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We describe an efficient Monte Carlo simulation of profile decay via surface diffusion on a (1+1)D
square-lattice system with suppressed roughening. Our algorithm takes advantage of analytical results
for a one-dimensional random walker and is valid in the low-temperature limit of noninteracting activat-
ed walkers. We find that an initially sinusoidal profile decays nonexponentially with a characteristic de-
cay time which increases with the initial amplitude. At a fixed ratio of initial amplitude to wavelength,

the decay time 7 increases with wavelength A as 7~

AS.SiO.l

. In this model, profile decay arises from ir-

reversible decay of the peak and valley terraces rather than from step-step interactions.

How does a corrugated surface on a crystalline solid
relax toward equilibrium? The dominant relaxation
mechanism is often surface diffusion. Above the
roughening temperature 7,, a continuum picture is ap-
propriate and the surface-mass current is driven by gra-
dients in the surface curvature.! The continuum model
predicts that corrugations of wavelength A decay ex-
ponentially with a time constant 7~A*, a prediction that
has been verified by profile decay experiments on metal
surfaces3 at T>T,. At T <T,, corrugated metal sur-
faces are observed to form facets,* but the scaling of the
decay time with wavelength has not been established.
Monte Carlo simulations>® of profile evolution via sur-
face diffusion at T < T, have produced a rich array of de-
cay characteristics, but neither clear evidence of faceting
nor a simple scaling of the decay time has been observed.
These simulations have employed various simplifying as-
sumptions in order to reduce an otherwise intolerable
computation time. Analytical efforts to describe smooth-
ing dynamics via surface diffusion at T < T, include ther-
modynamic models, which treat the crystal as a continu-
um,”® and microscopic models, which include the effects
of the atomic lattice.’”!! The microscopic models as-
sume that the profile decay is driven by a long-ranged
repulsive step-step interaction due in part to strain fields
surrounding atomic steps and in part to configurational
entropy due to wandering of the step edge.'? These mi-
croscopic models predict no decay in the absence of such
a step-step interaction, in marked contrast to our results.
Here we describe a Monte Carlo method to simulate
profile decay via surface diffusion at low temperatures in
a model system with a one-dimensional (1D) substrate.
In this model, the decay is due to an irreversible decay of
the peak and valley terraces, rather than step-step repul-
sion.

The system we consider is a square lattice solid-on-
solid model with one substrate dimension and height
(14+1)D. The surface of a (1+1)D crystal roughens at
nonzero temperatures, but, like previous investiga-
tors,”!! we artificially suppress roughening in order to
approximate the smoothing dynamics of a (2+1)D crys-
tal with straight parallel grooves at T <7,. In our
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(1+1)D model, only kink-site atoms are allowed to ac-
tivate and become wandering adatoms. Surface atoms
not at kink sites are not allowed to activate, and, conse-
quently, roughening of this (1+1)D surface does not
occur. We further assume that the temperature is
sufficiently low that activated adatoms may be considered
noninteracting. In this low-temperature regime, we find
that profile decay is nonexponential with a characteristic
decay time, which increases with the initial amplitude of
the modulation. At a fixed initial amplitude, the decay
time 7 increases with the wavelength A as 7~A%1%1 At
a fixed ratio of initial amplitude to wavelength, the decay
time increases as 7~A3>T%!  Faceting (or at least ex-
treme surface flattening) is observed, and after an initial
transient, the decay of the profile is shape preserving.

We assume first- and second-nearest-neighbor interac-
tions only, so that the potential near a monatomic step
has the form shown in Fig. 1(a), with a deep well at the
base of the step, shallow wells far from the step, and a
barrier-height asymmetry A=>0. At any temperature
T >0, a kink atom trapped in the deep well at the step
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FIG. 1. (a) Step potential for triangular and square lattices.
(b) Possible trajectories of an activated kink atom.
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will detach after a mean time 7,,,, and will either activate
out onto the lower terrace with probability O or up onto
the upper terrace with probability U, where O +U =1.
Because of the asymmetry in this potential, U <O and
U/O=e P2 where B=1/(kgT). Also because of the
asymmetry, an adatom approaching the step from the left
will reflect with a probability k, while an adatom ap-
proaching from the right will not reflect and will be cap-
tured in the well. The barrier asymmetry A, the
reflection probability k, and the temperature are related
by k =1—e P4, Consequently, U, O, and k are related
by U/O0 =1—k.

An important difference between this (1+1)D model
and the corresponding (2+1)D model is the absence of
long-ranged interactions between steps in (1+1)D. In a
(2+1)D cubic-lattice model, step ledge wandering due to
kinks arrayed along the step ledge (into the page in Fig.
1) leads to an effective entropic repulsion between step
ledges, even in the absence of direct energetic interac-
tions. However, this degree of freedom and its entropy
are absent in the (1+1)D model.

