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We present results from ab initio calculations of the full inverse dielectric matrix of beryllium, from
which we obtain the dynamic scattering cross section. This is shown to be in excellent agreement with
recent inelastic x-ray-scattering experiments, both in overall shape and in precise details of the fine struc-
ture. As the calculations have been performed entirely within the random-phase approximation, this
presents conclusive evidence that band-structure effects are responsible for the observed structure.

In recent years, high-resolution studies' of the x-ray-
scattering cross section of light materials have been made
possible by the advent of brighter x-ray sources and
more-efficient detectors. By applying the fluctuation-
dissipation theorem, direct observations of the dy-
namic density-density response function are possible.
This response function is of basic importance in the
theory of quasiparticle excitations and many-body
theories in general.

Despite this wealth of experimental data, there have
been surprisingly few first-principles calculations of the
dynamic scattering cross section S(q, co), which include
the full effects of the crystal lattice. The original interest
in these systems was prompted by the experimental re-
sults of Platzman and co-workers. These early experi-
ments were performed at a much lower resolution than
the later work of Schulke et al. , and their deceptionally
smooth nature and universal double-peak feature en-
couraged a wealth of theoretical work which attempted
to explain the features in terms of electron-electron in-
teractions within a homogeneous electron gas.

As the simple random-phase approximation (RPA) for
a homogeneous system cannot produce the observed fine
structure, the main thrust of the theoretical work was in-
volved in going beyond the RPA. Green and co-
workers' '" achieved some success by a perturbative ap-
proach, noting that their fine structure arose from terms
involving electron-electron scattering. They managed to
show some correlation between their results and experi-
ment for the main peak and the dip, but the energy posi-
tion of the features was rarely in agreement. They noted
that the data of Platzman and Eisenberger for beryllium
contained a normalization inconsistency and speculated
that this may be due to lattice effects. Mukhopadhyay,
Kalia, and Singwi' incorporated lifetime effects of the
electron-hole pair via the imaginary part of the self-
energy. The resulting fine structure is appreciably small-

er in magnitude than its experimental counterpart but,
for the case of aluminum, ' occurs at approximately the
correct energies.

The universal nature of the double-peak structure dis-
suaded many authors from considering crystal lattice
effects as the source of the fine structure. However, the
relatively recent experimental results of Schiilke et al.
and their use of a simple two-band model to explain at
least the orientationally dependent fine structure in terms
of lattice-induced excitation gaps, seem to present a com-
pelling argument for the band-structure origins of the
structure. Previously, Oliveira and Sturm' had per-
formed a similar calculation by "folding down" the
dielectric response matrix to a two-band model, but had
argued that lifetime effects were so strong at the
Brillouin-zone boundary that there was no evidence for a
double-peak structure.

In beryllium the presence of orientationally dependent
fine structure and its strongly nonjelliumlike pseudopo-
tential mean that band-structure effects are thought to
play a large role. In this paper we show that fully incor-
porating band-structure effects within the RPA dramati-
cally modifies the dynamic scattering cross section to
such an extent that it accounts for all of the observed fine
structure.

The fluctuation-dissipation theorem relates the scatter-
ing cross-section S(q, co) to the density-density correla-
tion function' of the scatterers. This function is in turn
directly related to the inverse dielectric function
e '(x, x'I~), so that"

where P =4m.e /q is the Fourier transform of the
Coulomb potential, and e '(x, x'I co) has also been
Fourier transformed into a matrix eo'G(q, co), where
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6,6' are reciprocal lattice vectors.
The central expression in our calculations is the

independent-particle polarizability go G(q, co), which is
given by' '
gG G(q, co)= —g (n', k~e 'q+ "~n, k+q)4

n, n', k

X (n, k+q~e'q+ "~n' k)
f0(E„~+q) f—0(E„.~)

E„.i, E„i—,+ +fiap+irj '

where n and n' are summed over all the bands at the
point in reciprocal space k, and k is summed over the
first Brillouin zone. fo is the Fermi-Dirac distribution
function, and ~n, k) and E„i, are a suitable set of one-
electron wave functions and eigenvalues. Within the
RPA (time-dependent Hartree theory), g o(q, co) is re-
lated to the inverse dielectric matrix through the matrix
equation e '(q, co)=1+V, (1—y V, ) 'y . A mathemati-
cally equivalent, but computationally more efficient,
method has been formulated by guong and Eguiluz, '

which overcomes the laborious band summation in Eq.
(1).

