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The spin-lattice interaction for Mn + ions as substitutional impurities in CaCO& has been studied by
electron-paramagnetic-resonance (EPR) experiments in crystals under externally applied uniaxial
stresses. The shifts of the EPR lines of Mn2+ were measured as a function of the stress applied along the
three different directions that accept uniaxial forces in this crystal. The values of six second-order spin-
lattice coefficients for the Mn + site were obtained from the data. We also obtained two conditions relat-
ing linear combinations of the other four second-order coefficients. Contributions to the spin-lattice in-
teraction of terms of fourth order in the effective spin have been detected. Our results are used to discuss
the effect on the EPR spectrum of the different distortions of the carbonate ions surrounding the Mn +.

I. INTRODUCTION

Homogeneous static stresses applied to a single crystal
may be represented by a tensor X and cause strains in the
crystal; these strains are canonically represented by the
tensor e. Both tensors are related by the stiffness
coefficient, which is a fourth-order tensor. The relation-
ship is expressed as':

sij p ~ijklxkl
&~J~
k, 1

Stresses (strains) modify the crystal field in the site of
magnetic atoms contained in the crystal. When the ap-
plied stresses are small, we can write the spin-lattice in-
teraction as

or

JV = y G'" ~ "'s& [0'" "'(S)]', (3)
7

n, i,a

where the C,'"'~ &' are the nth-order spin-lattice
coefficients related to stress, and the 6 "'&'&' are those re-
lated to strain, corresponding to the ith irreducible repre-
sentation of the point group of the ion. The Ef, X,
and 0 "'~'(S) are linear combinations of strain com-
ponents, stresses, and nth-order spin operators, respec-
tively, transforming as the basis of the ith irreducible rep-
resentation.

Most of the measurements of spin-lattice
coefficients ' have been performed for paramagnetic
ions in sites of cubic symmetry, mainly because the num-
ber of those coeScients decrease for higher symmetries,
and the experiments required for their obtention are
simpler. However, studies of ions in lower-symmetry

sites, provide wider information about the spin-lattice in-
teraction, and then, they give more chances to test the
theory. We published earlier' a preliminary study of the
spin-lattice interaction of Mn + in CaCO&, where we re-
ported experiments with the stress applied along the c
axis of the crystal. From those experiments, and using
complementary published data, ' we evaluated two of the
spin-lattice coefficients. Those results, together with the
zero-field splitting parameter D of Mn + in calcite were
used by Yu and Zhao' as an effective way to decide the
relative importance of the various mechanisms contribut-
ing to the zero-field splitting.

We report here a comprehensive study of Mn + in
CaCO& under uniaxial stress. We applied stress in the
three directions (parallel to the c axis, to a cleavage plane,
and to a cleavage edge) where calctte accepts high
stresses, obtaining six second-order spin-lattice
coefficients, and two conditions relating the other four.
We use the obtained data to analyze changes in the prop-
erties of the Mn + spectra when displacements of the
CO3 ions surrounding the Mn + occur.

II. THE SPIN-LATTICE HAMILTONIAN
FOR Mn + IN CaCO&

The electron-paramagnetic-resonance (EPR) spectrum
of Mn + in CaCO& has been studied by many authors and
it is now well understood. ' ' *'

The crystallographic properties of calcite are well
known and were studied elsewhere. ' ' ' The unit cell is
shown in Fig. 1. It contains two inequivalent sites for
Ca +, where Mn + substitutes Ca + with equal probabili-
ty. The point symmetry group for Ca (Mn +) is S6
(C3;). We choose a set of orthogonal Cartesian coordi-
nates xcyczc shown in the same figure, as a reference
frame for our Hamiltonians and experiments. It is im-
portant to note that the yz axis in our reference frame is
along the Cz symmetry axis.
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As Mn + has a S5&2 ground state, the main contribu-
tion to the energy of its levels in our experiments is the
Zeeman interaction. We assumed that eigenstates of S„
when z is parallel to the magnetic-field direction, are
good zeroth-order eigenstates for our perturbation treat-
ment, which takes into account the crystal field and the
small changes generated in it by the strain [Eq. (4)]. We
calculated the energies to first order in perturbation, and
the diagonal part of &sL in this case is

