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Cluster expansions of alloy energetics in ternary intermetallics
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Ternary alloy energetics are examined for substitutional systems by a formal cluster expansion. In
contrast to the binary-alloy problem, several distinct basis sets are possible for ihe ternary cluster expan-

sion. Several of these sets of ternary basis functions are examined and compared, and relationships are
derived between the expansion coefficients, or effective cluster interactions, expressed in various bases.
The method of direct con6gurational averaging (DCA) (based on a tight-binding, linearized muffin-tin-

orbital Hamiltonian) is extended to treat ternary alloy systems. Using the DCA, ternary, fcc-based
effective pair and triplet interactions are computed for the Rh-V-Ti, Pd-Rh-V, and Ag-Pd-Rh systems,
and convergence of the expansion is examined. By combining the cluster expansion with the results of
the DCA computations, formation energies are obtained for the completely disordered state as a func-

tion of alloy composition. Both pair and triplet interactions are seen to be crucial towards obtaining
quantitatively converged energetics.

I. INTRODUCTION

The study of phase stability in substitutional alloy sys-
tems is of great technological interest. Due to the in-
herent complexities of the full multicomponent alloy
problem, the majority of the theoretical work to date has
focused on binary alloys. However, most alloys of practi-
cal importance are multicomponent (ternary, quaternary,
etc.). Due to the enormous number of possible combina-
tions of the constituents, the experimental survey of ter-
nary alloys is much less thorough than that of binary sys-
tems. Thus, an extension of theoretical and computation-
al techniques to ternary systems is a crucial step towards
making a predictive theory which is of use in alloy
design. Additionally, many important problems may be
expressed as simpli6cations of the full ternary problem:
dilute additions to a binary system, pseudobinary alloys,
substitutional defects and vacancies in a binary system,
dilute binary additions to a pure metal with vacancies,
etc.

Much of the theoretical work on binary-alloy systems
is formulated in terms of an extended "Ising-like" model,
or more generally, a cluster expansion. The cluster ex-
pansion of binary-alloy properties then provides a formal
framework for the study of alloy energetics with respect
to substitutional rearrangements of atoms, with the ener-
gy being parametrized by efFective pair and multisite in-
teractions. Several techniques have been developed to
compute these effective cluster interactions (ECI's) from
electronic-structure calculations. ' In particular, the
method of direct configurational averaging (DCA) pro-
vides a straightforward means to compute the coe%cients
of the expansion, the effective cluster interactions (ECI's),
with no adjustable or experimentally determined parame-
ters. For binary alloys, knowledge of the ECI's for a

given alloy system can lead to predictions of such proper-
ties as stable ground-state structures, energies of metasta-
ble and disordered states, and phase equilibrium and dia-
grams. In this paper, we demonstrate the extension of
the cluster expansion and DCA to the case of ternary al-
loys.

Many ambiguities arise in the ternary problem which
are not present in the binary case. Consider the ternary
formation energy of a structure y:

~EFoRM( r )=«y ) [cgEg—+cg EB+ccEC ]

where the superscript 0 indicates the pure elements, andc„,cz, and cc are the concentrations of A, 8, and C
atoms in y. Only two of these concentrations are in-
dependent due to the constraint c„+cz+cc=1.The
formation energies for binary alloys [given by Eq. (I.l)
with cc=0] gives a measure of the energy of a given
phase relative to the phase-separated pure elements. In
the binary case, the sign of the formation energy,
EEFoaM )0 ( (0) is often a qualitative indication that at
low temperatures the alloy will tend to phase separate
(order). For a ternary phase, b,E„o„Mof Eq. (1.1) gives
the energy of y relative to a completely phase-separated
state of pure A, B, and C. However, the sign of EEFQR]g
does not fully specify (not even qualitatively) the ordering
tendencies of the alloy: hE & 0 implies that y has a lower
energy than (A)+(B)+(C), but, in fact, y may have a
higher energy than (A, B)+(B,C), for example. It is
necessary, at the very least, to perform a stability analysis
of the completely disordered state, which for multicom-
ponent systems is not as straightforward as for binaries.
What is really essential is not only hE, but also the curva-
ture of AE with respect to the two independent concen-
trations. Therefore, to describe the gross ordering ten-
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dencies of a ternary alloy even at a qualitative level, at
least three parameters are required, corresponding to the
ordering tendencies of A-B, B-C, and A-C pairs of atoms
in the alloy. Depending on the signs of these three pa-
rameters, a ternary alloy may be placed into one of four
categories: ' (I) All three parameters are positive, indi-
cating ordering, (II) Two are positive, and one is nega-
tive, indicative of phase separating tendencies, (III) One
parameter is positive, and two are negative, and (IV) All
three are negative. The preceding discussion is but one
example of how the ternary alloy is more complicated
than its binary counterpart. However, as shown below,
the cluster expansion of alloy energetics can take into ac-
count not only the gross qualitative features, but also
quantitative detail of ternary-alloy phase stability.

To model the substitutional ternary alloy, consider a
system of N lattice sites, to which each is assigned an A,
8, or C atom. The description of a ternary-alloy system
is facilitated by a generalized "Ising-like" model in which
the atom at site i is designated by the variable
cF; —( T g, 7 g, r c ) depending on whether the atom is A, B,
or C, respectively. Any configuration of the system may
be completely specified by the N-dimensional vector,
(r=(0&, (T2, . . . , 0'z). Sanchez, Ducastelle, and Gratias
have shown that within this "Ising-like" framework, a
complete orthonormal basis of functions may be defined
in the space of all 3 configurations. However, the basis
functions of Sanchez, Ducastelle, and Gratias are not the
only reasonable choice, and hence, in Sec. II (and Appen-
dix A), we examine several possible choices of basis func-
tions, highlighting their advantages and disadvantages.
In particular, relations are derived between the ECI's ex-
pressed in various bases. Section III contains a descrip-
tion of the ternary method of direct configurational
averaging, and specifically contains details of extensions
of the binary method necessary to compute the ternary
ECI's. The results of the ECI calculations are shown in
Sec. IV for three transition-metal systems, Rh-V-Ti,
Pd-Rh-V, and Ag-Pd-Rh. Also shown in this section are
the formation energies of the completely disordered states
for each of the three alloys, all as a function of the alloy
composition. Some general conclusions and three appen-
dixes follow.

II. TERNARY CLUSTER EXPANSIONS—BASIS FUNCTIONS

A. Chebychev polynomials

We begin by defining the occupation variables,
(~„,z,rw )=c(+1,0, —1). The domain of the point vari-
able o.; has three values. Therefore, to fully specify a
function of o.;, it is necessary to choose three point func-
tions, products of which form the corresponding cluster
functions. To define functions which are complete in the
space of all 3 configurations, the inner product of two
functions of configuration f (o ) and g (cr ) is defined as

4 '=8„(0&)8„((72) 8„((T~~) . (2.3)

(The superscript s will be in parentheses to distinguish it
from a power. ) The cluster functions of Eq. (2.3) are not
only orthonormal with respect to the scalar product
operation of Eq. (2.1), but they also satisfy a completeness
relation. Therefore, any function of configuration may be
exactly expanded in terms of the Chebychev cluster func-
tions of (2.3).s In particular, the internal energy as a
function of configuration E(o ) may be written

E(o)= g pm v"4 "(o),
a (s)

