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Exciton binding energies and oscillator strengths
in a symmetric Al Ga& As/GaAs double quantum well
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Within the framework of the e6'ective-mass approximation, we have used an improved three-
parameter trial function to calculate the exciton binding energy for both the ground state and
the excited states in a symmetric double quantum well. When comparing our results with those
derived with the commonly used one-parameter trial function, we found that the binding energies are
improved significantly, especially for the excited states. Our calculated exciton transition energies
agree well with the measured photoluminescence-excitation (PLE) spectra. We have also calculated
the oscillator strengths. By comparing our results with the oscillator strength derived from the PLE
spectra, we find good agreement for heavy holes, but less satisfactory agreement for light holes.

The physical properties of superlattices and single
quantum wells have attracted much attention in the liter-
ature. Recently, the electronic and optical properties of
the double-quantum-well (DQW) have received increas-
ing interest. One of the central themes concerns the en-
hancement of the exciton binding energy due to the con-
finement of the electron-hole pair wave function in a het-
erostructure. If the binding energy becomes comparable
to the thermal energy at room temperature, such a situ-
ation will be of great interest to electro-optical devices. 3

Various approaches have been used to study the exci-
ton in quantum well systems. For typical well widths
of experimentally investigated single quantum well sam-
ples, the energy separation between subbands is much
larger than the exciton binding energy, and therefore the
binding energy of the exciton ground state is hardly af-
fected by the higher lying subband states. 6 ~ However,
for DQW's the situation can be quite different.

Let the interfaces of the DQW system be parallel
to the zy plane. Within the effective-mass approxima-
tion (EMA), the potential along the z axis for electrons

(or holes) in the conduction (or valence) band is shown
schematically in the inset of Fig. 1. If the central bar-
rier is sufficiently wide the excitons in different wells are
practically uncoupled. When the barrier width is reduced
the excitons in the two wells begin to interact, and the
theoretical analysis in the present paper is restricted to
symmetric structures of such kind.

We start Rom a single quantum well which has one
electron energy level e„one heavy hole level epp, and one
light hole level etb. When two such wells are separated by
a finite barrier, the splits between the pairs of hybridized
en~~gy l~~~l~ ~,2-~,~, ~qq~-~qq2, and ~~q~-~~q2 depend on
the barrier width. One can tailor-make a structure such
that these energy splits are comparable to the exciton
binding energy in a single quantum well. Consequently,
the excited states in a DQW can be of great importance
to the exciton binding energy.

It has been recognized that the spherically symmet-
ric single-exponential envelope function commonly used
for the excitonic ground state in a bulk semiconductor is
not suitable for the excited states. Due to the symmetry
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FIG. 1. Exciton binding energy as a func-
tion of well width for fixed barrier width
of 14.15 A.. Solid curves are three-parameter
trial function results, and dashed curves are
one-parameter trial function results.
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breaking along the direction perpendicular to the inter-
faces, such s-like envelope functions are also improper
even for the excitonic ground state in quantum wells
systems. ' For example, in a strongly coupled DQW,
a sizable contribution to the exciton ground state bind-
ing energy comes from the configuration in which the
electron and hole are con6ned in diferent wells. In this
paper we will use an improved trial function to calcu-
late the exciton binding energy for both the ground state
and excited states. We further calculate the oscillator
strengths.

The DQW has translational symmetry in the xy plane.
According to the envelope function theory the normalized
single particle wave function can be written as a product
of a plane wave in the xy plane, and the envelope y„„(z),
in the growth direction z. In our case we will limit our-
selves to three bands (v=e, hh, lh); e for electrons in the
conduction band, and hh {or lh) for heavy holes (or light
holes) in the valence band. Since in a heterostructure the
heavy and light hole bands are split, we will ignore the
mixing of heavy and light hole states. The two excitonic
states of electron —heavy hole and electron —light hole are
therefore decoupled and can be treated separately. To
simplify the notation without causing any confusion, we

can therefore use the subscript v=h for either heavy hole
or light hole. The several subbands in the DQW sys-
tem are labeled by the subscript n. The subband states
y„„(z) are found with the transfer matrix method.

Including the Coulomb interaction between the
electron and the hole, the excitonic Hamiltonian,
H=He+Hg+Heg) consists of the single-particle part

H„= + V„(z„)
—h2 8 1 0

2 Zv mvz Zv

for v=e and h, and the electron-hole interaction part
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where m, is the longitudinal effective mass and p~
the reduced transverse effective mass of the electron-hole
pair. The electron and hole coordinates are r, = (p„z,)
and 7"h = (ph, zh), with the relative distances 7=r", —rh
and p=p, —ph. The potential V, (z, ) [or Vh(zh)] for elec-
trons (or holes) in the conduction (or valence) band is
schematically illustrated in inset of Fig. 1. The kinetic
energy operator of H„ is expressed in its proper form,
and the corresponding matching conditions 5 8 will be
used when solving the eigenvalue equation H„y „(z ) =
~-X-(z-).

