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Phase-coherent electrons in a finite antidot lattice
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Antidot lattices with a finite number of periods are fabricated such that the size of the total system is
smaller than the phase-coherence length of the electrons at low temperatures. The magnetoresistance is
dominated by reproducible quantum fluctuations as well as by classical commensurability oscillations.
We attribute these fluctuations to electrons that travel phase coherently over the entire system and inter-
fere with each other under the influence of the geometry of the potential landscape. The presence of
Aharonov-Bohm oscillations is identified and related to the existence of classically pinned electron or-
bits.

Lateral superlattices fabricated on semiconductors
have revealed a rich variety of physical phenomena in
transport experiments as well as in optical spectroscopy. '

In systems with strong two-dimensional potential modu-
lation a periodic lattice of potential pillars arises, a so-
called antidot lattice. So far most experiments have
been performed on antidot systems whose size is much
larger than the electron mean free path A.

&
as well as the

phase-coherence length A,
&

of the electrons. Most experi-
mental observations on lateral superlattices have at least
qualitatively been very successfully described by classical
theories neglecting the phase of the electrons. Qualita-
tively, a maximum in the magnetoresistance can be
identified with a pinned electron orbit around a group of
antidots. A pinned orbit and consequently its corre-
sponding maximum in the magnetoresistance is more
likely to occur if the orbit shape and size fit to the funda-
mental symmetry of the antidot lattice. '

The Aharonov-Bohm (AB) efFect has been observed in
single semiconductor rings. Several publications address
the question whether and how Aharonov-Bohm oscilla-
tions can be observed in large (larger than the phase-
coherence length of the system) antidot lattices. '

Since the Aharonov-Bohm effect is intimately related to
the phase coherence of the electron it is not clear how
this effect should survive self-averaging for systems much
larger than the phase-coherence length. Weiss et al. '

presented experimental data similar to Ref. 12. They ar-
gue that their observation can be explained by applying
Bohr-Sommerfeld quantization to a classically pinned
electron orbit. This would require a phase-coherence
length A,

&
longer than the size of an orbit but not neces-

sarily longer than the size of the whole system.
In order to investigate phase-coherence effects in an

antidot lattice it is advantageous that the system size is
smaller than the phase-coherence length of the electrons.
Here we address this point experimentally by studying
the transport properties through an antidot lattice with a
finite number of periods. Gusev et al. ' fabricated a
finite lattice with 6X7 antidots. They find strong hys-

teresis effects as a function of magnetic field which they
attribute to the change of impurity states in the system
and a magnetic-field-tuned transition of AB oscillations
from a h/e to h/2e periodicity. In our experiments all
observed features are stable and do not depend on the
sweep direction of any parameter. The phase-coherence
length which is limited by electron-electron scattering is
strongly temperature dependent. At low temperatures
T((1 K the phase-coherence length in high-mobility
two-dimensional electron gases (2DEG's) is known to
exceed several micrometers in length ' and is thus
larger than the size of our system. The lattice period is
still considerably larger than the Fermi wavelength.
However, since the electrons travel phase coherently
through the entire system the magnetoresistance is dom-
inated by fluctuations that arise from the interference of
the electrons. We discuss the various physical mecha-
nisms that are responsible for the observed phenomena.

We focus on experimental data that is obtained on a
finite square lattice consisting of 9X9 antidots. Figure 1

shows an atomic force microscope image of a typical
sample. A square confining geometry surrounds the anti-
dots. The period of the lattice is a =240 nm, the size of
the total system from side to side is designed to be 10a.
Typical four-terminal measurements are made by passing
a current through two contacts (e.g., i and j) and measur-
ing the voltage drop across the other two contacts (e.g., k
and I).

The fabrication process starts from a GaAs-
Al„Ga, „Asheterostructure (x =0.3) that is grown by
molecular-beam epitaxy and contains a high-mobility
two-dimensional electron gas situated 65 nm below the
surface. At liquid-He temperatures the carrier density is
N, =3X 10" cm and the mobility is
p=SX 10 cm /Vs resulting in a mean free path of the
carriers of A, I =7 pm. A Hall bar is defined by wet etch-
ing and provided with Ohmic contacts (AuGe/Ni). The
sample is then patterned using electron beam lithogra-
phy. The resist pattern is transferred onto the electron
gas by a carefully tuned wet etching step (about 30 nm in
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FIG. 2. Magnetoresistance trace at Vg=0 for T=4.2 K
(dashed line) and T=30 mK (solid line). The schematic antidot
patterns with the circles indicate the classically pinned electron
orbits that correspond to the maxima in the magnetoresistance
as marked by the arrows. The right inset in the top part of the
figure presents two magnetoresistance traces for Vg =0 (upper
curve) and Vg =2 mV (lower curve, offset by 50 Q for clarity).
The main features are very similar while the details in these
traces are different. The left inset shows R up to 3.2 T.