(2.4)

where the summation over a is over all clusters of lattice
points which are symmetrically distinct, and the summa-
tion over (s) is over all possible values
n„nz, . . . , n ~WO. Thus, (s) in Eq. (2.4) is a vector of
integers (each of which is either one or two) which speci-
fy the specific type of Chebychev polynomial associated
with each site in the cluster (z. The energy of (2.4) is per
atom, with the multiplicity m being the number of clus-
ters a per lattice site. The orbit of a cluster a is defined
as the set of all clusters that are related to a by a symme-
try operation of the lattice. All clusters in an orbit have
the same effective interaction V", and the orbit-averaged
cluster functions 4 '" are simply the cluster functions of
Eq. (2.3} averaged over all the symmetry-equivalent clus-
ters of the lattice. Note that in the right-hand side of Eq.
(2.4), only the cluster functions 4 ' are functions of
configuration. The expansion coefficients V" are thus
configuration independent and are commonly referred to
as effective cluster interactions (ECI's}. Due to the ortho-
normality of the cluster functions, the ECI for a cluster a
and set of indices (s) is given by the inner product of the
cluster function N" with the energy:

intuitive set of three point functions (from which the
orthonormal basis is constructed) is the first three poly-
nomials of cr, : I 1,o;,o, I. Cluster functions formed from
products of the set I 1,0;,0; I, although not orthogonal,
have been proposed as a possible basis of functions for
describing the ternary-alloy problem " as well as treat-
ing the spin-1 problem of He -He mixtures through the
Blume-Emery-Griffiths Hamiltonian. ' The effect of the
nonorthogonality of this basis on the cluster expansion
coefficients is discussed in Appendix A. The set

I 1,(T;,o; J may be made orthonormal with respect to the
inner product of Eq. (2.1) through the Gram-Schmidt
process. The resulting three functions are the first three
Chebychev polynomials of the discrete variable o, :

80(o;)=1, 8,( (T)=&3/2o;, 82(cr;)=&2(1——3o;) .

(2.2)

For a cluster of lattice points a =
I 1,2, . . . , ~

a
~ I and a

vector of indices (s)= I n „n2,. . . , n
~ ~

) the cluster func-
tion is defined as

(2.1} p (s) —( @(s) E (~ ) ) (2.5)

where the summation runs over all 3 configurations. An
Consider the case of a representing a pair of lattice

sites (1,2): There are three types of distinct effective pair
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EcB+—Ecc»
V'"'=

1'8 «AA 2EAB—+EAC 2EBA
—+4EBB

2EBc+—EcA 2EcB+—Ecc )

(2.6)

where EIJ is the average energy of all the ternary
configurations with an I atom at site 1 and a J atom at
site 2. The brackets, which are oftentimes used around
each EIJ are dropped for notational convenience, but one
should always keep in mind that this is a
configurationally averaged quantity. Note also that in
(2.6), the sum of the coefficients of EIz is equal to zero.

For the case of a triplet of points (1,2,3) labeled by the
I

interactions (EPI's) depending upon whether the indices
(s) take on the values (11), (12), or (22). There are actual-
ly four sets of indices (s) for pairs, but we consider
throughout this paper the case in which all lattice sites
are equivalent (as is the case for most of the common lat-
tice types, e.g., fcc, bcc, hcp). Under this condition, the
EPI with (s)=(12) is equal to the one with (s)=(21).
Thus, for an nth nearest-neighbor (NN) pair of lattice
points, there are three inde%2endent effective pair interac-
tions, V„'"',V„"', and V„' . The explicit forms of these
pair interactions are given by combining (2.5) with (2.2)
and (2.3):

V„'"'=,'(E„„—+EccEAC—EcA—)»
Vn + Vn 3~9( EAA+EAB+EBA EBC

symbol n, there are, in principle, eight possible distinct
ECI's, at least four of which are necessarily distinct by
symmetry: V'"" V'" ' V" ', and V' '. [The use of n

to label both pairs and triplets should cause no confusion
because the vector (s) contains two elements for pairs and
three for triplets. ] The definitions of the four triplets
have many terms (a maximum of 3 =27) and are given
explicitly in Appendix B. The cancellation of the
coeScients also holds for the triplet interactions, and is a
specific example of a more general cancellation property
which is proved in Appendix C for an arbitrary cluster
interaction (provided ~a~ ) 1) in an M-component system.
The "cancellation theorem" of Appendix C guarantees
that even in multicomponent alloys, ECI's are not real in-
teractions or potentials, but rather small difFerences of
these real potentials which nearly cancel.

In computing alloy energetics, it is often necessary to
give energies relative to some reference point, as in the
formation energy of Eq. (1.1). By using a combination of
the cluster functions for the pure elements, the expansion
of Eq. (2.4), and the relation between the point cluster
functions and the concentrations,

4("=&3/2(cA —cc); 4 ' )=&2(1——', [c„+cc]),
(2.7)

one obtains the following formula for the formation ener-

gy of a given ternary structure including only effective
pair and triplet interactions in the energy expansion:

pairs @(2)
~E»RM(~)= r ~. V."" ~(.")- 1- @(1) (2)

+2V(12) C, (12)+ + V(22) e(22) 1+ 4'
&2 " " &2

triplets
V(111)(@(111) 1 @(1)

) +3 V (112) (y (112)+m„ n n
& 2

@{2)

2

(1)
+ 3 V (122) (y (122)

n n + V(222) @(222) 3
@(2)

vZ 2
(2.8)

where we define

V (112) ] t V(112)+ V(121)+ V(211))
n 34 n n n

V (122) & ( V(122)+ V(212)+ V{221))
n 3L n n n

(2.9)

The use of V'„"' and V'„' ' in (2.8) reduces the number
of terms involving triplets in the formation energy from
eight to four, and amounts to implicitly assuming

@ (112) @(121) @(211) (2.10)

and similarly for @ and permutations. There are two(122)

cases in which (2.10) is exact: (1) for the completely
disordered state,

q (112) @ (121) @ {211) p@ (1)(2@{2)
a a a L a & a

regardless of the lattice points which make up the triplet,
and (2) for a system in which all lattice sites are
equivalent, triplets which contain three equivalent bonds

I

satisfy (2.10) independent of the configuration. In fcc, the
triplet composed of three nearest-neighbor bonds is an
example of such a triplet. It should be noted that the ap-
proximation in Eq. (2.10) is made only to reduce the
number of computations. There is no problem in princi-
ple with computing separately each of V„"'', V„"", and
V„' "'. Also, aH of the numerical results in this paper in-
volving triplet interactions are for the completely disor-
dered state, in which case (2.10) is exact.

S. Pair probabilities

In addition to the Chebychev functions, the cluster
probabilities provide a basis for the ternary cluster expan-
sion. In particular, we examine the expansion in proba-
bilities up to and including pairs of atoms. In Eq. (2.7),
the orbit-averaged point functions are expressed in terms
of point concentrations, or point probabilities (the proba-
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q (11) 3 [ AA+ CC 2 AC]

3/2[ yAA+ 2y AB
2y BC+y CC]

(22))[43yAA12yAB6yAC12yBC3yCC]
(2.11)

bility of finding a given type of atom at any site). The
orbit-averaged pair functions may similarly be expressed
in terms of pair probabilities. Define the pair probability,
or pair concentration y„asthe probability of finding an
nth nearest-neighbor I-J pair in a given configuration.
There are six probabilities necessary to specify the occu-
pation of nth nearest-neighbor pairs of sites in a ternary-

orbit averages 4 („',4„',and 4 '„'may be written

dency between I J-pairs. However, from (2.15), it is clear
that an equivalent amount of information is contained in
the EPI's of the pair-probability and Chebychev bases.

The Chebychev and pair-probability bases are but two
examples of bases for ternary cluster expansions. Three
alternate bases are discussed and related in Appendix A:
(1) The nonorthogonal basis formed by products of the
set [l,o;,(r; j, (2) The orthornormal complex basis of
functions' constructed from the choice
( r A, rB,wc ) = (co, 1,to' ), where to =e 'r, and (3) The
basis of orthonormal functions defined with respect to a
restricted inner product over all ternary configurations
consistent with a given ternary composition.

By combining (2.11), (2.7), and the normalization condi-
tions,

cr y +y +y I ABC

y
AA +2y AB+ 2y A c+y BB+2y Bc+y

cc (2.12)

(2.13)

The coefficients of the pair probabilities are linear com-
binations of the Chebychev pair interactions, and have
the form

one may write the six orbit-averaged cluster functions 1,
and 4' ' in terms of the six

probabilities y„.(The inverse of this transformation is
given by Cenedese and Gratias' with the coefficients of
the inverse transformation being the "u-matrix" elements
used in cluster variation method calculations. '

) Rewrit-
ing (2.7) with the orbit averages expressed in terms of
pair probabilities, the formation energy of a given ternary
phase including only pair interactions in the energy ex-
pansion is given by

pairs

EE„o„M(a)= —4 g [W„"y„"+W„y„+W„"y„"] .