To study the characteristic features of excitons in a
DQW, it is sufficient to have only two bound
states y„i(z„) and g„2(z ). Let us define pi(z„zh)=
tel (Ze) Xhl (Zh) & P2 (Ze &Zh) tel (Ze) gh2(Zh), $3(Ze &Zh) =
ye2(z, ) )t hi (zh), and $4(z, zh) =ge2 (z, )yh2 (zh) With.
proper trial envelope functions

the variational wave functions for both the electron—
heavy hole and the electron —light hole excitonic state can
be constructed as

g(7„7h) = F(p, z) ) C p (z„zh) .
en= 1

(2)

In (1), the p/us sign in front of (z/o. ) is not obvious, but
our calculation shows that this is the correct sign. The
excitonic state (2) contains seven variational parameters
o., Al, A2, and C s, which are determined by minimizing
the energy E = (@(r„rh)]H]g(7"„rq)), subject to the
normalization constraint {g(7„rh)]g(7'„rh))=1. If we
minimize E first with respect to the coefficients C, we

get the eigenvalue problem

) [Hi —E S( ]C =0,
m=1

where Hi~ {PiF~H——]FP~) and Si~=(gi F[FQ~). If the
matrix elements H~ and S~ are known, the four eigen-
solutions can be easily derived. However, these matrix
elements depend on Al, A2, and o., the optimum values of
which need to be determined numerically. Without going
into details we will just brieQy sketch how this is done. By
use of the symmetry of the DQW, the eigenvalue problem
can be decoupled into a symmetric and an antisymmet-
ric part, which can be treated further in equivalent ways.
Let us consider the two symmetric eigenstates with en-
ergies E,l and E,2. In principle, the minima of E,l and
E,2 correspond to two different sets of (Ai, A2, n) values,
but we have approximated them equal for the two states.
However, the parameter-set should minimize both E,l
and E,2 simultaneously, which we have obtained by min-
imizing the object function 0.9E,l+0.1E,2. This gives
results very close to the true minima.

Our theoretical results will be compared with the mea-
sured photoluminescence-excitation (PLE) spectra, for
which the transition from the initial state to an anti-
symmetric exciton state is forbidden. Hence, we will

present only the calculated energies Ehhl) Ehh2) E)hl)
and E~h2 for symmetric exciton states. PLE experi-
ments have been performed on two series of symmet-
ric Ala 3Gao 7As/GaAs DQW samples with varying well
width but fixed barrier width 14.15 A (five monolayers),
and 19.81 A (seven monolayers). 2 We will only show re-
sults for the 14.15-A samples, while the results for the
others are similar.

The calculated exciton binding energies
EB,hhl =Chhl +Re 1 Ehh1 ) EH, hh2 Chh2+ Ce2 Ehh2 )

E~ ]hi =6)hi+Eel —E)hl) and Egg ]h2=E]h2+Ee2 —E]h2 are
shown as solid curves in Fig. 1. E~ hhl and E~ ~hl cor-
respond to states where we have a high probability for
the electron and hole to be in the same well, thus for
in6nite well width the binding energies will approach the
values of bulk GaAs. On the other hand, for E~ hh2 and
E~ jh2 the electron and hole are in opposite wells, hence
the binding energy approaches zero. These features are
clearly indicated in Fig. 1. In the opposite limit of very
narrow well width, the decrease in the binding energy
of E~ hh2 and E~ ~h2 is due to the reduced con6nement
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of electron and hole as the energy levels approach the
continuum above the barriers. We have also used a one-
parameter trial function where we have set A2 ——Ai and
1/a = 0. The so-obtained binding energies shown in Fig.
1 as dashed curves exhibit a decrease of about 0.5 to 1
meV (6—12%) for the hhl and lhl states, and about 1
to 1.5 meV (12—35% depending on well width) for the
hh2 and lh2 states. It is reasonable to believe that our
improved wave functions, which give much larger binding
energies, should also lead to improved calculations of the
oscillator strengths.

