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Low-field magnetoresistance measurements were performed on a two-dimensional grid lateral surface
superlattice (LSSL) fabricated on a GaAs/Al, Ga;_, As heterojunction. From a one-parameter fit to the
two-dimensional weak-localization theory we have obtained the effective inelastic scattering length at
different temperatures. By subtracting the weak-localization term, we have also investigated the
electron-electron interactions in this system. Both localization and interaction effects saturate at low
temperatures when the inelastic scattering length and thermal diffusion length are longer than the period
of the LSSL. At higher temperatures, when the thermal diffusion length becomes comparable to the
period of the LSSL, the electron-electron interaction term causes the conductivity to decrease logarith-
mically with temperature. These results can be explained in terms of coherent backscattering of the elec-
trons in a fraction of the electron puddles formed below the superlattice gate. Disorder ensures that the
cells showing these results are not neighbors, so that this effect is an ensemble average of many unit cells

several periods apart.

Esaki and Tsu'! suggested that by defining a periodic
potential longer than that of the atomic lattice it should
be possible to observe Bragg reflection of transport elec-
trons, giving rise to negative differential resistance
(NDR); recently Bloch oscillations have been observed?
in a periodic vertical tunneling structure. The two-
dimensional (2D) equivalent of such a device can be real-
ized by patterning a lateral surface superlattice (LSSL)
gate above a two-dimensional electron gas (2DEG)
formed at the interface of a GaAs/Al,Ga,;_,As hetero-
structure. The amplitude of the periodic potential can be
tuned by varying the voltage applied to the superlattice
gate. In antidot arrays, where the electrons are depleted
under the LSSL, the quenching of the Hall effect,’ single?
and double* frequency Aharonov-Bohm oscillations in
low magnetic fields and Coulomb blockade near pinch-
off® have been observed. Besides the possibility of observ-
ing NDR, the prediction of Landau-level splitting and
the possibility of observing the “Hofstadter butterfly”
whenever the flux quanta per unit cell is a rational frac-
tion of the magnetic field has attracted much attention to
the 2D grid LSSL. Such devices have been fabricated on
GaAs/Al Ga,_, As heterostructures and many new phe-
nomena have been observed.” 1©

Using an optical interference method Weiss et al.!! in-
troduced a weak submicrometer periodic potential and
discovered magnetoresistance oscillations periodic in
1/B. The extrema in magnetoresistance are observed
when the cyclotron radius is commensurate with the su-
perlattice period of the LSSL.'? Paris et al.'” measured
weak localization in a 2D grid LSSL and Gao et al.'? in-
vestigated the effect of a one-dimensional LSSL on weak
localization in silicon inversion layers and obtained quali-
tative agreement with a recent theory' invoking an an-
isotropic diffusion constant. However, weak localization
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and electron-electron interactions in a 2DEG system un-
der a 2D periodic potential have not been investigated as
a function of temperature, and it is the purpose of this
paper to report such measurements.

There are two distinct theories that explain the loga-
rithmic dependence of conductivity with temperature ob-
served!® in weakly disordered 2D electron systems:
weak-localization theory and electron-electron interac-
tion theory.'® Although both theories predict the same
temperature dependence of the conductivity, the two
effects can be distinguished by low-field magnetoresis-
tance measurements in a perpendicular magnetic field. !’
The weak-localization contribution to the magnetocon-
ductivity of a disordered 2D system is given by '8
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where ¢ is the digamma function. [ is the effective in-
elastic scattering length to be discussed later, and [ is the
elastic scattering length. At zero magnetic field, the
correction term due to weak localization is!'’
8a(0)=(e/2m*)In(21%: /1*+1) . )
At low temperatures, when electron-electron scattering is
the phase-breaking mechanism, 1/7, in 2D is given by*
1/—r¢=(kT/quNODﬁZ)ln(n'DNoﬁ), T<#i/kt, (3)

where N, is the 2D density of states, D is the diffusion
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constant. 7 and 7, are elastic scattering and phase-
breaking time, respectively.

When considering the electron-electron interactions at
finite temperature T, the time 7,=7/kT enters as a
long-time cutoff,?! and is equivalent to using the thermal
diffusion length I.=1"D7; as the cutoff length scale.
The correction term due to the electron-electron interac-
tions in a 2D system is given by!®

80 =(e?/47*#)(2—1F)InkT7 /% , 4)
where
F=—4[1-2(1+F/2)In(1+F /2)/F] . (5)

The Thomas-Fermi screening factor F is given by!®
F=(1/V1-x)[1-2/m)tan" Y (x /V1—x?)], (6)

where x =2kp/K, kp is the Fermi wave vector,
K =e?N,/2¢ee,, and e=13.1 for GaAs.

