PHYSICAL REVIEW B

VOLUME 49, NUMBER 12

Surface-enhanced second-harmonic diffraction: Selective enhancement by spatial harmonics

Andrew C. R. Pipino, George C. Schatz, and Richard P. Van Duyne
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
(Received 18 October 1993)

Surface-enhanced second-harmonic diffraction from a corrugated silver surface is studied as a function
of the Fourier decomposition of the surface profile. Numerical results are obtained using the reduced
Rayleigh equations for the linear and second-harmonic fields. Scattering of the surface-plasmon-
polariton (SPP) -enhanced, evanescent nonlinear polarization wave into radiative channels is shown to
provide a sensitive probe of spatial-harmonic content. The presence of a specific higher harmonic in the
surface profile allows preferential scattering of the enhanced nonlinear polarization into a certain
diffraction order where a higher-order scattering mechanism might otherwise be operative. The propa-
gating orders can thereby be selectively enhanced, in some cases, by many orders of magnitude. Calcula-
tions are presented for symmetric profiles and a range of grating periods. The nature of these selective
enhancements suggests that optimized profiles for second-harmonic diffraction into a particular order
can be formed by a superposition of two appropriately selected Fourier components. To explore this
possibility, gratings with groove densities of 1200 and 1290 grooves/mm were studied by first determin-
ing the enhancement of each of the propagating orders at their respective optimum groove depths, as-
suming a purely sinusoidal profile. A search for the maximum enhancement of each order was then per-
formed by varying the amplitudes of the grating fundamental and relevant order-enhancing higher har-
monic. For the two periods considered, optimized profiles were found. The degree of coupling to the
SPP at the second-harmonic frequency is shown to be important in determining the optimized profile as
demonstrated by the substantially different enhancing properties of these similar groove-density gratings.
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INTRODUCTION

The study of surface-plasma wave resonances has a
long and rich history. The associated effects, which ap-
pear in certain diffraction grating spectra, were originally
observed by Wood! in 1902. Fano? later explained these
diffraction anomalies by invoking the existence of a sur-
face excitation for metals now known as the surface-
plasmon polariton (SPP).> These excitations are slow,
transverse magnetic-surface electromagnetic waves which
have maximum amplitude at the metal-dielectric inter-
face and decay exponentially away from the boundary.
Interaction of electromagnetic radiation with the SPP
mode occurs only through diffractive coupling or by
phase matching with the attenuated total-reflectance
(ATR) configuration.* In recent years, the study of SPP
resonances has been reinvigorated by the discovery of
surface-enhanced spectroscopy’ ’ including surface-
enhanced Raman scattering® (SERS) and surface-
enhanced second-harmonic generation (SESHG),’ since
this excitation is known to play a major role in the
enhancement mechanism. Fundamental studies of SERS
and SESHG have typically focused on quantitative
analysis of the effect and on understanding the surface
morphology and frequency dependence of these phenom-
ena. In the case of SERS, to achieve the maximum elec-
tromagnetic enhancement!® of 10*-10° requires max-
imum enhancement at both the fundamental and
Raman-shifted frequencies.® Although early studies of
SERS on gratings'! 7! were critical for identifying the
contribution (~10%) to the total enhancement due to
amplification of the incident field by diffractive coupling
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to the SPP, the maximum enhancement at the Raman-
shifted frequency cannot be achieved for normal Raman
spectroscopy on gratings due in part to the incoherent
nature of the Raman-scattering mechanism.!” Experi-
mental studies of SERS have shown that the largest
enhancements are obtained on randomly roughened sur-
faces® or particle arrays,” where localized plasmons can
be efficiently excited at both the incident and Raman-
shifted frequencies. In contrast to SERS, SESHG in-
volves a coherent three-photon process, which should al-
low optimization of enhancement via extended plasmons
at both the fundamental and second-harmonic frequen-
cies on a periodic surface. Indeed, both calculations and
experiments have revealed that SHG enhancement on
gratings can equal or exceed enhancement on randomly
rough surfaces. > 1824