=e2(S)f2(c' ' '~', X,e, y}
l

+ e04(S)f4(C~r4 ~ ~', X,e, y), (5)

where 8 and P are the polar angles defining the orienta-
tion of the magnetic field with respect to our reference
frame. Using the rules for rotation of the spherical har-
monics (spin operators) we can write

fz = [C„'""(X,+X2+X3)+—,'C„'' '"(2X3—X, —X2)]—,'(1+3cos28)

+ [O' ""X+—'C' ""(X—X )+C' '2'~X —C' '~'"X ]—'cos2P(1 —cos28)E2 6 2 E) 1 2 E) 5 E2 4 4

+ [ —'C ' ' (X X )+C ' ' X C '2' X —C 2'2'~ X ]—sin2$(1 —cos28)
2 E2 1 2 El 6 El 4 E2 5 4

+[—'C' " '(X —X ) —O' " 'X +O' ' ' 'X +C' ' ' 'X ]—'singsin28

+[C ~' ' X +—C ~' '2 (X —X )+C '2' X C '~' X ]—cosfsin28 .E2 6 2 Ei 1 2 El 5 E2 4 2 (6)

Since our experimental accuracy does not allow us to
evaluate the fourth-order coeScients Cz'& &', it is not

l

useful to give here the expression for f4.
We now calculate the matrix elements of our spin

operators, in order to obtain the effect of Eq. (5) on the
Mn + levels. We obtain

~&M M i= g(2-M 1)f2(cr.' '

+ —,'(140M —210M —335M+ ~'
)

xf, (c'„4 ~ ~~,x, e, y)
l

(7)

and the magnetic-field shifts, which are observed in the
experiments are

1
~~M~M —1 ~@M~M—1

g
(8)

Equations (6)—(8) will allow us to obtain the second-
order coeScients, as is demonstrated below.

III. EXPERIMENTAL RESULTS

The EPR measurements were performed with an X-
band Varian spectrometer and a 12-inch rotating magnet.
The uniaxial stress system is similar to that described by
Fainstein and Oseroff and allows one to apply stresses
along a direction normal to the plane of rotation of the
magnetic field. The lineshifts were corrected for the
shifts on the resonance frequency of the cavity produced
by the stress.

The CaCO& samples used in our experiments were ob-
tained by cleaving and polishing pieces of a big natural
single crystal which showed no defects and contains
Mn + as a natural impurity. When needed, the orienta-
tion of the samples was done with Laue photographs:
The uncertainty on the orientation of the samples was
less than 1'.

The samples support high stresses (up to 10 dyn/cm )

when they are applied along the c-crystal axis, along

directions perpendicular to the cleavage faces or along
directions parallel to cleavage edges. The line shifts of
the five fine-structure lines corresponding to a hyperfine
group of the EPR spectrum of Mn + were measured as a
function of stress for stresses applied along each of these
three directions, for different orientations of the magnetic
field.

Since for most orientations of the magnetic field the
EPR lines corresponding to the same transition but
different ion sites are partially superposed, it was neces-
sary to separate them by a minimization program which
compares the observed line with a linear combination of
two Gaussian derivatives, where the separation and width
of the two Gaussians were adjustable parameters. The
accuracy and reproducibility of the values obtained by
this method for the position and linewidth of both reso-
nance lines is very good. This calculation was performed
for each magnitude and direction of the applied stress
and each orientation of the magnetic field. In some cases
the resonances corresponding to both sites overlap at
zero stress but are resolved at high stress; in other cases
the situation was the opposite.