III. DIRECT CONFIGURATIONAL AVERAGING
FOR TERNARY SYSTEMS

The method of direct configurational averaging (DCA)
for computing ECI's directly from their definition has
been described in detail elsewhere ' for the case of
binary alloys. DCA is readily generalized to multicom-
ponent alloys, and the extensions necessary for bulk ter-
nary alloys are demonstrated here.

As in the binary case, a given ternary-alloy
configuration is described by the two-center, orthogonal,
tight-binding Hamiltonian

lWJI,»,„=Q i, ~&E, &i, ~l+ g li, p&t3(',"&j,vl,

where the Latin indices designate the lattice sites and the
Greek indices label the orbitals. The c.'s are the on-site
eilergies and the P's are the hopping integrals. The hop-
ping integrals are assumed to depend only on the species
at the site(s) in question, and the vector joining the two
atoms:

W„=,' [Err +Err E—rr Err ], — — (2.14)
~&j ~r(r)p, r(j)v( i j ) (3.2)

y(11)
n

V(12)
n

y(22)
n

2v'3 2&3
9 9

4 4
9 9

2
3

2
9

pr AB
n

WBC
n

WAC
n

(2.15)

From the definition of (2.14), one can see that W„has
the same form as the binary EPI's, however, the terms on
the right-handside of (2.14) are averaged over all ternary
configurations. Just as in the binary case, the coefficients
8'„have the simple physical interpretation: W„)0
(&0) corresponds to an ordering (phase-separating) ten-

with Err defined in Eq. (2.6). W„ is then a second type of
EPI defined for the ternary system, and just as in the
Chebychev scheme, there are three distinct types of in-
teractions for a given pair of lattice sites, W„,W„,and
W„.By comparing (2.14) and (2.6), it is easily shown
that the two types of EPI's are linearly related:

where I(i) and J(j) indicate the type of atoms (I,J= 3,
B, or C) at sites i and j. The hopping integrals between
like atoms, (()Ir„r,are obtained from the pure elements.
The hopping between unlike atoms is then given by the
geometric mean of the appropriate pure element in-
tegrals

~rp, r V 13r~,r/r~r„, I,J=A, B, or C . (3.3)

Self-consistency is achieved by shifting the on-site ener-
gies of the pure elements B and C by orbital-independent
amounts 6B and 6c, respectively. The three quantities,
Er; (the configurationally averaged Fermi level), 5B, and
5c are determined from the three constraints imposed by
requiring each of the three configurationally averaged
atoms to be neutral. Typically, averages over 20
configurations are used in the self-consistency procedure,
and approximately ten iterations are needed before 5B
and 5c are found so as to satisfy the configurationally
averaged-neutrality constraints within 0.01—0.02 elec-
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trons. The alloy Hamiltonian is then constructed from
the matrix elements of the pure elements [which are ob-
tained from linearized muffin-tin orbital (LMTO) calcula-
tions via the screening transformation of Andersen and
co-workers' ' ] along with (3.3), and the values of 5s
and &c

The ternary EPI*s [see, for example, Eqs. (2.6), (2.14),
and Appendix B] defined with respect to various bases
are all of the form

A, B,C
(s)

CIJ . KEIJ . K
I,J, ~ . . , K

(3.4)

where the set of constants cIJ'. . . K serves to define V".
The formalism of orbital peeling, ' which has been incor-
porated in the computation of binary ECI's (Refs. 4 and
15) may also be applied to ternary ECI's. The ECI of
(3.4) is then given by

(s)V"=——Imj x ln rt [gk
''' (E]]' dE)",

7r k=1 I J, . . . , K
(3.5)

where v is the number of orbitals to be peeled (v=9 in
the case s, p, and d orbitals), and the brackets denote a
simple configurational average (not a thermal or ensemble
average). The elements gk

'
are the top left, energy-

dependent matrix elements of a partial "Green-matrix":
the inverse of the kth principal submatrix of
(EI —Htj. . . tr ), where Htz. . .x. represents the Hamiltoni-
an corresponding to an IJ . K cluster of atoms at the
sites of the ECI, with arbitrary configuration elsewhere.
By kth principal submatrix, we mean the original matrix
with the first k-1 rows and columns eliminated. Each of
the partial Green-matrix elements are obtained by per-
forming recursion on the tight-binding LMTO Hamil-
tonian. Between 10 and 20 configurations are used in the
averaging of (3.5).

It is noteworthy that the average over all ternary
configurations is equivalent, in the thermodynamic limit,
to the average over all equiatomic configurations. Define
g to be the ratio of the number of configurations at a
composition specified by (c„,cz,cc) divided by the total
number of configurations, 3 . Using Stirling's approxi-
mation, q can be written as

I

no problem in extending these calculations to alloys
based on other parent lattices.

Total-energy calculations were performed for all the
constituents of the ternary systems including Ag, Pd, Rh,
V, and Ti, all in the fcc structure using the first-principles
method of linear muffin-tin orbitals in the atomic-sphere
approximation (LMTO-ASA), based on the local-
density approximation. ' The computations were per-
formed semirelativistically (including scalar relativistic
corrections, i.e., excluding spin-orbit terms), the
exchange-correlation potential of von Barth and Hedin
was used, and combined correction terms ' were in-
cluded. The basis set was composed of /=0, 1, and 2 or-
bitals. Convergence of the total energy with respect to
k-point sampling was well within 0.1 mRy/atom, with
the number of irreducible k points typically being 165.
The equilibrium volume for each pure metal was calculat-
ed by fitting the total-energy calculations to a cubic poly-
nomial in volume. For each alloy, the equiatomic volume
was obtained by assuming a linear variation with compo-
sition [for example, in Pd-Rh-V, the alloy volume used in
the calculations is given by

g= [3(c„)"(ct] ) (cc) ] (3.6) Q,q(Pd-Rh-V)= —,'[Q, (Pd)+Q, (Rh)+Q, (V)],
In the limit of X~~, g=1 if c„=e~=cc=

—,.and g=0
otherwise. Thus, we see that only equiatomic
configurations need be kept in the averaging procedure of
(3.5).

IV. COMPUTATION OF TERNARY ECI'S
AND FORMATION ENERGIES .

Any theory of ternary-alloy properties must, in the
limit of any of the concentrations going to zero, correctly
reduce to the corresponding binary alloy. Thus, we ex-
amine three ternary systems for which many of the
binary subsystems have been studied previously (using a
binory cluster expansion): Rh-V-Ti, Pd-Rh-V, and Ag-
Pd-Rh. With the exception of V-Ti, all possible binaries
formed from the two ternary systems, Rh-V-Ti and Pd-
Rh-V, have been examined previously ' ' using the
binary-DCA: Rh-V, Rh-Ti, Pd-V, and Pd-Rh. Note that
two of the ternary systems contain Rh-V binary alloys
and two contain Pd-Rh alloys. Also, only the case of
fcc-based alloys is treated, although, in principle, there is

where Q,q( A ) is the calculated equilibrium volume of A].
The pure element LMTO-ASA calculations were each
performed again at the alloy volume, and the LMTO
Hamiltonians were subsequently cast into the tight-
binding (TB) representation in two-center form using the
screening transformation of Andersen and co-
workers. ' ' Including the first-order terms of this for-
malism, the TB Hamiltonians have nonzero hopping in-
tegrals only between first- and second-NN pairs of atoms.
With these matrix elements, the self-consistent alloy
Hamiltonian was constructed as described in Sec. III. As
an example, the parameters used in the Pd-Rh-V calcula-
tions are shown in Table I. The self-consistent potentials,
5& and 5c, were calculated using configurational averages
of 20 randomly chosen, equiatomic configurations. A
basis set of s, p, and d orbitals and ten levels of recursion
(corresponding to 20 moments of the density of states)
were used throughout the calculations discussed in this
section and the recursion system size of 891 atoms was
chosen so as to give ten exact moments of the density of
states, and ten approximate moments.
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For Rh-V-Ti, ECI's were calculated for first- through
fourth-NN pairs on the fcc lattice, both in the Chebychev
basis (V„"}and pair-probability basis (W„). In each
basis, the same 12 randomly chosen equiatomic
configurations were used in the averaging process, and
the transformation of Eq. (2.15) was verified exactly
(within the numerical precision of the computations),
serving as a check to our calculations. The pair-
probability first- and second-NN pair interactions
( IIrRh-V IIrRh-Ti ~V-Ti IIrRh-V prRh-Ti a d ~v-Ti

