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Tight-binding model with intra-atomic matrix elements
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We present a tight-binding model for silicon which incorporates two-center intra-atomic param-
eters. The model is fitted to density-functional theory band structures for silicon in the diamond
structure over a number of volumes. It is shown that with only a two-center, orthogonal basis,
reasonable total energies can be obtained for many diferent structures. Thus it eliminates the need
to use structure-dependent terms in the total-energy model.

Tight-binding (TB) total-energy models have been
widely used for the study of complex systems in which
the large number of atoms per unit cell prohibits first-
principles calculations. In many cases, these semiempir-
ical models achieve results which closely parallel experi-
mental and ab initio values. The TB basis functions, in
their simplest form, are assumed to be orthogonal and the
matrix elements are often approximated by two-center
integrals. In a recent study, we found the distance de-
pendence of the two-center matrix elements for silicon
and germanium by fitting the TB parameters to band
structures at different volumes obtained &om density-
functional-theory (DFT) calculations within the local-
density approximation. A repulsive potential, which
takes the form of a pairwise interaction multiplied by
a structure-dependent function, is added to the TB sum
of eigenvalues in order to reproduce the total energies for
a number of bulk structures. It is clear that transfer-
able, orthogonal two-center tight-binding models based
on DFT distance dependence have to contain some terms
describing the local environment. This conclusion is con-
sistent with work which found that orthogonal param-
eters fitted to one structure (and coordination) could
not be transfered to another structure (and coordination)
without an extra term, a term which could be given by
a structure-dependent function.

In this work, we will examine an alternate approach
which removes the need for a structure-dependent func-
tion by including intra-atomic parameters explicitly in
the tight-binding total-energy formulation for silicon.
These two centered parameters ' are generally struc-
ture dependent. To illustrate the usefulness of these pa-
rameters, we show that, in addition to the one-electron
energy sum, only a two-body pair potential is needed to
create a binding-energy model that is suKcient to give
reasonable fits to other crystalline forms of silicon.

A typical binding-energy formulation includes the
tight-binding band energy sum (Eb, ) plus a classical re-
pulsive term (E„~).E~, is the sum of the occupied eigen-
values of the band structure while E, p is a correction
term for the ion-ion interaction and the overcounting of
the electron-electron interaction. By using the station-

ary principle with an appropriate input density, it can be
shown that this semiempirical energy expression can be
obtained &om DF theory. The cohesive energy can be
written as

Ec = Ebs + Erep E0&

where E0 is the energy of an isolated atom. The Ep, can
be based on ab initio work by adjusting the tight-binding
parameters so as to fit the ab initio eigenvalues. If this
is done over a wide range of nearest-neighbor distances
for tetrahedral silicon and combined with an appropri-
ate E„p, then the ab initio binding energy for tetrahe-
dral silicon is reproduced. When this model is applied to
other crystalline forms such as P-tin, simple cubic (sc),
body centered cubic (bcc), and face centered cubic (fcc)
the results are rather poor. Schilfgaarde and Harrison
have argued that these results are because an orthog-
onal TB fit to tetrahedral structures does not transfer
correctly to other structures. An appropriate method
would be to include nonorthogonal terms as Sigalas and
Papaconstantopoulos have done for iridium. By fitting
the nonorthogonal tight-binding parameters and repul-
sive potential to two forms of iridium they produce a
model which gives reasonable results when transferred to
other iridium structures.

Alternatively, the transferability could be increased by
the use of a structure-dependent function in the repulsive
term. In this case, it would seem necessary to include in
E„p some factor which would allow a better fit to other
crystalline forms. An example of such a model was given
for silicon and germanium. In the model, E„p was

Here 4 is a pairwise interaction while u is a structure-
dependent function included to reproduce other crys-
talline energies. The most complicated part of E, p is
the formulation of u; its removal would be a useful sim-
plification both conceptually and computationally.

It is possible to produce a strictly two-body TB model
which describes more than one structure such as Good-
win, Skinner, and Pettifor have done. In their model,
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the tight-binding distance dependence, together with the
parameters in E„p, is treated as a fitting parameter.
Here we wish to show that using the DF values for the
TB parameters and thus the DF distance dependence, we
can reproduce very well the energies and volumes of other
structures from a two-body transferable model when the
intra-atomic tight-binding parameters are included.