FIG. 1. Image taken with an atomic force microscope of the
wet-etched pattern on the surface of a Al„oa& „As/GaAs het-
erostructure. The dots in the center mark the antidots, the wide
lines the square circumference of the geometry. Ohmic contacts
are made to the corners of the square indicated with i, j, k, and
l.

depth). ' We like to note here that the antidot pattern as
well as its confining square geometry are transferred in
the same etching step which provides inherently good
alignment of the structures. Figure 1 presents an image
that is taken after the resist has been removed from the
sample surface. Each antidot is well developed and the
variations of the antidot sizes are remarkably small.
After the resist is removed a gate metal is evaporated on
top of the sample. The sample is cooled in a dilution re-
frigerator down to temperatures of 30 mK. Low current
levels (10 nA) are chosen to avoid heating of the electron
gas.

Figure 2 presents the magnetoresistance of a typical
sample for two temperatures. At T=4.2 K the magne-

toresistance (dashed line) displays well-known maxima
that are related to classical electron trajectories being
pinned around groups of antidots. For low temperatures,
T=30 mK, new structure appears (solid line) and strong
reproducible fluctuations occur around the classical com-
mensurability oscillations.

We have fabricated a sample with 6X6 antidots and a
lattice constant a =360 nm. In addition a sample was fa-
bricated where the finite antidot lattice was transferred to
the electron gas in a purely electrostatic manner. We find
that the experimental observations as discussed below do
not depend critically on the fabrication process nor on
the specific lattice parameters.

Taking the geometric factor of the van der Pauw
geometry into consideration the resistance can be ex-
pressed in terms of a conductance. We find a mean am-
plitude of the fluctuations of the order of ei/Ii. At
higher magnetic fields B) 1.2 T the fluctuations rapidly
decay in amplitude and the Shubnikov —de Haas (SdH)
oscillations dominate the magnetotransport resembling
those of an unpatterned 2DEG (Fig. 2, left inset). By a
thorough analysis we have made sure that the minima in
the magnetoresistance observed at low B do not corre-
spond to the filling factors extrapolated from the SdH os-
cillations at high B.

Therefore we will discuss our experimental observa-
tions within the framework of phase-coherent electron
transport. The Aharonov-Bohm effect is likely to occur
in an antidot lattice in the present geometry. Generally,
the electrons traveling on various trajectories through the
antidot lattice may interfere with each other after having
encircled groups of antidots. We thus expect that the
geometry of the antidot lattice will have a significant
influence on the interfering trajectories. Moreover, elec-
trons will interfere due to random potential fluctuations
that arise from the modulation doping as well as from im-
perfections of the fabrication process of the antidots. For
samples that are smaller than the phase-coherence length
but larger than the elastic mean free path this
phenomenon is known to cause so-called universal con-
ductance fluctuations. In the present case, however,
where the electrons travel ballistically through the entire
system, the electron motion is rather dominated by quan-
tum ballistic transport.

A calculation employing scattering matrix theory' on
finite and ideal antidot lattices reveals very similar resis-
tance spectra as those observed experimentally. In
another approach the quantum-mechanical band struc-
ture of an antidot lattice was calculated' and the con-
ductivity computed with the Kubo formula. Again struc-
ture appears in the conductivity similar to the experimen-
tal data. This is a further indication that the interference
of phase-coherent electrons is the basic physical mecha-
nism leading to the experimental observations.

For comparison we fabricated a sample that contains
no antidots but only the square confining geometry. A
few reproducible resistance fluctuations occur that are
negligible compared to the rich structure that is observed
in the antidot lattice. We conclude that potential fluctua-
tions that arise from the random arrangement of the dop-
ing atoms have a minor influence on the magnetoresis-
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tance.
Next we address the question of how details of the po-

tential landscape arising from imperfections of the fabri-
cation process influence the features in the resistance
traces. The right inset of Fig. 2 presents magnetoresis-
tance traces that are obtained for two very similar gate
voltages. The Fermi energy for the two experiments
differs by only about 0.5%. The two curves are vertically
offset for clarity. The mean periodicity as well as the
main features are very little affected by the change in gate
voltage while the details of the experimental traces are
modified. A small change in gate voltage has a strong
influence on the random features of the potential
configuration and the corresponding correlation of the
electron trajectories. The overall shape of the antidot
landscape will, however, depend very little on such small
changes of the gate voltages. We thus argue that indeed
most of the experimentally observed resistance fluctua-
tions and in particular the most pronounced features are
caused by the regular geometry of the antidot lattice.