A linear dependence of line shifts versus stress was ob-
served in all cases within experimental errors. Also, it
was observed that the —

—,'~—,
' fine-structure transitions

are not shifted with stress and the different hyperfine
groups of the EPR spectrum are shifted as a whole.
These results indicate that the Zeeman and hyperfine
terms of the spin-Hamiltonian of Mn + in CaCO& are not
changed by the stress and the observed line shifts can be
explained by Eq. (4}, where only fine-structure terms are
considered.

In order to interpret the experimental values, Eq. (8)
will now be written down for each direction of the ap-
plied stress.

A. Stress P along the c-crystal axis

In this simple case, X3 = P X1 =X2 =X4
=X5=X6=0, where the negative sign in X3 indicates a
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compressive stress.
The shifts in magnetic field of the fine-structure lines

per unit stress, when the field is perpendicular to the ap-
plied stress are

M —
& 3

(2M —1)(C' '"+C'2 2 ")
p 4gp

Zc= C

44.5
p

zc=—C

+—140M —210M —335M +1 405
8 2

y
gp

Yc

(9)
The first term of hH~ I, in Eq. (9) is the second-order
contribution to the shift; the second one gives the contri-
bution of fourth-order terms of &sL. Both contributions
are isotropic in this case. The constant y stays for a
linear combination of fourth-order spin-lattice
coefficients.

FIG. 2. Relative orientation of the magnetic field with

respect to the crystal axes: (a) when the experiment is per-
formed in the cleavage plane; (b) when it is performed in a plane
perpendicular to the cleavage edge.

B. Stress P normal to a cleavage plane

The direction of the normal to the cleavage faces of
CaCO& in the crystal coordinate system is given by
8=a=63, 8' and /=0. Then

X, = —sin aP, X3 = —cos aP, X5 = —sina cosaP;2 2

(10)
X2=X4=X,=Q .

Figure 2(a} shows the direction where the stress is applied
and the cleavage plane, where the magnetic Geld is al-
lowed to rotate. To define the orientation of H within
this plane only one angle g is necessary. As shown in Fig.
2(a), g was chosen so that (=0 is the intersection of the
cleavage plane with the crystalline x,z, plane. It is easily
found that sing =sin 8 sing and cosg = —cos8/sina,
where 8 and P define the orientation of the applied mag-
netic field in the xcyczc coordinate system of Fig. 2(a).
In terms of the angle g, the shifts per unit stress of the
fine structure are

= —0 2(j66C(2» ) —0 2623( (
E ' E

—0.5418C( " ) —0.5331C( ' ' )
E E (1 lc)

C. Stress P parallel to a cleavage edge

The direction 8' of a cleavage edge, defined by the inter-
section of two cleavage faces is given by [see Fig. 2(b)]

where h'& =(sina, 0, and

The coefficients E&, F&, G&, H&, and I& in Eq. (11) are
linear combinations of fourth-order spin-lattice
coefficients. The double sign (+) in C&, G&, and I& fixes
the difference between the two inequivalent sites. In our
Figs. 3-6, site 1 refers to the plus sign and site 2 to the
minus sign.
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FIG. 3. Angular variation of the line shifts under stress when

pressure is applied perpendicular to the cleavage plane of cal-
cite; the effect on the Mn'+1+5/2, +5/2) ~1+3/2, +5/2 ) tran-

sitions are shown.
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FIG. 4. Same as Fig. 3, showing the I +3/2, +5/2)~i+ I/2,
+5/2) Mn + transitions.

FIG. 6. Same as Fig. 4, when the stress is applied parallel to
a cleavage edge.

= [ ——,'sina, (V 3/2)sina, cosa] are the normal to the

cleavage faces and a=63, 8'.
One finds 8p=44. 5' and go=240' for the direction of 8'

and then the values of the components of the stress tensor
are

sin8 cosP = COSH pcosgpcosp+ slnfpsinp,

sinH sing = —cosHpsingpcosp —cosPpsinp,

cosH= sinHpcosp .