The magnitude of SHG enhancement obtained from
gratings is dependent on grating period, profile, and
diffraction order, as these factors determine the efficiency
of scattering of the localized SPP-enhanced second-
harmonic fields into the propagating orders as well as the
extent of SPP coupling at the fundamental and second-
harmonic frequencies. Scattering efficiency of the local-
ized field into the propagating orders increases with in-
creasing grating period due to the smaller momentum
transfer required.?! Furthermore, the presence of higher
Fourier components in the surface profile should strongly
affect the distribution of intensity in the propagating or-
ders in a manner similar to that which arises in linear
diffraction under first-order SPP coupling conditions, as
discussed by Rosengart and Pockrand.? Yet, the profile
dependence of second-harmonic diffraction has only been
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briefly explored theoretically by Reinisch ez al. 22 For the
triangular and trapezoidal profiles they considered, a
strong dependence was found but the detailed physics
was obscured by the complicated Fourier decomposition
of these profile functions. In experiments where gratings
are fabricated holographically, the profiles produced are
nearly sinusoidal in many cases.?®?’ Under these condi-
tions, the effect of higher harmonics on diffraction inten-
sities has a simple interpretation and can be easily studied
with a diffraction theory which is derived for a general
profile function. Using the reduced Rayleigh equations
for second-harmonic diffraction,?* we show that, in the
weak corrugation limit, SPP coupling provides a sensitive
approach for probing the spatial-harmonic content of a
nearly sinusoidal surface and a simple way to identify the
optimized surface for second-harmonic diffraction into a
particular order.

To provide credence concerning the predictive abilities
of our choice of theory and motivation for our investiga-
tion of SESHG using second-harmonic-diffraction theory,
the relevant literature will be briefly reviewed.
Numerous theories for SESHG have been developed, in-
cluding approaches that treat either localized plasmons
using particle models®!>?® or extended plasmons using
diffraction theories.?"?*2%2°731  QOne important result
from particle models is the prediction of an optimum par-
ticle size for local-field enhancement, which arises from a
balance between radiation damping, dynamic depolariza-
tion, and electron mean-free-path effects in the excitation
of localized plasmons. Similarly, rigorous linear
diffraction theories, 71432 which do not treat the rough-
ness amplitude as a small parameter relative to the wave-
length of light, predict an optimum corrugation depth for
linear-field enhancement by photon-SPP coupling.
Rigorous nonlinear diffraction theories?!:222430%.3% j]50
show an optimum groove depth for second-harmonic
diffraction, which has been observed experimentally.”
Optimization of second-harmonic diffraction or linear-
field enhancement typically occurs at surprisingly shallow
groove depths. 47162022 Within this range of corruga-
tion depths, the reduced Rayleigh equations are among
the available nonperturbative methods for calculation of
second-harmonic intensities,?* although no SHG op-
timum groove-depth calculations have been reported pre-
viously using this method. We expect that for a theoreti-
cal study of SESHG, which is a process linked to the
efficient excitation of the SPP, the capability of prediction
of an optimum corrugation depth is crucial.

A second important aspect of theories of SESHG is the
treatment of the nonlinear polarization including both
surface and bulk contributions. For centrosymmetric
materials, it is well known that SHG is dipole forbidden
in the bulk, but that this restriction is removed in the
presence of an interface due to breaking of the inversion
symmetry.>* The high surface sensitivity of the tech-
nique for centrosymmetric materials, which has been ex-
ploited in numerous applications,* originates from the
dipole-allowed contribution arising from the layer of
truncated unit cells present at the surface. For free-
electron-like materials, which also show sharp and in-
tense SPP resonances, the surface source of SHG can be

described by two-induced second-harmonic-surface
current densities of 8-function extent.3® In the notation
of Farias and Maradudin®* and the coordinate system of
Fig. 1, the parallel and perpendicular current densities
are given by