Figure 2 shows the PLE experimental resultsz for the
series of samples of barrier width 14.15 A.. The well width
of each sample is indicated next to the corresponding
data curve. The peak at the lowest photon energy is the
measured Ehhq, which is larger than our calculated Ephor

by an amount between 1 meV and 8 meV. Since the vari-
ational ground state energy cannot be lower than the true
ground state energy, this discrepancy, remarkably small
compared to the band gap 1955 meV of A1Q 3Gao7As,
is most likely caused by the sample structure depen-
dence of the band gap and the band-offset parameter
Q. Therefore, when comparing with experimental re-
sults, for each sample we have shifted the zero reference
energy by the amount indicated in parentheses, in order
to bring the calculated Ei,hi in agreement with the mea-
sured one. Our calculated energies Ehh&) E]hgy Ehh2& and

E~h2, marked in Fig. 2 by vertical bars, agree well with
the measurement. With increasing well width, all ener-

gies approach the bulk GaAs values, and Eii,i and Ehh2
get very close to each other. We should mention that for
the samples of 19.81 A. barrier width, Eii,i and Eh~2 even
cross at well width about 70 A. .

We will now turn to the oscillator strength calcula-
tions. The initial state @, is the ground state of an in-
trinsic semiconductor at zero temperature with a filled

valence band and an empty conduction band. 4f is the
final state after absorption of a photon. @; and 4'y are
N-particle states. Then, the absorption coefficient can
be calculated Rom the golden rule as

Here Io is the incident light-intensity, and N/S is the
two-dimensional particle density in the wells. From the
theory of interband absorption s the matrix element
has the form

x dP' „- r A p

where P is the single-particle Bloch function and

A(k„kq) the Fourier component of the exciton wave

function (2). Then, following the standard theory of exci-
tons, we calculate the matrix elements. It is important to
point out that although the final states in general have
different energies, for a large range of well widths the
measured Ehh2 peak and the Eihi peak coincide, caus-

ing uncertainty in the interpretation of the experimen-
tal data. In order to be able to compare with exper-
imental data, we first calculate the oscillator strengths
ahhi, o.hh2, o.ihi, and aiiI2 of the four corresponding ex-
citon states. Then, the calculated ratios ahh2/ahhi and
aihz/alai are compared with the corresponding measured
values. Our theoretical results are shown in Fig. 3 as
solid curves for samples of barrier width 14.15 L, together
with the experimental results derived by Westgaard et
a,L Rom the spectra in Fig. 2.

Westgaard et u/. have also calculated the ratios of
the oscillator strengths which we reproduce in Fig. 3.

~ eel

~ M

V

I

1500 1550 1600 1650 1700
Photon energy (meV)

39.6

(4.4)

59.4

(7.1)

79.2

(o 5)

99.1

3.8)

124.5

(0.6)

149.9

(2.4)

1750 1800

4
Q

0
cO

0
Q

c0

0.8-

0.6-

04

0.2-

I I I

hh (experiment): =

lh (experiment)::
hh (LC theory)
lh (LC theory)---

hh (%Z theory)-----
ory) —-

40 60 80 100 120 140 160 180
%ell width (Angstrom)

FIG. 2. PLE spectra of a set of samples with fixed barrier
width of 14.15 A. The well width of each sample is indicated at
the right-hand side. Vertical bars mark the calculated exciton
transition energies, with a shift of each spectrum to fit the
E&hz peak. The amount of shift is given by a number in
parentheses.

FIG. 3. Relative oscillator strengths (hh=cIhhg/c1hhl and
ih=cuh2/nII, q) as functions of well width for fixed barrier
width of 14.15 A. Our theoretical calculations are indicated
by (LC theory) and the results of Westgaard et al. (Ref. 2)
by (WZ theory). The measurements are also &om Westgaard
et aL
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In their calculation they have approximated the initial
states with a constant and the final states with a one-
parameter trial function. The difference between the two
sets of theoretical curves must be ascribed to the dif-
ferent wave functions and methods of oscillator-strength
calculations. The ngh2/crhhq ratios of our calculation are
within the error bars and agree with the experimental
data better than the theoretical results of Westgaard et
at. However, our a~g2/o. u, q ratios do not fit as well with
experiment as the results of Westgaard et al. , contrary
to expectation, since we use a more advanced calcula-
tion. We have no definite explanation for this, but we

suspect that Westgaard et aL have underestimated the
error in the oscillator strengths due to the effect of the

background level of the data. By a visual inspection of
the experimental data (Fig. 2) we see that the light-hole
peaks are generally smaller than the heavy-hole peaks,
and a background level will therefore have a larger inHu-

ence on light-hole than heavy-hole oscillator strengths.
In conclusion, we find a good agreement with experi-

ments for the heavy-hole oscillator strengths but a poor
agreement for light holes.
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