In a real metal, the terrace corrugation E, [Fig. 1(a)] is
small compared to the kink-well depth E;, and so the
time for an adatom to random walk across a terrace is
fast compared to the mean time for a kink atom to de-
tach. As a result, at low temperatures, the rate-limiting
step in mass flow is the detachment of kink atoms and
there is rarely more than one adatom on a terrace at any
time. The condition that the random-walk time is much

less than the kink-detachment time is L2’ ' <<eﬂE",
where L is the terrace width in units of the lattice
constant. Thus, the regime of noninteracting walk-
ers is kBT<(Ek"‘Et)/(Zh’lL)gEk/(ZlnL) Takmg
L =10-100 leads to kzT <E, /10. For low-index Ni
surfaces, E, ~0.7-0.8 eV,!* and the low-temperature re-
gime is approximately 7' <3 T nejging-

The basic idea behind our simulation is that, instead of
simulating the entire random walk between the initial and
final positions of an activated walker, one can move the
atom directly to the final site with the appropriate proba-
bility and then advance the time by an amount propor-
tional to 74,. Consider the behavior of an atom at a kink
site on the stepped surface of a square lattice as shown in
Fig. 1(b). When the atom detaches from the kink site, it
will execute one of four trajectories: (1) Activation onto
the lower terrace, followed by an unbiased random walk,
and after zero, one, or more reflections at the step down
(x =++L,), a final return to the home kink site. (2) Ac-
tivation onto the upper terrace and after a random walk
and some reflections at the home step (x =0), a final
transmission through the barrier, and a return to the
home kink site. (3) Activation onto the lower terrace,
some reflections at x =+L,, a hop down to the next
lower terrace, and capture at the lower step. (4) Activa-
tion onto the upper terrace, a meandering walk and some
reflections at x =0, and a final capture at the upper step
at x =—L,. Trajectories (1) and (2) result in no surface
current, (3) results in a “‘downhill” rightward mass flow,
and (4) results in an “uphill” leftward flow. The problem
of an unbiased random walker in 1D surrounded by
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FIG. 2. Kink environments and probabilities of motion on
the top and bottom terraces.

reflecting or absorbing barriers can be solved exactly.'*
Defining 7;,=1—(1/L,) and ,=1—(1/L,), we find for
the probabilities of the four trajectories (see the Appen-
dix),

L(1—k)+k(1—7,) (1—k)
szon U . P,= Ul ’
(1—mn,k) (1—m,k) 1
p =0 (1=k) _U_ 1 W
"L, (1—qk) > Tt L, (1—qk)

where k is the probability of reflection from a step down,
P, is the probability of process (1), P, is the probability of
rightward process (3), etc. For the special case of ter-
races of equal width (L,=L,), the step-potential condi-
tion (U /O =1—k) leads immediately to P,=P,. In this
case, the reflection coefficient k just cancels the tendency
toward ‘“downhill” flow and there is no net surface
current. However, when terraces have unequal width,
the balance is broken and there is a net mass flow toward
the direction of higher step density.

Kinks on the top and bottom terraces of a corrugated
surface have different environments than those on the
sloping hillsides and have different movement probabili-
ties, as shown in Fig. 2. We argue that the behavior of
the top and bottom terraces is essential for profile decay
in this model. Because of the condition of noninteracting
adatoms, island nucleation is forbidden, and so when a
top terrace completely decays, it can never reform. Fur-
thermore, because nonkink atoms are not allowed to ac-
tivate, the bottom terrace of atoms, once filled, can never
empty. Thus, over time, the top terrace acts as a net
source of walkers and the bottom terrace acts as a sink,
resulting in profile decay even though the hillsides have
no bias toward downhill flow.

We first describe the details of the simulation when the
surface modulation consists of monatomic steps separat-
ed by wide terraces. We will then discuss how the simu-
lation is modified to include steeply sloped surfaces with

FIG. 3. An abandoned adatom on a top terrace.
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FIG. 4. Surfaces of the triangular and square lattices and the
corresponding surface potential.

closely spaced steps. The evolution of our square-lattice
system is entirely determined by the initial surface profile
and the single input parameter k, which is a measure of
the temperature or the barrier asymmetry. The equations
U/O=1—k and U + 0O =1 allow one to eliminate U and
O in favor of k: O =1/(2—k), U=(1—k)/(2—k). The
probabilities that a particular kink atom will move to the
adjacent right or left step upon activation depend on the
environment of the kink, that is, the distances L, and L,
to the steps on the right and left and whether those steps
are up or down. Our simulation begins with a listing of
the N Kkink sites, their environments, and their probabili-
ties P, and P, for right and left movement. Next, a kink
is chosen at random from the list and that kink either
moves to the right with probability P,, or it moves to the
left with probability P;, or it remains unmoved with
probability P,+P,=1—(P,+P;). Regardless of the
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movement, the time is advanced by an amount 7,,/N
which is the mean time between successive kink detach-
ment events in the whole system. If the kink atom does
move, the local topology and possibly the number N of
kinks are changed. The list of kink sites, their environ-
ments, and the movement probabilities are then updated,
another kink atom is chosen at random from the list, and
the cycle repeats.

