclusion function V 's. The net result of
these two effects is the lowering of the calculated defect
concentrations to values that are realistic compared to
that obtained using the traditional theory. Examinations
of the defect activities show some nontraditional
behavior, which apparently is related to the strong in-

teracting nature of the defect system, which is a factor
usually not included in the traditional thermodynamic
considerations.
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defect-concentration regime can again be observed in Fig.
11, which plots log]oa vs log&ox at T=1200'C. Here it
is observed that when the values of x are low, all the
curves are straight lines that make an angle of 45' to the
log&ox axis. This clearly indicates the a ~ x relation-
ships. The curves of similar species tend to bunch to-
gether: those of the two vacancy species form one group,
those of the pair species form another group, and that of
Cec, forms a third group. It is also seen that all curves
turn around at large x values, indicating that a is not a
single valued function of x . This observation does not
agree with the traditional thermodynamic definition of
a, which requires the activity to be a monotonic func-
tion of the concentration. The disagreement may arise
because the system being studied here involves defects
that are strongly interacting, which is a factor that is typ-
ically not considered in the traditional thermodynamic
formulation.

VI. CONCLUSIONS

This work describes a statistical thermodynamic for-
mulation of crystalline point-defect chemistry that has
general applicability at all levels of defect concentrations.
The focus of this approach is an expression for the virtual
chemical potential of defect p, which is derived from the
system Gibbs free energy that explicitly incorporates the
contributions from defect interaction, and that from a
configurational entropy that incorporates the generalized
defect exclusion. Using this p expression in a manner
similar to that of the traditional theory, a set of equations
is established and solved to obtain defect concentrations
as explicit functions of environmental parameters.

The applicability of the formulation developed is
demonstrated first by showing its equivalence with tradi-
tional defect chemistry formulation at low concentration
limit, and then by working out a detailed example using
the undoped nonstoichiometric CeOz & as a model sys-
tem. In this example, the calculated oxygen deficiency is
found to be in good agreement with literature data. This
study also shows that the dominating species in the 1ow-

AFFENDIX: ALGORITHM FOR DEFECT
CONCENTRATION CALCULATIONS

0 Ce
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VO Cece
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(A4)

A reliable general methodology for calculating point
defect concentrations can be very useful. Accordingly
the authors report here a numerical algorithm that has
been developed to calculate x values as functions of Po

2

at a fixed T.
Calculation of the equilibrium defect concentrations is

not a trivial task. Even in the limit of low defect concen-
trations, which allows simpler mathematics, it still in-

volves solving simultaneously the mass action equations
of Eqs. (64)—(67), and the constant equations of Eqs.
(51)—(53). Previously this was accomplished with some
effort by combining all the equations to give a polynomial
in terms of x 's, which is then solved. ' ' ' This ap-
proach, however, is not applicable in the more general
situation where it is necessary to solve a set of simultane-
ous equations, including Eqs. (46)—(53), that contain
complex and convoluted functions of x 's, such as V
[see Eq. (29)] and the reaction enthalpies [see Eq. (57)].

Let us rewrite Eqs. (46)—(49) and (51)—(53) into the fol-

lowing forms:
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ge —2xy. . +xy. +x(~y ). x s

0 0 0 Ce

max
yf XC x XC x xc I X(c y ). X(c y )x

(A5}

(A6)

x max
+g Q 0 v" y (cey ) (c y )

(A7)

and define

2 2
statal X

g'= a

(A8)

where A &'s are user defined weighting factors. It is clear
that gt t,&

would be zero if the exact solution x values

are substituted into Eqs. (Al}-(AS}. On the other hand,

+tot ] would have a value larger than zero if any other x,
value is used. The closer these x values are to the actual
solutions, the smaller y„,z is. Accordingly, the original

problem of calculating the defect concentrations now be-

comes one of minimizing y„„&with respect to a set of x
variables.

To accomplish this task, the algorithm adopted in this
work first makes an initial estimate of the x values at
the limit of low concentrations using the simpler tradi-
tional formulation described by Eqs. (64)—(67), and Eqs.
(51)—(53}. Utilizing the well-known procedures intro-
duced by Brouwer ' ' ' the approximate defect concentra-
tions can be calculated at a conveniently chosen Po (a

2

value of 1 atm is typically used in this work). This set of
x values is then used as the initial input to Eqs.
(Al}-(A8}. Using a conjugate gradient routine3 the x
values are then iteratively refined to minimize y„„&. In a

typical run y„„&&10 ' can be achieved within a few

tens of iterations. The resulting x solutions are in turn

used as the initial input to a new calculation at a slightly
different Po . In this manner, the defect concentrations

2

may be calculated over a range of Po at a fixed T. By
2

trial and error it was found that the computation speed is
optimized with A

&
= 1 for (=a to d, and A

&
= 1000 for

g=e to g. This choice of the weighting factors apparent-

ly gives more weight to the effects of charge neutrality
and structural conservation constraints (i.e., g=e to g)
and thus facilitates faster convergence.
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