The standard nearest-neighbor, orthogonal, two-
center, tight-binding analysis for silicon includes six pa-
rameters. Two are the on-site energy parameters E, and
E„which give the energy for the 8-8 state and p-p state
interactions when both interacting orbitals are located
on the same atom. These are assumed constant when
strictly speaking they depend upon local environment.
H H p Hpp and Hpp are the other four two-
center parameters. Since most systems of interest in-
volve some deviation from the fitted case, the I param-
eters are given some distance dependence and combined
with an angular dependence from Slater and Koster ~ to
give the final matrix elements.

Within the nearest-neighbor two-center approxima-
tion, E, actually depends on the structure

(E,); = sp + P,. I„(r;,) = sp + (I,);,

where sp is the atomic energy and I„(r;j) = (s; IVj Is;) is
the additional interaction from the crystal and is summed
over the nearest neighbors. When all the atoms are
equivalent in a crystal, E, can be written as a constant.
If even one of the neighbors were to move then conceiv-
ably the value of I„would change and so would E, .
E, would also change if the number of nearest neighbors
changed. Away &om the environment for which it was
fitted, E, as a constant would very likely be incorrect.
E& follows a similar pattern sE~. , for .example, can be
written as

(En. )' =»+ ).(l,', Im (r'j) + (1 —l,', )Im (r'j)l
2

= »+ (Ip. )'. (4)

so as to provide local charge neutrality. ' 2 However, lo-
cal charge neutrality is not a concern in ordered crystals
and this technique which implicitly alters I„,I„„,and

Ipp to guarantee charge neutrality would have no eH'ect

in the crystal.
To test the eR'ectiveness of using the parameters. I,

the DF band structure of tetrahedral silicon was fitted
by nearest-neighbor, orthogonal parameters. The pa-
rameters E, and E~ (diagonal elements) were allowed
to vary independently of each other over the fourteen
volumes considered (equivalent to nearest-neighbor dis-
tances ranging &om 2.14 to 2.91 A which covers nearest-
neighbor distances up to and including fcc). The H pa-
rameters were fitted to distance dependent functions of
the form

H(r) = ar ~e""

The values for n, P, and p for the different interactions
are given in Table I. In Fig. 1, the four H parameters
are compared to the previous fitting4 and to a

~&
scaling.

The difference between the previous fit (no I) and this fit
shows the effect of letting E, and E~ vary with distance.
H„~ and H„„do not differ much from the previous fit
while both H„and H,~ tend to fall off less rapidly
with distance. Since this is associated with the increase
in distance dependence. of E, and E~, it is quite likely
that the s orbital interactions with no I parameters were
partially absorbing the behavior of the I parameters.

The distance dependence of E, and E„in the diamond
structure is shown in Fig. 2. I„can be obtained from
E, using Eq. (3), while E„provides I~ and I„z only
in a combined form given by Eq (4). .The combination
depends on the type of structure we have. For the cubic
structures (diamond, sc, bcc, and fcc), the ratio of P. l2.

to P (1 —l;j) is the sa,me. Therefore the combination
could be transfered as E~ to other cubic structures with-
out the individual knowledge of I~„and I~ . For a
structure like P-tin, it is necessary to know I~ and I~
individually and this can be found from the fitting of ei-

Here l;~, m;~, and n;~ are the direction cosines. For sim-
plicity, the sum over neighbors in E, and Ep is written as
I, and I„,respectively. Thus, the parameters E, and Ep
which are usually taken as constant are now open to dis-
tance and coordination dependence through I„,I~&,
and I~& . Ep now equals 2(sp+ pp). There are additional
parameters such as

(p~, ~lHIpy, ~) = ) ~j™~j[ pu~(r*j) up&("~j)l

and

(p;IH Is, ) —) l;.I,„(r, ).