(13)

X, = —sin Hpcos PpP, X6= —sin HpsintIIpcosgpP,

X2 = —sin Hpsin PpP, X5 = —sinHpcosHpcosgpP,

X& = cos~HpP, —X~= —sinHpcosHpsingpP .

(12)

The plane of rotation of the magnetic field is in this
case perpendicular to the cleavage edge and the direction
of H may be specified by an angle p on this plane. As
shown in Fig. 2(b) we choose p in such a way that p=0 is
the direction of the intersection of the plane normal to
the cleavage edge with the plane determined by the
cleavage edge and the c-crystal axis (z, ).

If the orientation of the magnetic field is given by the
angles 8 and P, it can be proved that

4HM I &3-
(2M —1)[A +8 cos2pkC sin2p]

2g

+ 140M —210M —335M+
8gP 2

X[E +I' cos2pkG sin2p+H cos4p

(14)RI sin4p],

Equations (12) and (13) are used to write the spin-lattice
Hamiltonian of Eq. (4) as a function of p when the exter-
nal stress is applied along a cleavage edge.

The shifts per unit stress of the fine-structure transi-
tions obtained from Eq. (8) for this particular geometry
are, as a function of p,

C

E

O

o
—

IQ
r
CI

I 5/2~ 3/2Site 1l
, 4 -5/2 «-3/2

where

A = —0. 1315C' ""—0.0346C( '2 ')
p

' A ' A

—0.0905C(2 ~ ~) —0 1842C(2 2 ~)
E E

0 1842( (2, 1,2) 0 3749C(2,2, 2)
El

8 =0.3685C' ""+0.0970C( ' "
p A A

+0.2780C' ""+0.5657C' ' '"
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O 1842'(2, 1,2) 0 3749+(2,2, 2)
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FIG. 5. Same as Fig. 3, when the stress is applied parallel to
a cleavage edge.

where the same remarks made about the double sign (6)
in Eq. (11)apply here.
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D. Results of the experiments

C&
= —(0. 188+0.010)X 10 ' cm/dyn,

E&=(0.006+0.005) X 10 ' cm/dyn,

F&=(0.016+0.005) X 10 ' cm/dyn,

G&
——(0.015+0.003 ) X 10 ' cm/dyn,

II&=(0.017+0.003) X 10 ' cm/dyn,

I&=(0.013+0.010}X10 ' cm/dyn .

(15)

F&, 6&, and H& give contributions which are well out
of the experimental errors, indicating that fourth-order
contributions in &sL are important. However, E& and I&
are completely inside experimental error.

A least-squares fitting of the experimental data of Figs.
5 and 6 with Eq. (14) gives the following values for the
second- and fourth-order contributions:

A =(0.37+0.05 }X 10 ' cm/dyn,

B =( —0.33+0.03) X 10 ' cm/dyn,

C =(0.092+0.008) X10 ' cm/dyn,

F. =( —0.047+0.007) X 10 ' cm/dyn,

F =(0.048+0.003) X 10 ' cm/dyn,

G =(0.001+0.0030)X 10 ' cm/dyn,

H =(0.045+0.040) X 10 ' cm/dyn,

I =(0.023+0.005)X10 ' cm/dyn,

(16)

Our results for the shift per unit stress of the four fine-
structure lines of Mn + in CaCO& corresponding to the
two diferent sites are shown in Figs. 3 and 4 as a func-
tion of g, for stress applied perpendicular to the cleavage
plane, and in Figs. 5 and 6 as a function of p for stress ap-
plied along the cleavage edge. Care has been taken on la-
beling difFerent sites for Mn + in order to use the correct
sign in Eqs. (11) and (14) for each site.