The theories described above are valid for infinite sys-
tems. Kaveh et al.?? proposed that when the length L
and width w of a device become comparable to the
theoretical inelastic scattering length I, finite-size effects
occur and the effective inelastic scattering length I.4 is
given by

1/1%=1/15+1/L?. )

Similarly, Choi, Tsui, and Palmateer?* suggested that for
interaction effects the effective thermal diffusion length
ITetf is given by 1/ITCE=1/IT+a/L, where a is a con-
stant dependent on the boundary conditions.

The grid superlattice gate device (0.3-um period and
0.08-um linewidth) shown in Fig. 1(a) was defined by
electron beam lithography on the surface of a
GaAs/Al,Ga,_,As heterostructure, 70 nm above the
2DEG, with Au/Ti evaporation and subsequent lift-off.
To observe weak localization in this system, we applied a
negative voltage of —0.31 V to the gate to reduce the
electron concentration beneath the grid gates; however,
in the puddles between the gates the electron concentra-
tion should be slightly reduced. The carrier concentra-
tion under the grid gates is 8.34X10'° cm ™2 and the es-
timated mobility is 2.28 X 10* cm®>V~!s™!, assuming the
conductivity is uniform over the entire device. The cor-
responding elastic scattering length / is 0.1 um. Note

0.3um

FIG. 1. (a) The configuration of the device; 4, B, E, and F
are voltage probes. S and D are source and drain contacts. (b)
A closeup of a 0.3X0.3 um? unit cell of the superlattice. The
shaded area corresponds to the superlattice gate.
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that the product kzl/ =7.24, indicating that the sample is
in the weak-localization regime. Experiments were per-
formed over a temperature range of 0.05-0.85 K in a di-
lution refrigerator and at 2.4 K. The magnetoresistance
was measured using standard four-terminal ac phase-
sensitive techniques. The weak-localization effects were
not sensitive to the driving current varying between 1 and
10 nA, and when a gate voltage of —0.35 V was applied
to the grid, there was a large background change in resis-
tance on going from 0.05 to 0.34 K. Both these observa-
tions imply that there was very little electron heating
over the range of our measurements.

We have observed the negative magnetoresistance at
low magnetic fields and subsequent Weiss oscillations at
+0.18 T. We also observed a slight quench of the Hall
effect at low magnetic fields, indicating that our system is
not a perfect grid potential but is a “grid plus antidot”
potential. The antidotlike potential is created in the re-
gion where the grids cross one another. Figure 2 shows
the suppression of the weak localization in a perpendicu-
lar magnetic field at different temperatures. The raw data
were inverted to get the magnetoconductivities. When
the temperature was raised, the weak-localization effects
were gradually suppressed on going from 0.05 to 0.85 K
and were not observable at 2.4 K. From fits of the exper-
imental data to Eq. (1) we obtain the effective inelastic
scattering length /. The theoretical conductivities are
shown as solid lines in Fig. 2, and the corresponding
l4(T) is shown in Fig. 3(a). The zero-field conductivity
consists of three parts: a classical Drude conductivity, a
weak-localization contribution, and a correction term due
to electron-electron interactions. Figure 3 shows that the
conductivity saturates below 0.44 K where InT = —0. 82,
and exhibits a InT" dependence at higher temperatures.

In our system the diffusion constant D =67.3 cm*s™
is dominated by the regions under the grid gates. The
elastic scattering time 7 = 8.84X 103 s and #i/k7=8.6
K. According to Eq. (3), 1/1'¢—>0, as T—0, leading to
an infinite inelastic scattering length at 7=0 K. Using
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FIG. 2. The magnetoconductivity o, (B)—o,,(0) at
different temperatures. Each curve has been vertically offset for
clarity. The solid curves are the theoretical fits to Eq. (1).
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FIG. 3. The zero-field conductivity o,,(0) vs InT. The dot-
ted line is a guide to the eye. Inset: (a) The fitting parameter /.4
and (b) phase-breaking rate 1/7,, vs temperature. The straight
line fit is discussed in the text.

the relation I.z=1/D7, we have determined 1/74 as a
function of temperature from [ 4(T), the results are plot-
ted in Fig. 3(). There is a good fit to
1/7,=(2.478X10'°T +5.353X10'%) s~' for the lowest
four temperatures: 0.05, 0.18, 0.31, and 0.44 K. Surpris-
ingly, the fit shows a temperature-independent term. The
term that is linear in T is close to that predicted from Eq.
(3); the temperature-independent term corresponds to a
length of 0.355 um, close to the period of the LSSL. It is
noted that Newson et al.?* also observed a similar
behavior of 1/7,= 4 T3/2+ B for 3D weak localization in
In,Ga,_, As devices; the saturation in /4 occurred when
l.& was comparable to the average separation of In-rich
clusters.