)1 1 1 2 2 2

shown for the Rh-V-Ti system in Figs. 1(a) and 1(b) as a
function of the Fermi level. The first-NN EPI's [Fig.
1(a}] indicate a strong ordering tendency between Rh-V
pairs and Rh-Ti pairs, just as found both experimental-
ly ' and theoretically ' in the binary systems. V-Ti
pairs are indicated to have a very slight tendency towards
phase separation. (Experimentally, the V-Ti system
shows a weak phase separating tendency at low tempera-
tures, but this is for bcc-based solid solutions. ) Each of
the NN EPI's exhibits two zeros as a function of band
filling as is characteristic of the canonical d-band binary
transition-metal alloy Hamiltonian in the absence of off-

TABLE I. Matrix elements, potentials, and Fermi level (all in

Ry) of the alloy Hamiltonian for fcc equiatomic Pd-Rh-V. In-
tegrals corresponding to hoppings between like pairs of atoms
are given in Slater-Koster form for first- and second-nearest-
neighbor separations.

diagonal disorder. Of course, the computations in Fig. 1

include both oft'-diagonal disorder and s, p, and d orbitals.
The second-NN EPI's [Fig. 1(b)] are all smaller in magni-
tude, have more oscillations as a function of Fermi level,
and are of opposite sign from their NN counterparts.
Each of W2, W~" ', and Wz

' have magnitudes
smaller than 0.5 mRy/atom (without multiplicity) thus

suggesting that in the ternary case, as in the binary case,
the NN EPI's are mainly responsible for gross ordering
tendencies, as they dominate all other ECI's.

To investigate the convergence of the ternary energy
expansion of Eq. (2.4) more thoroughly, ECI's in the Che-
bychev basis were computed for four triplets in addition
to the four pairs mentioned above. Each of the triplets
contains two NN bonds, with the third leg of the triangle
being an nth NN bond, with n=1,4. For example, the
triplet ECI, V'&' corresponds to a triplet composed of
three NN bonds, while V4" indicates a linear triplet with

two NN bonds and one fourth-NN bond. In sum, this
corresponds to 28 ECI's for each system studied
(3X4=12 pair interactions and 4X4=16 triplet interac-
tions). In order for the cluster expansion to have any
chance at convergence, the ECI's must decrease to zero
in two instances: (1) As any of the points of a given clus-
ter is moved away from the other points, and (2) As the
number of points in the cluster increases. The calculated
ECI's are shown in Figs. 2(a), 2(b), and 2(c) for Rh-V-Ti,
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FIG. 1. Rh-V-Ti effective pair interactions, Wi, of Eq. (2.14)
for (a) nearest-neighbor pairs and (b) next-nearest-neighbor
pairs versus Fermi energy. The calculated Fermi level is shown
as a solid vertical line. 8'„"—solid curves; 8'„"'—short
dashed curves; 8'„'—long dashed curves.
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Pd-Rh-V, and Ag-Pd-Rh, respectively, and demonstrate
both these convergence properties. For all three systems,
the second-, third-, and fourth-NN EPI's are significantly
reduced as compared to the NN EPI, indicating an ex-

tremely rapid convergence of the expansion with respect
to separation of pairs. The EPI's have decayed practical-
ly to zero by the fourth-NN pair. Also, in each system,
the largest triplet ECI's are an order of magnitude small-

er than the largest pair interactions, thus demonstrating
the convergence of the expansion with respect to the se-

quence of pairs, triplets, quadruplets, etc. However, in
Rh-V-Ti and Ag-Pd-Rh, and to a lesser extent, in Pd-
Rh-V, the triplet interactions do not decay rapidly as the
third leg of the triplet goes from first-NN to fourth-NN
(n= 1 to n=4) As. seen in the binary cluster expansion,
the linear triplet corresponding to n=4 can be sizeable,
and we see the same effect here in the ternary cluster ex-

pansion. Also, in Rh-V-Ti, the triplet interaction V3'"'
is the largest of the interactions, which is especially
relevant when it is considered that the multiplicity of this
cluster is 24 (compared, for example, to m =6 for the

NN pair). We shall see below that although the triplet
interactions are relatively small in magnitude, they can,
when taken collectively, contribute significantly to the
formation energy of a given configuration.

It is interesting to note the amount of computational

labor involved in obtaining the sets of ECI's in Figs.
2(a) —2(c). The computations involve a two-step pro-
cedure: the self-consistency process (based on
configurationally averaged neutrality) followed by the
calculation of the ECI's. In the self-consistency calcula-
tions, local densities of states are calculated for N, =3
types of atoms, with each of these atoms having N„=9
orbitals. Configurational averages are made over

N, &=20 configurations and it typically takes N,. =10
iterations to obtain self-consistency. For the ECI calcula-
tions, we compute a large number (NE=28) of ECI's,
each of which contains many terms (an average of ap-
proximately N, =30). There are again N„=9orbitals to
be "peeled" and the configurational averages are made
over a conservative N, 2=10 configurations. Thus, the to-
tal number of Green-function matrix elements which are
required for each ternary system to be studied is given by
the sum of the self-consistency calculation and the ECI
calculation: N, XN ~N, &

~N;+NE XN, XN XN, 2

=85000 matrix elements, each of which is computed us-

ing ten levels of recursion on a 1000-atom cluster. (The
preceding estimate ignores the computational cost of the
total-energy LMTO-ASA calculations used to obtain the
pure element Hamiltonian matrix elements, although
these computations are relatively cost free. ) Additional-

ly, because each of the 85 000 Green-function matrix ele-
ments are computed independently of one another, these
calculations are ideally suited for implementation on a
massively parallel computer architecture. Thus, it is
clear that these ternary calculations are quickly ap-
proaching the limitations of current computational
resources, and extensions to quaternary and higher-order
multicomponent systems, although relatively straightfor-
ward in principle, could prove to be intractable in prac-
tice.

The versatility of the cluster expansion is made mani-
fest in considering the formation energy of the complete-
ly disordered state. The energy of the disordered state is
computed on an equal footing with the ordered states,
and the form of the energy in terms of the concentrations
of A and C atoms is given by combining Eqs. (2.7), (2.8),
and the cluster functions of the completely disordered
state, which are completely uncorrelated (for example,
c, (12)—@(1)@(2)

)

For a binary cluster expansion, clusters with an even
(odd) number of points have cluster functions that are
even (odd) about equiatomic concentration. Consequent-
ly, triplet and other odd-body interactions do not contrib-
ute to the binary equiatomic formation energies as the
corresponding cluster functions have a node at c =

—,'.
Thus, if only EPI's are kept in the expansion, the result-
ing formation energies would be completely symmetric
about c =

—,', with triplet (and/or other odd-body) interac-
tions being responsible for any asymmetries. It is of in-
terest to extend this sort of analysis to ternary systems. If
we define the function y" as the cluster functions of the
Chebychev basis corresponding to the completely disor-
dered state minus the composition weighted average of
the cluster functions of the pure elements, then the for-
mation energy of the completely random state may be
written as



8634 C. WOLVERTON AND D. de FONTAINE 49

~EFQRM
a (s)

(4.1)