A least-squares fitting with Eq. (11) was performed to
the data plotted in Figs. 3 and 4, where the calculated
curves are also displayed. From this fitting we obtained
the following values for the second- and fourth-order
contributions:

3&= —(0.057+0.003)X 10 ' cm/dyn,

B&=(0.17420.005) X 10 ' cm/dyn,

and also gives nonnegligible fourth-order contributions.
We show in Figs. 5 and 6 the curves obtained with the
fitting.

Our measurements of the shifts of the fine-structure
lines of Mn + in CaCO& with stresses applied along the c
axis were reported previously, ' the shifts are isotropic
when the magnetic field is in the plane perpendicular to
the stress [as given in Eq. (9)] and allow us to obtain

C„'""+C' ' "=(—1.43+0.06)X10 ' cm/dyn (17)

IV. DISCUSSION

An evaluation of the spin-Hamiltonian or the spin-
lattice Hamiltonian parameters for S-state ions should in-
clude high-order perturbation calculations involving the
crystalline electric field, the spin-orbit, and the spin-spin
interactions, and also other relativistic mechanisms.
Good examples were given by Wybourne for Gd +, by
Sha, rma, Da,s, a,nd Orbach for Mn2+ jons, and, more re-
cently, by Yu and Zhao for Mn + ions in calcite. ' These
calculations are very complicated and the results are, in
general, not very rewarding: In many cases the results
differ from the experimental values in the order of magni-
tude and even in the sign. We believe, however, that a
phenomenological analysis of the data is very helpful to
understand the problem and the conclusions may be ex-
tended to other low-symmetry crystals.

It is important to remark first that our experiments
show a linear dependence of the line shifts with stress.

and the value of y in Eq. (9) is inside of experimental un-
certainty.

Our experimental results of Eq. (15)—(17) may be sub-
stituted in Eqs. (11a), (1 lb), (14a), and (14b) together with
the results of the hydrostatic stress-EPR experiments re-
ported by Wait. ' In that way we obtained the values of
the two C~ '~'~ ' and the four CE '~*~' spin-lattice

1

coefficients, which are tabulated in Table II. In addition,
we obtained the values of two linear combinations of the
other four CE'&'~' coefficients, which are also given in

Table II.
It is worth noting that we found it impossible to per-

form experiments with the stress in other directions than
those reported here. In every case the samples became
brittle and they broke in small pieces for stresses of the
order of 5 X 10 dyn/cm, even when the stress is applied
only a few degrees apart from the directions described be-
fore.

C,"'"=—O. OO11+O. OOO1

C~ ""=2.42+0.23
1

C' " '=0.78+0.26
1

TABLE II. Second-order spin-lattice coefficients.

(cmfdyn) X 10

C' ' "=—0.142+0.007
C' ' '"= —2.09+0.22

1

C' ' ' '= —0.91+0.25
1

0.266 C' ""+0.262C' "+0.542C' ' '+0.533C' ' =0.188+0.008E E E E

0.263 C' ""+0.535C' ' "+0.258C' " '+0.526C' ' ' '= —0.092+0.010
2 2 2 2
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Since Zaitov reported a nonlinear stress dependence for
Mn + in calcite crystals, we studied carefully this
behavior, without finding any nonlinear dependence.
This observation, which was reported previously by us
for the stress parallel to the c-crystal axis, ' was verified
along this work for stresses applied in other crystal direc-
tions. It indicates a small magnitude for the covalent
effects in the bonding between Mn + and its CO3 neigh-
bors.

A. The A-mode spin-lattice coemcients

The C' '~'&' and 6 '~'~' were previously analyzed'
and in Table II we repeat the values of the C„''& ~' (the
difference from Ref. 14 stems from the normalization we
use here for Pz). The values of G„''~'"' are

G"'"=—8X 10-' cm-',

6' ""=—3X10 cm

We do not give the errors of the Gz'~'~' because the
relative errors are high; this is due to the accumulation of
errors in going from the C;., through S;, to the
G(2,g;g )

It is worth mentioning at this point the work of Yu and
Zhao, ' where our previous results' of the A-mode spin-
lattice coeScients are theoretically analyzed. They con-
sider several mechanisms in order to calculate those pa-
rameters, following their own theoretical model, which is
slightly different from previous calculations. Considering
the spin-orbit coupling as the most important of the con-
tributions, they obtain good agreement with the experi-
ments.