For tetragonal, cubic, and hexagonal crystals these latter
terms s»~ to zero. 6 Therefore I,~ cannot be determined
&om the crystalline data available for Si. We have ne-
glected it in the present study. It should be noted that
the value of E, and hence Ep is altered in some studies

&sst
&spe
Vpp
&pp

ao (eV)
a1 (eV/A. )
ag (eV/A )
a, (eV/g')
a4 (eV/A. )
a~ (ev)
ae (A.)
ag (A)

bp

bg

bg

b3
b4

bg

be

n (eV/A~)
-44.693
18.090
27.692
-31.090
I„~

35.035
-89.837
73.907
-24.943
2.998
0.25
30
2.0
4

-2631.478 eV
5414.843 eV/A
-4333.996/A.
1692.506/A
-322.919/A
24.267/A.
-0.069/A

P
7.176
5.478
-3.121
-0.792

-77.566
101.589
-43.723
6.269

0,0
1

30
2.0

p(A )
-4.022
-2.957

0.0
-1.107
Ippw

138.198 eV
-238.361
153.546
-43.971
4.728

1
30
2.0

TABLE I. Parameters for silicon obtained from fitting to
the band structure and total energy of ab initio calculations.
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TABLE II. Phonon values for silicon compared to a previ-

ous fitting (Ref. 4) and to DFT (Refs. 18 and 19). Frequencies
are in THz.

LTO(r)
LAO(X)
TO(X)
TA(X)

Present model
15.8
11.2
13.0
3.58

Previous fitting
14.7
11.2
14.4
4.5

DFT
15.2
12.2
13.5
4.45

&om the perfect diamond crystal did not give the cor-
rect change of the on-site parameter E, in the phonon
calculation as compared with the results of a TB fit-
ting of the DF eigenvalues for the phonon. This was
also true of Si2. Within the first-nearest-neighbor ap-
proximation, this difference in E, would lead us to the
conclusion that a three-body term is actually necessary.
However, it might also be possible to fix the problem by
including the second-nearest neighbors. The E, behavior
for the phonons and Si2 would certainly change with the
second-nearest neighbors included.

If one stays within the two-center, nearest-neighbor
approximation, these problems could be taken care of
through a relaxation of the requirements that the I pa-
rameters accurately give E, and E~ as described by DF
fitting. The exponential function in the I formulations
was added to reproduce the sharp rise in energy for small
bond lengths seen for Si2. To correct the phonon en-

ergy, the large slope in the diamond nearest-neighbor re-
gion was decreased for each of the I's. The final values,
at the diamond nearest-neighbor distance (2.35 A.), for
the TB parameters are (in eV) E, = —6.50, E„= 3.20,I„=—0.874, I„„=1.069, I„„=—0.460, s = —3.00
and p0 ——3.00. After the I parameters are determined,
the two-body potential in Eq. (8) is recalculated.

Although it did move fcc and sc energies up slightly,
overall the relaxation made little difference to the struc-

tural energies and volumes. This small difference indi-
cates that it is important physically to include the I pa-
rameters while their particular values are not nearly as
important. The dimer Si2 bond length of 2.17 A came out
short, but the energy appears to be quite good. Dynam-
ical results are listed in Table II. The phonons, with the
exception of TA(X) agree very well with DF data. The
value for the shear modulus (cqq —cqz) is also low being
only half of what it should be (as is common among first-
nearest-neighbor TB models which give good phonons ).
In the future, we hope to add second-nearest neighbors
and in so doing allow naturally for the two alterations
mentioned above. In addition, the second-nearest neigh-
bors should provide a better shear modulus.

The intra-atomic parameters I„,I,„,I„~, and I~
can be used to add more ab initio information to a
tight-binding model. The input data are the volnme-
dependent DF eigenvalues and total energies in the dia-
mond structure. Additional qualitative information, due
very possibly &om the first-nearest-neighbor restriction,
was needed from the on-site parameter and total-energy
change in Si2 and with phonon displacements. In gen-
eral, the formulation improves significantly on the tight-
binding energy model by both reducing the complexity
of the repulsive potential and increasing transferability
without the need for nonorthogonality of the TB param-
eters. Results for a number of structures and test cases
showed strong agreement with ab initio data. The pos-
sible advantages of these extra parameters in noncrys-
talline cases are apparent.
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