In Fig. 3, we show the seven functions, y", for all dis-
tinct values of (s) corresponding to pairs and triplets.
Linear combinations of these seven functions make up
EEFo„Mof the completely disordered state. In a ternary
system, the two-dimensional composition space is usually
shown in the form of a Gibbs triangle. The vertices of
the triangle represent the three pure elements, and the
sides of the triangle indicate the three binary systems.
Several features of Fig. 3 are noteworthy: (1) The func-
tion y'"' has a nonzero contribution primarily for com-
positions near the binary A-C edge of the Gibbs triangle,
consistent with the observation that V„'"'( ~ W„" ) is an
ECI with the same form as the binary A-C EPI [see Eqs.
(2.6) and (2.15)]. (2) In the binary cluster expansion, for-
mation energies are completely symmetric about equi-
atomic compositions when only pair functions are con-
sidered. However, the ternary pair function, g" ', is odd
near the A-C binary edge, and thus any V" '%0 will re-
sult in formation energies of pseudobinary A, C, , alloys
(with small additions of B) which are asymmetric about
c =

—,'. (3) All functions tp" for which there are an even

(odd) number of functions of type 1 in (s) are even (odd)
under the transformation (A, B,C)~(C,B, A). This is

simply due to the fact that 4"' and 4' ' are odd and
even under this transformation, respectively, and g" in-
volve products of 4 '" and 4 ' '. (4) Again, in contrast to

the binary cluster expansion, there is no composition
(other than the trivial case of the pure elements) for
which every triplet function y" has a node. (5) The func-
tions y" themselves do not decrease in magnitude as one
goes from pairs to triplets, etc. Thus, the convergence of
the expansion lies solely in the properties of the ECI's,
and not in the basis functions.

By combining the calculated ECI's of Fig. 2(a) with the
cluster functions of Fig. 3, the formation energies of the
completely random state are plotted in Fig. 4 for the Rh-
V-Ti system using first only the 12 calculated pair in-
teractions of the Chebychev basis, and then the complete
set of 28 calculated pair and triplet ECI's. From Fig. 4, it
is clear that the formation energies of binary Rh-Ti and
Rh-V alloys are negative, indicative of ordering alloys,
while the V-Ti binary exhibits very small, positive forma-
tion energies, indicating a very weak phase-separating
tendency. These tendencies of ordering/phase separation
are exactly those inferred from the NN EPI's of Fig. 1(a),
again indicating that the qualitative ordering e8ects are
dictated by the NN EPI. The signs of the NN EPI's, and
consequently, the formation energies, are such as to place
the Rh-V- Ti system in category II of Meirjering s
classification of ternary systems. ' The efFect of the trip-
let ECI's is clearly seen from Fig. 4(b), and while these
multiplet interactions do not change qualitatively the or-
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FIG. 4. Formation energies of completely disordered Rh-V-
Ti alloys calculated from the ternary cluster expansion using (a)
the 12 effective pair interactions of Fig. 2(a) and (b) all 28 calcu-
lated effective pair and triplet interactions.
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dering tendencies, they do have a quantitative effect and
serve to provide negative contributions to the formation
energies of Rh-rich alloys.

The formation energies of disordered Pd-Rh-V alloys
are shown in Figs. 5(a) and 5(b). As in Fig. 4, the forma-
tion energies are plotted both with [Fig. 5(b)] and without
[Fig. 5(a)] triplet ECI's in the cluster expansion. As was
the case in Rh-V-Ti, the Pd-Rh-V system exhibits two or-
dering binaries —Pd-V and Rh-V —and one weakly
phase-separating binary —Pd-Rh, again placing the
Pd-Rh-V system in category II of Meirjering's
classification of ternary systems. There is a thin strip of
positive formation energies along the Pd-Rh binary edge,
but with small additions of V to these binary alloys, the
formation energy becomes negative. This, however, does
not imply that an ordering tendency develops between Pd
and Rh pairs, but rather that Pd-Rh alloys with small ad-
ditions of V energetically prefer ordering to complete
phase separation. However, from the negative curvature
of the energy parallel to the Pd-Rh edge, we expect an in-
stability toward phase separation into Pd-rich and Rh-
rich (possibly ordered) solutions. ' ' The triplet in-
teractions in this system again do not dramatically
change the ordering characteristics of the system, but do
tend to add positive contributions to the formation ener-
gies, particularly for V-rich alloys.

The formation energies of disordered Ag-Pd-Rh alloys
are shown in Fig. 6. All formation energies are positive
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Fig. 2(c).

throughout the Gibbs triangle, indicating that this alloy
falls into class IV of Meirjering's ternary classification
scheme. The binary Ag-Rh alloys have large, positive
formation energies, consistent with the experimental
phase diagram which shows this binary to be phase
separating up to the melting points of both constituents.
The results of Fig. 6 also show the Pd-Rh and Ag-Pd
binary systems to have much weaker phase-separating
tendencies. Again, the experimental evidence supports
the predicted ordering tendencies, as Pd-Rh is observed
to phase separate only at temperatures below 845'C,
which is also supported by a variety of previous binary-
alloy calculations, ' while the experimental data for
Ag-Pd down to 900'C indicate complete miscibility. The
formation energies of Ag-Pd-Rh have a striking sirnilari-
ty to the function g'"' of Fig. 3, which is consistent with
the fact that V&" dominates all other pair and triplet
ECI's in this system. The contribution to the formation
energies from triplet ECI s is negligible in Ag-Pd-Rh.

In Figs. 7(a) and 7(b), we show specifically the contri-
bution of the triplet interactions to the formation ener-
gies of disordered Rh-V-Ti and Pd-Rh-V alloys. As was
already mentioned, the qualitative effects of the triplets
are to add negative terms to the formation energies of
Rh-rich Rh-V-Ti alloys and positive terms to V-rich
Pd-Rh-V alloys. However, from Fig. 7 we see quantita-
tively that the triplet ECI*s may be responsible for as
much as 100 meV/atom of the formation energy ( -7—8
mRy/atom), and thus are absolutely essential to obtain a
converged ternary cluster expansion for these two alloys.

The results in Fig. 7 might cause one to worry that the
quadruplet ECI's may also be quantitatively important
(although, presumably less important than the triplets).
For binary cluster expansions, it has been shown that the
quadruplet interactions are typically an order of magni-
tude less than the triplet ECI's, and thus, there is again
good reason to expect them to be small in the ternary
cluster expansion. To check some of these suppositions,
we have compared directly in Table II the formation en-
ergies of equiatomic disordered binary alloys using both
binary and ternary cluster expansions. For instance, the
formation energies of a Rhp 5pVp 5p alloy have been corn-
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puted using three sets of completely independent ECI's:
(1) the ECI's of Ref. 4, calculated from the Rh-V binary
cluster expansion, (2) the ternary ECI's calculated for the
Rh-V-Ti system shown in Fig. 2(a), and (3) the ternary
ECI's calculated for the Pd-Rh-V system shown in Fig.
2(b). (It is interesting to keep in mind that in the
configurational averaging process, these three sets of
ECI's are averaged over configurations at compositions
Rhp, pVp, p, Rhp»3Vp»3Tip 3», and Pdp 3»Rhp», Vp»3.
It is only the basis functions of the expansion which yield
the correct linear combinations of the ECI's so as to ac-
curately describe Rhp SpVp 5p alloys. ) The formation ener-

gies computed from these three sets of ECI's all agree to
within 40 meV/atom (3 mRy/atom, or approximately
10% of the total formation energy), and the formation
energies from the two ternary cluster expansions agree
within 10 meV/atom (less than 1 mRy/atom). Similar
comparisons for Rhp 5pTip 5p Pdp 5pVp 5p and Pdp 5pRhp 5p

are likewise encouraging, with agreement being between
0 and 10%. For the Pd-Rh system, we also present com-
parison of the ternary cluster expansion results with two
other distinct methods of obtaining the formation ener-
gies of disordered binary compounds: (1) the results ob-
tained in Ref. 33, in which the authors use a combination
of fully relaxed, scalar-relativistic linearized augmented-
plane-wave (LAPW) calculations for ordered structures,
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TABLE II. Formation energies of completely disordered
equiatomic binary fcc alloys, computed from the binary and ter-
nary cluster expansions. The formation energies of the ternary
cluster expansions were calculated using the Chebychev basis.