B. The E-mode second-order
spin-lattice coemcients

b,H /P = — [0.107+0.004]

X10 ' Gausscm /dyn .

We can easily see that the shifts resulting from the E-
mode distortions are one order of magnitude greater than
those of A-mode. This corresponds clearly with the fact
that the crystal as a whole is "soft" in front to stresses
applied in any other directions than those applied in our
experiments. This result shows the consistency of our re-
sults.

Now we can evaluate, by another ideal experiment, the
importance of the distortion of the carbonate ions rela-
tive to their rigid displacement. Fortunately it is possible
to obtain from the two equations relating the CE '&'&' pa-

2

rameters a useful linear combination of only two of them:

C ' ' C ' 'i =(1 004+0.065) X 10 2 cm/dyn
2 2

Now we can make a calculation that assumes full S6
symmetry if we choose a system of stresses and a direc-
tion for the magnetic field so that only this specific linear
combination of CE '~'"' parameters appears in XfsL. It is

2

not difficult to see that assuming X, =(2/3}P,
X2= —(2/3)P, X4= —(4/3)P and all the other stresses
zero, with the field in the direction 8=m /4 and P=n /2,
we eliminate all the unknowns and obtain

hH /P = — [2.40+0.68]

X10 ' Gausscm /dyn .

We can now assume D3d symmetry (all CE'&'~'=0)
2

and calculate the shifts for the same system of stresses
and position of magnetic field. We obtain

hH /P = — [0.92+0.62)
gP

We present the results of two hypothetical experiments
that will allow us to evaluate the importance of the car-
bonate distortions to the EPR spectrum.

Initially we show that our results are consistent. Let us
assume that the effect of the local distortions of one car-
bonate modify much less the EPR spectra than changes
in the position of the whole carbonate; this is equivalent
to assume that the local symmetry is D3d. Let us apply a
hypothetical stress to our system. Making X, =P,
X2 = —P and all the other stresses null, substituting those
in the spin-lattice Hamiltonian, and orienting the mag-
netic field in the direction of maximum line shift
(8=m. /2, /=0), we get

X10 "Gausscm /dyn

expression to be compared with the observed effect [de-
rived from Eq. (17}]when the stress is applied parallel to
the c axis:

Gauss cm /dyn .

In spite of the large relative error of the last calculated
quantity, by comparison of the two results, there is obvi-
ously a large influence of the distortion of the carbonates
in front of their rigid displacement.

As a conclusion to this work, we find it important to
remark the following.

(a) We studied completely a low-symmetry crystal un-
der stresses. This system taught us many properties of
the EPR spectra under stress. Especially, the distortion
of the carbonates is very important, as it was seen in the
last paragraph above. Different than the observed effect
on the unstressed crystal, the nondiagonal parameters
obtained are of the same order of magnitude as those re-
lated to the higher symmetry.

(b) Many low-symmetry crystals became important be-
cause of the physics contained in thexn. Namely, high-T,
superconductors contain magnetic ions in very low-
symmetry sites. We believe that our procedure can be
applied to those crystals, doped with magnetic ions. In
such a way, difFerent sites could be identified, and the re-
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suits used to decide about population of nonequivalent
sites.

(c) Our work completes the EPR study of Mn + in cal-
cite. Six new parameters were reported, complementary
to the spin-Hamiltonian coefficients published before.

Finally, we found that local elastic constants are ex-
tremely relevant in the microscopic understanding of
sites of lower symmetry than that of the whole crystal.

X-ray measurements of those constants is relevant to un-
derstand the physics of those crystals.
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