%e note in passing that a simple way to proceed
beyond the RPA is to replace the second occurrence of
V, in the above expression with an effective potential
V,ir= V, (x—x')+K„,(x,x'), where K„, is the functional
derivative of the exchange and correlation potential,
K„,(x,x')=BV„,(x)/Bn(x'). This functional is usually
approximated by that of an electron gas of density equal
to the density at x, the so-called local-density approxima-
tion. We have included this correction term in several
calculations but, as the differences were typically of the
order of our estimated numerical error of 5%, we will
present results at the RPA level alone in what follows.

The wave functions and band energies used in the eval-
uation of the above equations were generated by a self-
consistent psuedopotential calculation. A norm-
conserving pseudopotential of Kerker type ' was used
to represent the Be2+ ions, which incorporated nonlinear
core exchange-correlation corrections, which
significantly improve the calculated structural properties
of hexagonal close-packed beryllium. We used the exper-
imental values for the crystal structure of c/a =1.568
and a =2.2858 A. The potentials and valence electronic
wave functions were expanded in a plane-wave basis set
containing all waves up to 24 Ry in energy. Brillouin-
zone integrations were performed by sampling a grid of
432 points obtained by symmetrizing a 6 X 6 X4
Monkhorst-Pack mesh. Our calculations were per-
formed within the local-density-functional formalism us-
ing the Ceperley-Alder form of the local-density ap-
proximation for the exchange-correlation potential.

The analytic structure of eci &,(q, co) in the complex en-
ergy plane means that we cannot perform our calcula-
tions at exactly real energies due to the presence of a
branch cut along the real axis. %'e must, therefore, cal-
culate eG &,(q, co) at points close to the real axis in the
complex plane, but with a finite imaginary energy part.
One of the greatest limiting factors in these calculations

must be computational expense. It is very costly to
evaluate eG'G. (q, co) very close to the real axis, as it re-
quires a large number of bands and plane waves to
achieve a given level of accuracy and convergence.

One method of circumventing this problem is to make
use of the analytical structure of eo G.(q, co) and represent
it as a Taylor-series expansion derived from function
values evaluated further from the real axis. These rela-
tively cheap function evaluations can then be used to con-
tinue to discrete q and co points close to the real axis
Due to the smoother nature of eG G.(q, co) at greater dis-
tances from the branch cut, the continued function values
were of a similar accuracy to the explicitly calculated
values. Indeed, tests have shown that the Taylor-series
expansion converged more quickly, with respect to the
number of plane waves used, than did the explicitly cal-
culated function.

It is a well-known phenomenon that the numerical cal-
culation of derivatives in terms of simple differencing of
neighboring function values is a process subject to large
and unpredictable error due to the amplification of small
numerical errors in the calculation. We have circum-
vented this difficulty by taking advantage of the analytic
nature of EGG(q, co) and Cauchy's expression for the
derivative. We follow the work of Lyness and co-
workers ' and evaluate the contour integral numerical-

ly, using a circle of radius r, centered on zo. We use
r =1.4 eV, and have checked that the results are insensi-
tive to varying r over two orders of magnitude. ImtzoI
was chosen sufficiently large to give a useful radius of
convergence, but not so large that a very-high-order Tay-
lor expansion is needed to yield the structure in S(q, co),
which would cause numerical instability. Tests using ex-
plicitly calculated values show that a wide range of values
of ImtzoI are suitable: we typically used 13 eV. By re-
peating this procedure with different values of RetzoI we
cover successive sections of the real energy axis. Making
an appropriate change of variable and inserting the
Taylor-series expansion of eci 'o (q, co), we obtain, for each
element of eG G.(q, co) the Fourier expansion

m —1

ma ~ e 2sijn mE
—

(q, z +rei2wjlm)
n GG' ~ 0

j=0

where a„ is the nth-order derivative, and n runs from 0 to
m —1. From the above, we see that the approximation
requires m function values for its evaluation, which then
yield m —1 derivatives. In our calculations we used a
value of 10 for m. It should also be noted that, unlike the
simple differencing methods, all the function evaluations
contribute to the calculation of each derivative. For ex-
ample, the first derivative which might normally be cal-
culated with just two function evaluations, is here evalu-
ated with ten, yielding much improved accuracy for the
most important term in the Taylor-series expansion.