Alloy

Rho. soVo. so

Cluster expansion type
(system)

Binary (Rh-V)
Ternary (Rh-V-Ti)
Ternary (Pd-Rh-V)

AEF«M (meV/atom)

—360'
—320
—330

Rhp spTlp so Binary (Rh-Ti)
Ternary (Rh-V-Ti)

—450'
—460

Pdo. soVo. so Binary (Pd-V)
Ternary (Pd-Rh-V)

—350'
—310

Pdo. soRho. so Binary (Pd-Rh)
Binary (Pd-Rh)

Ternary (Pd-Rh-V)
Ternary (Ag-Pd-Rh)

+80b
+60'
+80
+60

Pdp 7sRhp 2s Binary (Pd-Rh)
Binary (Pd-Rh)

Ternary (Pd-Rh-V)
Ternary (Ag-Pd-Rh)

+60b
+60
+60
+50

'Reference 4—DCA (TB-LMTO).
Reference 22—DCA (TB-LMTO).

'Reference 33—Connolly-Williams method (LAPW).
Reference 35—KKR-CPA.

along with the Connolly-Williams method for extracting
the binary ECI's and (2) the calculations reported in Ref.
35, in which the Korringa-Kohn-Rostoker implementa-
tion of the coherent-potential approximation (KKR-
CPA) was used to directly compute the self-consistent to-
tal formation energies of disordered Pd-Rh alloys. The
comparison of the formation energies computed in this
work with those of fully self-consistent total-energy com-
putations leads to the conclusions that the ternary-alloy
potentials have been accurately determined in the DCA
computations, and that the one-electron energies provide
a good quantitative description of formation energies for
the alloys considered here. These comparisons are also a
good indication that both the binary and ternary cluster
expansions are well converged within pair, triplet, and, in
the case of the binary cluster expansion, quadruplet
ECI's.

V. SUMMARY AND CONCLUSIONS

The cluster expansion of alloy properties is extendable
to multicomponent systems. In this paper, we have con-
sidered the case of ternary alloys and shown there are
several possible choices for the basis functions of the ex-
pansion. In defining a complete set of functions in the
space of all 3 configurations of a system of N points, we
have (in the main body of the text and Appendix A to fol-
low) examined five possible basis sets, each with its own
advantages and disadvantages. (1) The Chebychev basis is
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an orthonormal and complete set of functions, but it may
be numerically disadvantageous in certain situations be-
cause the orbit-averaged cluster functions are noninteger,
oftentimes irrational numbers. The orthonormal charac-
teristic of the basis leads to cluster expansion coefficients
(ECI's, in the case of the energy expansion) which are
easily defined for any cluster of lattice sites, but the ECI's
are not physically very transparent. For calculations of
the ECI's, the exact definitions are crucial when using the
method of DCA, since the idea of this method is to corn-
pute the ECI's as closely as possible from their definition.
Thus, the Chebychev polynomials provide a distinct ad-
vantage when used in conjunction with the DCA. How-
ever, if one uses other techniques, the advantages or
disadvantages of the Chebychev basis may be unimpor-
tant. For instance, in the method of Connolly and Vhlli-
ams, ' the ECI's are treated essentially as fitting parame-
ters, thus the definition of the ECI's is really of no conse-
quence, and any complete basis may be used equally well.
(2) The cluster probability basis was examined in the re-
stricted case of only pair probabilities, and consequently,
only pair interactions in the expansion. The EPI's in this
basis have the same form as in the binary-alloy case, with
the exception that the configurational averaging is over
ternary configurations. Thus, the EPI's in the pair-
probability basis are physically transparent in that the or-
dering or phase-separating tendencies between a pair of
I-J atoms may often be determined simply from the sign
of the NN EPI between I-J pairs. However, the cluster
probability basis is not orthonormal, and thus, obtaining
the exact definitions of the ECI's is nontrivial. In order
to write a closed form expression for the ECI's in this
nonorthogonal basis, one must write the expressions for
the ECI's in an orthogonal basis (such as the Chebychev
basis), and then project the nonorthogonal functions onto
the orthogonal basis, thereby obtaining the linear com-
binations of the orthogonal expansion coefficients that
serve to make up the ECI's of the nonorthogonal basis.
In addition to the two sets of basis functions described in
the main text, three more bases are considered in Appen-
dix A: (3) The 1-o-cr basis is another nonorthogonal
basis which may, however, be numerically appealing due
to the fact that the cluster functions are integers. (4) The
complex basis formed from the cubic roots of unity has
the desirable property that the permutations of ( A, B,C)
may be easily obtained by a combination of complex con-
jugations and rotations in the complex plane. However,
it is seen in Appendix A that this basis is entirely
equivalent to the Chebychev basis, and thus the complex
basis offers no real practical advantage over the Cheby-
chev polynomials. Additionally, the cluster functions
and expansion coefficients of the cubic-roots-of-unity
basis are complex quantities, and are consequently not
physically transparent, to say the least. (5) The ternary
orthonormal basis functions with a trace over
configurations restricted to a given composition are also
given in Appendix A. The advantages and disadvantages
of each of these five bases of functions may or may not be
important when attempting to use a given electronic-
structure or statistical-mechanics technique. Therefore,
it is to a certain extent a matter of choice as to which
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APPENDIX A: ALTERNATE TERNARY
BASIS FUNCTIONS

1. {1,cr;,o; j

The set of the first three polynomials of o;

P„(o;)=o,". ; n =0, 1,2 (A1)

forms a basis of functions for the point variable cr, . The
functions P„(o,) are neither normalized nor orthogonal
[with the definition (r„,r~, rc)=(+1,0, —1)], but they
are complete in the sense that the Chebychev polynomi-
als (a complete basis) may be expressed as linear combina-
tions of P„:

basis is applicable for a given problem. Also, it has been
shown here how one may transform the ECI's of each
basis into any of the others, and thus, it may prove to be
useful to solve certain aspects of a ternary problem in one
basis, and other aspects in a different basis.

In using the DCA, we have seen how either the pair
probability or Chebychev bases may be used effectively
when considering pair interactions only, and when ex-
tending to multiplet interactions, the Chebychev interac-
tions have been used to compute the formation energies
of disordered configurations for Rh-U-Ti, Pd-Rh-V, and
Ag-Pd-Rh alloys. The stability analysis of the ternary
systems shows that the sign of the formation energy is
not sufficient for correctly predicting the stability of these
alloys, but rather one must also consider the curvature of
the formation energies with respect to each of the in-
dependent compositions. To check the convergence of
the cluster expansion, the binary formation energies com-
puted from the ternary ECI's were checked against those
obtained from binary cluster expansions. A good agree-
ment was found between the results of the binary and ter-
nary cluster expansions, indicating a rapid convergence
of the expansion with only pair and triplet figures. The
convergence does not come cheaply, however: It was
necessary to retain 28 ternary ECI's in the expansion to
recover binary formation energies in quantitative agree-
ment with the binary cluster expansion. It is anticipated
that both these types of qualitative and quantitative anal-
yses based on ternary cluster expansions should provide a
useful bridge between theory and experiment, and should
serve as a guide to alloy designers.
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0 &3/2

&Z 0 3

2
e2

i

(A2)

that the convergence of the ECI's, X" is less rapid than
V" of the Chebychev basis.

2. Complex basis (cubic roots of unity)

or, in matrix notation, 0= AP. The functions P„(o;)
may be advantageous in numerically intensive calcula-
tions due to the fact that these functions are always in-

teger, whereas the same is not true of the Chebychev po-
lynomials.