A closer look at Fig. 2 reveals that for a small
magnetic-field interval AB-0.2 T around B-0.7 T
there is a rather regular structure. The mean periodicity
obviously decreases for decreasing magnetic field, i.e., the
features become denser. In order to get a clearer under-
standing of the situation we calculated a Fourier power
spectrum (FPS) for several b,B intervals. In Fig. 3 we
present three FPS that are calculated on the same resis-

tance trace but for different magnetic-field intervals. For
intervals that cover the resistance maximum correspond-
ing to classical electron trajectories around a single anti-
dot, i.e., 0.4&B (0.8 T, a pronounced peak in the FPS
occurs at a frequency of about 14 1/T. The expected AB
frequency fAa

=ea /h based on the area of a unit cell of
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FIG. 3. Fourier power spectrum calculated for different hB
intervals on the experimentally obtained magnetoresistance
trace. The curves are vertically offset for clarity. The two

straight lines indicate the position of the Aharonov-Bohm fre-

quency for an area corresponding to one unit cell (thin line) and

four unit cells (thick line) of the antidot lattice, respectively.

the lattice is marked by a vertical line. We conclude that
we observe AB oscillations for electrons going around a
single antidot in a specific magnetic-field regime.

Since pinned trajectories around a single antidot exist
over a finite magnetic-field range the enclosed area will
not be independent on the magnetic field. We thus can-
not expect that the features in the magnetoresistance that
arise because the magnetic flux through a pinned electron
orbit is changed by one unit are perfectly periodic in B.
Since the details of the potential landscape in our samples
are unknown it is diScult to predict the magnetic-field
dependence of the electron orbit size. Even if the Fourier
transform procedure does not account for all the effects
in our samples we still use it because it is mathematically
well defined and has a forthright interpretation.

The FPS around B=0.2 T, i.e., in the magnetic-field
regime where the electrons classically encircle groups of
four antidots, reveals a peak at a different frequency. The
expected AB frequency based on the area corresponding
to four unit cells is again marked by a vertical line and
falls well within the range of the FPS maximum.

Of course more peaks in the FPS occur that are related
to the aperiodic resistance fluctuations. Often closely
neighbored maxima occur in the FPS as, e.g., in the bot-
tom trace around 60 1/T. Furthermore another max-
imum shows up around 32 1/T in some of the FPS. This
frequency is close to what one expects for the AB oscilla-
tion for an electron orbiting around two antidots. We do
not understand the details of these observations and ex-
pect that more refined experiments will enlighten this sit-
uation.

For single rings the criterion for the observation of AB
oscillations is based on geometrical considerations. In
quantum dots AB oscillations have been observed at high
magnetic fields where the electrons are confined to edge
states close to the perimeter of the dot. ' Here we argue
that in an antidot lattice for a specific magnetic field
where the pinned electron orbits around groups of anti-
dots the electrons preferably travel around an area that is
roughly given by the group of antidots. The role of the
quantum-mechanical edge states in a quantum dot at
high magnetic fields is taken over by the classically
pinned trajectories around groups of antidots. Of course
in the antidot lattice the trajectories and their respective
geometry are not as well defined. This might be the
reason why the AB oscillations in an antidot lattice are
not as pronounced. In addition, with changing magnetic
field there is a crossover from one typical kind of classical
pinned trajectory to another which changes the average
area and therefore the amount of flux quanta per
magnetic-field interval.

In a 2DEG without antidots the appearance of SdH os-
cillations is related to the formation of Landau levels. In
the presence of a lateral superlattice the Landau levels
transform into Landau bands. Even at low magnetic
fields, B=0.2 T, Landau quantization is not completely
negligible. Many edge states are populated and extend
throughout the antidot lattice. The equipotential lines
representing the edge states resemble, however, very
closely the regular classical trajectories. We thus argue
that the picture we give of AB oscillations arising from
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electrons traveling phase coherently along classical elec-
tron trajectories should persist into the regime where
Landau quantization becomes important.

The presented interpretation of the AB effect gives fur-
ther confirmation on the validity of the concept of classi-
cally pinned electron trajectories. For further refined
sample geometries one might expect that experiments as
our complement the emerging understanding of the
crossover from classically chaotic trajectories to
quantum-mechanical wave functions.

In conclusion we have presented a detailed investiga-
tion of reproducible oscillations and fluctuations in the
magnetoresistance of a finite antidot lattice. The oscilla-

tions are most likely associated with phase-coherent elec-
trons that interfere with each other under the influence of
the antidot potential landscape. Aharonov-Bohm oscilla-
tions arising from the interference of electrons which
encircle groups of antidots can be identified.
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