When the top terrace on a hill is reduced to two atoms,
movement of either atom down the hill results in a
remaining single adatom which, in a real system, would
immediately random walk until it is captured by a step
(Fig. 3). Our simulation checks for abandoned adatoms
after every hop and moves the adatom to the right or left
step down with the probabilities appropriate for a ran-
dom walker between reflective barriers,

T 24H(L,+L)(1—k)’

Plzl“'Pr, (2)

where, as in Fig. 3, L, and L, are the distances to the
right and left steps.

In a simulation of this type, one must decide how to
handle the interaction of steps when the terrace width is
small. We have decided to make the sloped (11) face of
the square-lattice stable and equivalent to the flat (10)
face. Adatoms are allowed to wander freely on both the
(10) and (11) surfaces. Surface atoms of the (11) face are
not kink atoms and are not allowed to detach. In this
way, our square lattice system accurately mimics the ex-
pected behavior of a triangular lattice. As shown in Fig.
4, the flat and sloped surfaces of a faceted triangular lat-
tice are equivalent, and an adatom should random walk
on the two surfaces in an identical manner. In the tri-
angular lattice, kink atoms are those with exactly three
nearest neighbors (NN’s), while in the square lattice we
define kink atoms at those with exactly two first NN’s
(one below and one to the side) and two second NN’s
(both below). Wandering adatoms are captured at the
well sites, marked with X’s in Fig. 4. In a triangular lat-

FIG. 5. Mean scaled amplitude vs scaled
time for systems at k =0.9. A4, =A/(27) is
the maximum possible initial amplitude con-
sistent with monatomic steps.
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FIG. 6. Scaled decay time vs scaled initial amplitude
Ao/ Amax- The decay time is the time to decay to 1+ of the ini-
tial amplitude measured in units of the mean kink-detachment

time.

tice, a well site is an empty surface site with exactly three
first NN’s; in the square lattice, a well site is one with ex-
actly two first NN’s (one below and one to the side) and
two second NN’s (both below). With these definitions of
kink atoms and well sites, the (11) face of the square lat-
tice is equivalent to the sloped face of the triangular lat-
tice. Both possess a kink atom and a reflective barrier at
the top edge, and both possess a well, but no kink, at the
bottom edge. On a square-lattice surface with both (10)
and (11) faces, kink atoms detach and wander to adjacent
wells, rather than to adjacent steps, and we must consider
how to alter the probabilities P, and P, of right and left
motion. A surface with monatomic steps separating (10)
terraces always has reflective barriers attached to well
sites, while a surface with both (10) and (11) faces has
some reflective barriers which are separated from well
sites, but they still come in pairs. It can be shown that
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the probability that a kink-site atom will detach and ran-
dom walk to an adjacent well is independent of the posi-
tion of a reflective barrier between the initial and final
sites. Thus, our modified simulation uses exactly the
same probabilities P, and P, as before, but with L, and L,
now interpreted as the distances to adjacent wells, rather
than adjacent steps. With this method, double steps and
surfaces steeper than the (11) face cannot form.

We now turn to the results of our simulations. The ini-
tial profile is a discretized sine wave of wavelength A and
initial amplitude A4, < 4_,, =A/(27). Initial amplitudes
Ay> A, are not allowed since these would result in
faces more steeply sloped than the (11) face. Figure 5isa
plot of the mean scaled amplitude 4/A4,,, vs scaled
time for various wavelengths and initial amplitudes, all at
k =0.9, which corresponds to a temperature of
kgT =0.434A. Our system has a substrate of length
8192 with periodic boundary conditions, so the number
of wavelengths averaged varies from 128 cycles of A=64
to 32 cycles of A=256. The unit of time is the mean de-
tachment time 74,. We see that, at fixed ratio of initial
amplitude over wavelength, the decay time scales as
A*3%01 3 result not previously predicted. A similar plot
of absolute amplitude A vs scaled time shows that, at
fixed initial amplitude, the decay time scales as A>°%! a
result predicted in Ref. 10 for 2D (bidirectional) grooves,
but not 1D grooves. The decay is nonexponential with a
characteristic decay time which increases with the initial
amplitude, as shown in Fig. 6, where the decay time is
defined as the time for the mean amplitude to fall to + of
its initial value.