Products of (Al} yield the corresponding cluster func-
tions

(S) Si S2
~ ~ ~

Si—O, 02 Oi
i

(A3}

and so the cluster expansion in the basis of (A3) has the
form

E(o)=y ym. X' r.",
a (s)

(A4)

X"=c (s)V"+ g p& g d (s,s') Vp ',
pCa a (s')

(A5)

where the first summation on the right-hand side is over
all clusters p which contain a. p,&

is the number of sub-

clusters a in p and the constants c(s) and d (s,s') are
determined from the tensor products of A with itself.
c (s) has the simple form

c (s)= (&3/2) ' (A6)
2

where n, ~zi is the number of ones (twos) in (s). Specific
values of d(s, s') are given in Table III for the case of
EPI's renormalized by triplet terms. For the renorrnal-
ization of a by P, let (s') =(s'„sz,. . . , st&i ) and

(s)=(s„sz,. . . , si i). Then, d(s, s')=0 unless s =s;
(i =l, ~ai) and s,.'=2 (i =ia~+l, ipse). It is also impor-
tant to note that c(s) and d(s, s') do not decay with in-
creasing ~a

~
and ~pi, but rather grow. It is possible then

TABLE III. The coefficients d(s, s') for renormalization of
Eq. (A5) of pair interactions by triplets.

where the sum over (s) is all values of (s) on a for which
s, AO; i =1,2, . . . , ia~. m is the multiplicity of a and I
is the orbit average of I . X" are the coefficients in the
cluster expansion (the ECI's in the I basis) but are not
given by ( I",E ) due to the nonorthogonality of I . The
Chebychev polynomial cluster functions of Eq. (2.3) may
be written in terms of I"by forming tensor products of
Eq. (A2). Then, by equating (2.4} and (A4) term for term,
the following relation between the ECI's V" and X" is

found:

(f(o),g(o))= „gf(o)'g(o) .
1

IO I

(A7)

The set of functions I l,cr;,o;I is already orthonormal
with respect to (A7) when the complex domain is used, so
no further manipulation is needed. Also, because

o; =o,', the basis of point functions is simply I l,o;,o; I.
Products of the point functions form the complex cluster
functions A" with the values s; =0,1,2 corresponding to
1,rr;, cr,', respectively. The energy is expanded (after orbit
averaging) as

E(o )=Re g g m~ Y~'A"
a (s)

(AS)

and due to orthonormality the ECI's, Y",are given by

Y"=(A",E(o)) . (A9}

For the complex effective pair interactions Y„",the
definition is given explicitly by the inner product of (A9)
and may be compared with the definitions of the pair-
probability-basis EPI's, W„.After some algebra, one
finds the following relation:

n

2
Y{12)

n

Y{22)
n

i&3
4

—2 1+
4

1 1

i&3—2 1—
4

WAB
n

WBc
n

WAc
n

(A10}

Consider choosing for the domain of o.;, the cubic
roots of unity, i.e., (r„,~s, ~c ) = (co, 1,co* ), where
co=exp(2mi/3). In the complex plane, the values of cr,
fall on the vertices of an equilateral triangle cir-
curnscribed in the unit circle. All the six permutations of
the type (A,B,C)~(B,A, C) follow then easily from the
point-group operations of the equilateral triangle (or the
permutation group of order 3). For example, the permu-
tation (A, B,C)~(B,A, C) would be accomplished by a
rotation of 2~/3 followed by complex conjugation and
then a rotation of —2n. /3. It is due to the conceptual
simplicity of the transformation properties that one
would wish to define a complex basis with the spin vari-
ables being given by the cubic roots of unity. We wish to
define an orthonorrnal complex basis of functions in the
space of all ternary configurations, and thus generalize
the inner product of f (o ) and g (o') as

(s')

(111)
(112)
(122)
(222)

0
3/&2
0
0

(s)
(12)

0
0

0

(22)

0
0
0

27/&2

The three complex EPI's would generally contain six in-

dependent pieces of information through the real and
imaginary parts. However, the information contained in
Y„"is equivalent to the three independent interactions
W„because of the three constraints imposed by
Y„'"'=Y„'z' and Im( Y„"z')=0.Also, from the resulting
transformations of Eqs. (2.15), (A5), and (A10), it is ap-
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parent that the Chebychev, pair-probability, j l,o;,o,. ]
and complex-basis EPI's all contain the same information
and it is possible to transform interactions calculated in

any one of these bases into any of the others.
It is simple to verify that the complex basis is, in fact,

equivalent to the Chebychev basis. Denote the complex
spin variable by 0,. which takes on the values (co, l, co')
and the real spin variable cr,. which has the domain

(+1,0, —1). By inspection, the following relationship ex-
ists between the Chebychev polynomials and cubic roots
of unity:

82(o; )= —Re(cr, ); 8)(o; )= —Im(o, )
1 1

(Al 1)

and thus the complex basis [ i,cr;,o,"] with o = (to, 1,to' }
is completely equivalent to the basis I l,y(o;},y*(o',. )]
with o, =(+1,0, —1), where y(o; }is defined as

y(0, ) =&2[82(o;)+i8&(a; ) ] . (A12)

In the Chebychev basis, the desirable transformation
properties of the complex basis may be obtained by form-
ing the complex function y, taking tensor products of y if
necessary to obtain cluster functions, transform these
new cluster functions in the complex plane according to
the point-group operations of the equilateral triangle, and
then return to the Chebychev polynomials by taking the
real and imaginary parts of (A12). Thus, the complex
basis o6'ers no real practical advantage over the Cheby-
chev basis in the ternary alloy problem as either may be
easily transformed under permutations of ( A, B,C).

3. Composition-dependent

ternary basis functions and ECI's

For the binary cluster expansion, it has been shown
that ' basis functions may be defined which are ortho-
normal and complete (in the thermodynamic limit,
N~ao) with respect to an inner product which traces
over all configurations of a system at a fixed composition.
Generalizing to the ternary case gives the following re-
stricted inner product:

(f( ) g( ))= 1

PO(CA, CB,CC }

cA, cB,cC

f (o')g(o),
Ioj

(A13)

where the summation is for a fixed value of c&, cz, and

cc, and po is given by

+1
(c„N)!(cN)!(c N)!

(A14)

8((o;)= (o;—o ),1

—2

8 (~ }= [o cr —ri(o——o)]1

(A15)

where we have defined

p — [(~M}2 p 2]
0' 0

(A16)

with o =(l,o ) and o =(l,o2), both defined with
respect to the restricted inner product of (A13). It should
be noted that at equiatomic composition, 0.=0 and
o~= —'„and the functions of (A15) reduce precisely to the
Chebychev polynomials of Eq. (2.2), which must be true,
since in the thermodynamic limit, a trace over all ternary
configurations is equivalent to a restricted trace over all
configurations at equiatomic composition. By forming
products of the point functions of (A15), one forms a
composition-dependent basis of cluster functions, and
hence one can write an energy expansion in which the
ternary ECI's are explicitly composition dependent.