According to Eq. (2), we can calculate the weak-
localization contribution to the conductivity at zero mag-
netic field from [4(T). Only the electron-electron in-
teraction term and the classical Drude conductivity
remain after subtraction of the weak-localization term.
At low temperatures, the classical term is temperature in-
dependent; therefore we can investigate the electron-
electron interactions at different temperatures. As shown
in the inset to Fig. 4, our data qualitatively agree with the
saturation of the interaction effects®® at low temperatures
where the thermal diffusion length is longer than the
period of the LSSL. From the slope of the high-
temperature conductivity in Fig. 4 we determine
F=0.47, this is in reasonable agreement with the value
F=0.63 calculated from the carrier concentration under
the grid gates using Egs. (5) and (6).

In the superlattice device we are measuring many small
devices with a 0.3X0.3 um? unit cell, arranged in both
parallel and in series. The absence of conductance fluc-
tuations?> shows that one small area does not dominate
the conductance, and that we are measuring the ensemble
average of many devices. Using Eq. (7) to fit the low-
temperature / 4(T) we deduce L =0.354 um, close to the
period of the superlattice.

FIG. 4. The zero-field conductivity o, vs InT, after subtrac-
tion of the weak-localization term. The straight line fit is dis-
cussed in the text. The inset shows o, as a function of thermal
diffusion length /7. The dotted line is a guide to the eye.

We now consider possible explanations for the satura-
tion of the localization and interaction effects. The first is
that under all the grid gates the electron mobility has
been reduced to such an extent that the motion is
diffusive, but still ballistic in the puddles. If this is the
case we are measuring the averaged localization effects of
many short narrow barrier regions in a periodic array.
The result would then imply that whenever the electrons
pass through the puddles they undergo an inelastic
scattering process thereby saturating the effective inelas-
tic scattering length. However, this does not explain the
saturation of the interaction effects.

A more plausible explanation relies on the fact that
elastic scattering length /=0.1 um, is comparable to the
grid width, implying that disorder serves only to modify
the barrier heights and widths under the grid gates, but
does not lead to diffusive transport in those regions. In
this case each unit square looks like a 0D quantum dot. 2
If we assume the transport is ballistic above the barriers,
the conductivity of the device shows that there are four
subbands above the barriers in each unit cell. The carrier
concentration under the grid gate also corresponds to
there being four half Fermi wavelengths between the anti-
dot regions where the grid lines cross. For a single pud-
dle, quasilocalization of electrons above the puddle is ob-
served when an exact number of half Fermi wavelengths
fit between the barriers. When the temperature is raised
the localization disappears when the inelastic scattering
length becomes shorter than the puddle size. In a single
quantum dot this effect occurs only when the barrier
heights are identical. The quasilocalization results from
the coherent backscattering of the electrons between the
two barriers.?” The existence of disorder under the grid
gates ensures that the matching condition does not occur
in neighboring puddles. Thus the measured localization
and interaction effects are quasi-OD in nature and suggest
that if we could make our puddles identical to form a dot
lattice then we would observe minibands instead. To our
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knowledge, there is no theory concerning weak localiza-
tion in a 2D periodic potential and the anisotropic
diffusion constant argument!’ cannot be applied to our
case. Although we have a good fit to the 2D weak-
localization theory, whether the theory is applicable to
our system is an open question.

In conclusion, we have investigated the weak-
localization and electron-electron interactions in a 2D
grid LSSL. Both localization and interaction effects satu-
rate at low temperatures when the inelastic scattering
length and thermal diffusion length are longer than the
period of the LSSL. These results can be explained in

terms of coherent backscattering of the electrons in a
fraction of the puddles formed below the superlattice
gate. Disorder ensures that the cells showing these re-
sults are not neighbors, so that this effect is an ensemble
average of many unit cells several periods apart.
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FIG. 1. (a) The configuration of the device; 4, B, E, and F
are voltage probes. S and D are source and drain contacts. (b)
A closeup of a 0.3X0.3 um? unit cell of the superlattice. The
shaded area corresponds to the superlattice gate.