The fundamental expression, Eq. (1), contains explicit
summations over bands and k points, and an implicit
summation over the number of plane ~aves we use to ap-
proximate the true wave functions. Our calculations
have shown that as few as 23 plane waves and 20 bands,
which span an energy range of 64 eV, reproduce a
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FIG. 1. Typical results for S (q, co) in this case for
~q~= 1.119 a.u. ' parallel to the 100 reciprocal lattice direc-
tion. The arrows indicate the positions of dips due to the G200
family of planes predicted by a simple model calculation (Ref.
9). Also shown are the equivalent calculations performed with
either free-electron wave functions or energies instead of the
beryllium ones.

FIG. 2. Comparison of the experimental data of Schulke
et al. (Ref. 9) (small dots) and theoretical calculations (smooth
lines). It should be noted that, although the directions of the
various q used are identical, the actual size of q is the closest
possible match with the experimental value, so interpolation is
necessary to compare some of the graphs. The arrows indicate
the predicted positions of dips due to the various members of
the 6200 family of planes predicted by a simple model calcula-
tion (Ref. 9).

sufficiently converged S(q, r0) for our purposes (so that
the peak positions are converged to within 0.5 eV). In or-
der to test the dependence of our results on the number of
k points in the summation (1), we also used a data set
containing half our usual number of 432 k points in the
Brillouin zone: this produced a maximum change of 7%
in S ( q, co ), which is of the order of our predicted error.
The position and relative size of the fine structure
remained essentially unaltered. By restricting ourselves
to a discrete mesh of k points we also limit the values of
q (=k —k') we can use, and therefore in the graphs
which follow the magnitude of q is the closest possible
match with the experimental values for each direction of
q coinciding with a prominent reciprocal-lattice vector.

We present our results in a similar way to those of
Schulke et al. which are, to our knowledge, the only ex-
perimental results of sufficient resolution. Figure 1 illus-
trates the general trends seen in our calculations. Our re-
sults are in good agreement with the experimentally ob-
served ones, with both showing a shift in the weight of
S(q, co) to lower energies than predicted by the RPA for
jellium. The dip is within 6% of that predicted by excita-
tion gaps across Bragg planes in a simple two-band mod-
el, in this case that arising from the Gp2p plane. Also
marked is the predicted dip position for the G2pp plane,
and it is a general feature that the major components of
the fine structure can be attributed to the dips created by
these two Bragg planes. The simple model predicts gaps
rather than dips because of its neglect of the other com-
ponents of the crystal potential or the fact that beryllium
has more than one conduction band.

Figure 2 shows both the observed and calculated
S (q, co) for the directions (100) and (110) in the hexagonal
reciprocal space. While the positions of the predicted
dips due to the Gp2p and G2pp planes serve to show that
much of the fine structure is generated by these two
planes, it should also be remembered that these positions
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will be modified from the simple two-band model in the
general case. Overall our calculations reproduce the en-
ergy dependence of the structure extremely well and it is
only the distribution of weight into these features which
differs from experiment.

In order to discern the exact origin of the fine structure
in our calculations, we consider separately the contribu-
tions of the matrix elements and the energy denominators
in (1). To do this we have repeated the calculation re-
placing first the wave functions

~ n, k ), and then the band
energies E„&, by their free-electron counterparts. This
analysis is shown for q =1.119 a. u. ' in Fig. 1, and it is
clear that it is the inclusion of the correct beryllium ener-

gy denominators which is the chief origin of the struc-
ture.

In conclusion, we have established that band-structure
effects alone can account for all the fine structure in the
dynamic scattering cross section of beryllium, most of
which arises from nearly-free-electron modifications of
the energy denominators arising from the Gp2p and G2pp
components of the lattice potential. Indeed, calcula-
tions ' performed on aluminum, whose pseudopotential
is considerably weaker than that of beryllium, have re-
vealed that the observed double-peak structure in its
S(q, co) can also be attributed to crystal lattice effects. It
would seem that the contribution of the pseudopotential
in modifying the free-electron behavior of simple metals
have been previously underestimated.
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