Starting with the set of functions I l,a „o2] where tr; has
the domain (+ 1,0,—1), the Gram-Schmidt process gives
the following orthonormal functions of point variable o;:

80(o; )=1,

APPENDIX B: TRIPLET ECI'S IN THE CHEBYCHEV BASIS

The definition of the ECI s in the Chebychev basis is given for a general cluster in Eq. (2.5). For a general cluster of
three points, there are eight distinct ECI's corresponding to (s) =(111),(112), (121), (211), (122), (212), (221), and (222),
at least four of which are distinct. The ECI's corresponding to (s)=(111)and (222) are given by

y(222)
n

)g 3~2(EAAA EAAC EACA ECAA +EACC+ECAC+ECCA ECCC )

( E„„„+2E„A—B E„„c+2E„B„—4E„BB+2E„BC—
108

—Egg~ +2E~~~ —Eq~~+ 2E~~ ~
—4E~~~ +2E~~~ —4E

+8E~~~ —4E~~~+ 2EscA 4E~c~ +2E~g~ —Eg~ q +2Egq~

EcAc +2EcBA 4EcBB+2EcBc EccA +2EccB Eccc }

(B1)

where EIJz is the average energy of all ternary configurations containing an IJK triplet of atoms at the specified sites.
We also give the explicit definitions for V„"' and P„'
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3V~' »=Vt" '+V'" "+V„'"'= (3Eq„q+2E„q~+2Eqsq+2Eqq„
36

+Ea ~c+Eaca +Eca a
—2E~CB —2EB~C —2ECBA

—2E~BC 2EC~B —2EBC~ +E~~c+E„c~+Eca ~

+Eacc+Ec~c+Ecc~ +2Ecca+2Ecac+2Eacc 3Eccc} (B2)

and

3V'„"=V„' "+V„' ' '+ V„" '= —(3E„„„4Eq—„a 4E—„~„4Eq—
„„54 2

+E~~c+E~c„+Ec„~+4EBB„+4EB„B+4E&BB

+4EBcc+4EcBc 4ECC~ 4EC~C —4E~CC EBBc

Etc—~ Ec~s+—4EccB 3Eccc } .

pxphcit formulas for other ECI's [e.g., V„"''] may be similarly obtained from (2.5).

(&3)

APPENDIX C: GENERAL CANCELLATION THEOREM
FOR MULTICOMPONENT ECI'S

multicomponent alloys, we define the coefficients in terms
of the cluster notation. For the binary case, there are
only two cluster functions,

1. Defining some terms for the binary case
8' '(0 )=1' 8'"(0 )=0 (C3)

The basic idea of the cancellation theorem is that we
wish to show that the coefficients in front of the ECI's
"balance. " For instance, in the case of binary pair in-
teractions, the EPI is given by the familiar form

V~"' =—,
' [E„„+EaaE„~ Es„—],— (Cl)

where a represents the cluster (a pair of atoms in this
case) and the quantities Ezz are the usual averaged "clus-
ter energies. " The vector (s) is superfluous in the binary
cluster expansion, however, it is included here explicitly,
as the generalization to multicomponent cluster expan-
sions will be made below. From the definition in Eq.
(Cl), the number of A atoms in the definition may be
"counted" in the following way: For each of the terms in
the definition of the EPI, a sum is formed of the
coefficients of the cluster energies which contain an A
atom in the first site, and the coefficients of the cluster en-
ergies which contain an A atom at the second site. To be
extremely explicit, this summed coefficient N""(A ) is

N.'"'( A }= [-,'+o —,—o]+[-,'+o —o—,]=o, (C2)

where the first four bracketed terms are the coefficients of
Fq. (Cl) for an A atom in the first position, while the
second four terms are the coefficients corresponding to an
A atom being in the second position of the pair. Because
both N""(A) and N'"'(B) are zero [which, of course,
may be trivially verified from (Cl)], there is a cancellation
of terms in the pair interaction for the binary case, which
was well known anyway. It is also interesting to note
that in Eq. (C2) each of the brackets vanishes indepen-
dently of the other. Thus, there is a cancellation of A
atoms on site 1 and also on site 2. This property of can-
cellation individually on each site (or any subcluster) will
also be seen below to be a general consequence of the
orthonorrnal basis functions.

Because we wish to generalize this type of argument to

where the point variable e; takes on two values + 1 ( —1)
corresponding to whether an A or B atom is at the site
specified by i. As shown in Ref. 8, the functions of (C3)
obey the following orthogonality relation:

0" ' (cr)0' ' (o.}=5 (C4)

for any s, and sz =0,1.
For a system of N sites, the definition of the binary pair

interactions between sites 1 and 2 is given by

V'"'= g 0""'(cr )0'"'(u )E(cr)
1

(a]
(C5)

which we may write as

+],
V '~ =— g 8~ ~(, )8~'~( )E

cr o = —11' 2

(C6)

where the cluster energy E& & is defined above and I,
1 2

and Iz are either A or B depending on the occupation of
sites 1 and 2, respectively. When all four terms of the
summation of Eq. (C6) are explicitly written out, one re-
covers Eq. (Cl), thus Eq. (C6} is just a "shorthand" way
of writing down the cluster interactions. Now, an expres-
sion for N""(I) may be written explicitly for the case of
a representing a pair of sites, 1 and 2, and I being either
A or B. Also, for notational convenience, write
8"(A, )=8~'(cr =+1) and 8"(B,)=8"(o,= —1).
In general, this is denoted 0"(I,) and I& can be either A

or B. With this notation, then, the coefficient N""(I) is

given by
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1 +1
N() ) ) (I)— P() )(I ) y P() )( )

+1
+ O"'(I ) y. 8")(a )1

ol= —1

2. General cancellation theorem
for multicomponent systems

Consider an alloy system with M components. Then,
there are M basis functions 0"with 0 s ~M —1. The
basis functions are assumed to satisfy a generalization of
the orthonormality relation of Eq. (C4):

=—[8("(I))5) ()+8"'(I2)5) () J =0, (C7)
1 g 0" ((7 )0" (0') —5 (C8)

where, in the second step, we have used Eq. (C4}, the
orthonormality condition between 8'" and 8' '= 1.
Thus, the summed coeScient is zero, as seen above, and
the cancellation for the pair interactions is satisfied for
the binary case. Again, in Eq. (C7), it is seen that the first
bracketed term vanishes as does the second, implying
that the cancellation is not only complete, but also occurs
on each individual site (e.g. , there will be no terms like
[Ezs Esz], w—hich would satisfy the cancellation in
whole, but not on each individual site).

where the summation over 0. takes on all of the M values
of the spin variables in the M component case. Now, for
a given cluster, a=(o ),o 2, , o'~, ~), « lal points (with

l
a

l

& 2) and a given vector of basis functions,
(s}=(s„s2,. . . , s~, ~), with 1&s; ~M —1 for all i, the
ECI is given by (note that s, AO for all i, because any
s;=0 would give the cluster interaction for the cluster
a —i which has already been counted in the cluster ex-
pansion sum over a):

y(s) 1

2) ~ ~ ~ S

8 ' ((r )8 ' (o ) 8 '(o )E(s& ) (s&) (s )
(C9)

And, the summed coefficient is given by a generalization of Eq. (C7):

(. )N"(I)=
I I

~ 8 ' (I;}
i=1 ~~lal

Acr,.

(s& ) (s&) (s 1)[8 ' (0,}8 ' ((r2} 8 ' ' (o, , }

( i+1) (s )X8 ' '(o } 8 ''(0 }] (C10)

which can be rewritten as

I~1 (, )N" (I)= g 8 ' (I )
i=1 &)&&2& ~ ~ ~

& &)

%0, , 0 .

(s& ) (s2) (san+ i) (s 1)[0" (CT )0" (0'2) ' ' ' 0 (a( ))8 ((r)+)) ' ' ' 8 (gj ))

X8 '"(cr ). . . 8 (.i(&i i)]X" '«'(s.+)) (s ) (s )

0' ~

(Cl 1)

Each of the terms in Eq. (Cl 1) contains the following factor:

+8 ' ((r.)=5 =0 (C12)

which vanishes by Eq. (C8) because s.AO for all j. Thus, we have proved the following result:

N" (I}=0 (C13)
independent of I, a (provided lal 2), (s},or M. Thus, the cancellation holds for an arbitrary ECI in an arbitrary mul-
ticomponent system. Also, because the sum in Eq. (C10) vanishes independently for every value of i, this general can-
cellation theorem also holds for summed coeScients on each site, or on each subcluster of a. The orthonormality of the
basis functions (C8) is not necessary for the proof, only the much weaker condition of (C12}that each of the basis func-
tions be orthogonal to unity (or, equivalently, the sum of the values of each basis function over its domain must be
zero). Note that in the [ l,o;,cr, ]ternary basis o.f Appendix A, the function cr, is not ortho. gonal to unity, and thus, the
ECI's in this basis are not written as closed form expressions, but rather as an infinite sum of ECI's which are defined
with respect to an orthogonal basis, as in Eq. (A5).
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