Figure 7 shows the time evolution of the average
profile for a system with A=256, 4o=A_ .., and kK =0.9.
The initial sine-wave profile very quickly evolves to a
shape with flattened peaks and valleys. After the initial
transient, the profile evolution is shape preserving (inset,
Fig. 7), a result also found in the analytical treatment of
Ref. 11.

Finally, we return to the question of what drives the
profile decay in this simple (1+1)D model. We have ex-

FIG. 7. Time evolution of the mean profile
for A=256, averaged over 32 wavelengths.
The inset displays the profiles scaled to have
equal areas, showing that the evolution is
shape preserving.
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FIG. 8. Coordinate system for an adatom on a terrace of
width L.

plored the behavior of our model for various values of k
between 0 and 0.99, and we find similar results at all
values including k =0, which corresponds to no barrier
asymmetry. Hence, the decay is not driven by the step-
potential asymmetry. Nor is it due to any long-ranged
step-step repulsion, which is manifestly absent in our
model. Instead, the decay is due to random fluctuations
coupled with the irreversible behavior of the top and bot-
tom terraces. Most of the time the system explores
configurations with equal numbers of terraces and steps,
and hence equal energies and nearly equal entropies, and
there is little or no driving force. However, the system
occasionally stumbles upon a state of lower free energy
when the number of terraces is reduced by one and there
are suddenly two less steps in the system. The evidence
for these statements is that the sizes of the top and bot-
tom terraces are observed to fluctuate in a random
manner. A top terrace W atoms wide requires about W?
exchanges with the second terrace before it decays to
zero length and similarly for the bottom terrace. The
system’s free energy thus decreases in a discontinuous
manner, not like that of a ball rolling down an inclined
plane, but like that of a random walker on a terrain con-
sisting of terraces separated by steep cliffs, with the walk-
er occasionally falling down a level. This picture differs
qualitatively from previous analytical treatments’!! in
which step-step repulsion provides a continuous driving
force or profile decay. We emphasize that the absence of
step-step repulsion is an artificial feature of our (1+1)D
model and that in (2+1)D systems step-step repulsion
certainly exists due to the entropy of step wandering.
However, our simulation demonstrates that such a step-
step interaction is not a requirement for profile decay.
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APPENDIX

Here we calculate the probability P, in Eq. (1) for the
movement of a kink atom to the adjacent downhill step.
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The other movement probabilities in Egs. (1) and (2) are
computed similarly. As shown in Fig. 8, we consider an
adatom starting at position x =1 after having just been
activated from position x =0 out onto a terrace of width
L. The adatom commences an unbiased random walk
and completes its walk when it is trapped by one of the
two sinks at x =0 and L. A partially reflecting barrier
with reflection probability k is at the step down between
x =L —1 and L. This is a Markov process and we can
find the probability that the walker is absorbed at x =L
by setting up rate equations. In setting up these equa-
tions, it is useful to imagine a continuous flow of nonin-
teracting atoms emerging from a source at x =1 and then
random walking among scattering centers at
x =1,2,...,L —1 before disappearing at sinks x =0 and
L. We ask what fraction of atoms are absorbed at x =L,
in the steady state. Let ¢ be the rate at which atoms are
emitted by the source at x =1; let N; be the rate at which
atoms arrive at (are scattered from) position x =i; and let
ay and a; be the rates of absorption at x =0 and x =L,
respectively, so that ¢ =a,+a; and a; /c is the probabil-
ity of absorption at L. The probability which we seek is
then P,=0(a; /c) where O is the probability of activa-
tion of the kink site atom from x =0 to x =1. The rate
equations for this problem are

N
C 1
a=5+ (A1)
N,=N,/2, (A2)
N, N
C 1 3
= 143 A3
N, 2 2 5 (A3)
N, =22 + e (A4)
37 ) ) , €tc.,
N, _
aL=~——L2———1-(1—k) . (AS5)

From (A1)-(A4), we have N, =2a,—c, N,=4a,—2c,
N;=6a,—4c, Ny=8a,—6c, etc., which leads, by induc-
tion, to

N,=2iay—2(i—1)c , i=2,3,4,...,(L—1). (A6)
From (A5) and (A6) we get
a; =(1—k)[(L—1)ag—(L —2)c] . (A7)

Using ¢ =a,+a; to eliminate a, from (A7), we have
finally
ar (1—k)

¢ 1+(1—kXL—-1) "

(A8)
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