J(x[20)=4(—2iw)yb,E,(x|0)E(x|w)| _ -8(z—0%),
(1a)
J,(x[20)=2(—2iw)ya,E,(x|0)E,(x|0)|, _,-8(z—0%)
(1b)
with

e l—elw)
8mw? 4m

where the E; are the electric-field components, e and m
are the electronic charge and mass, respectively, and e(w)
is the frequency-dependent dielectric function of the met-
al. Weaker bulk source terms of higher multipole charac-
ter give rise to a bulk second-harmonic current, which
originates from approximately a skin depth of material.
This bulk nonlinear polarization Py, which can be ex-
pressed as3+36.38

P;(x|20)=yV[E(x|0)-E(x|0)] , v))

produces a contribution to the total second-harmonic sig-
nal, which is typically of comparable magnitude to that
generated by the surface currents. 3%’ The two phenome-
nological parameters in Eq. (1), a; and b,, were intro-
duced by Rudnick and Stern® to account for variation of
the perpendicular and parallel surface currents. The b
parameter was expected to be frequency and material in-
dependent, but dependent on the surface profile with
b;=—1 or —1 for a flat or randomly rough surface, re-
spectively. The a; parameter, which was predicted to be
frequency and material dependent, has been the subject of
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FIG. 1. A p-polarized plane wave with wave vector k is in-
cident on a corrugated metal surface with dielectric functions
€(w),e(2w). The z axis is taken to be the grating normal.
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numerous investigations.>®3° Using the hydrodynamic
model for the electron gas, Sipe et al.’ reconsidered the
problem of metal-surface SHG and found the same gen-
eral form for the surface currents as well as expressions
for the phenomenological parameters by assuming the
thickness of the dipole-active region to be small relative
to the wavelength. A fundamental assumption in the
work of Rudnick and Stern®® and Sipe et al.’® was that
the general expression originally derived by Bloembergen
et al.®* for the nonlinear polarization of an isotropic,
centrosymmetric medium, given by

PM(20)=(8—B—2y)[E(w)-V]E(w)+BE(w)[V-E(w)]

+yV[E(w)-Elw)], (3)

where 8 and B are material-dependent parameters, failed
to hold at the metal surface. More recently, Maystre,
Neviere, and Reinisch,® using the fact the Maxwell’s
equations are valid in the sense of distributions,*! have
reexamined Eq. (3) to find source terms of essentially
identical form to those developed by Rudnick and Stern®
but with no need for phenomenological parameters.
However, in a comparison between theory and second-
harmonic reflectivity measurements,*? the introduction
of two parameters into the theory of Maystre, Neviere,
and Reinisch*® was required to achieve a reasonable fit to
the experimental data. The same values for these param-
eters were then successfully used to fit the results of
surface-enhanced second-harmonic-diffraction experi-
ments.?? Similarly, using the reduced Rayleigh equations
for second-harmonic diffraction?* with the source terms
of Sipe et al.,* Quail and Simon?® obtained quantitative
agreement between theory and measurements of several
diffraction orders assuming b, =—1 and using a;, = +0.9
for silver, as obtained from independent flat-surface mea-
surements.*> These results suggest that for weakly corru-
gated metal surfaces and with the use of two adjustable
parameters, which characterize the flat-surface nonlinear
response, rigorous second-harmonic-diffraction theories,
which do not treat the grating amplitude as a perturba-
tion, should be useful for making quantitative predictions
with an accuracy comparable to nonperturbative linear
theories. The accuracy of linear-diffraction theories is
typically limited more by knowledge of the surface-
dielectric function and surface profile than by any aspect
of the theory itself.*’ When used properly within their
radius of convergence, these theories which fully account
for retardation effects are quantitative even under condi-
tions where surface-plasmon-resonance interactions are
important.

Second-harmonic-diffraction theory also provides a
particularly lucid perspective on the SESHG enhance-
ment process. When the incident photon is efficiently
coupled to the SPP in first order, the outgoing, specularly
reflected wave at the fundamental frequency is dramati-
cally reduced in intensity and the majority of the
incident-beam energy is channeled into a single evanes-
cent order, which is momentum matched with the SPP
mode.#7!® Through the nonlinear polarization of the
metal, an intense evanescent second-order polarization
wave is then created.3> The scattering of this nonlinear
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polarization then largely determines the intensity distri-
bution in the available propagating orders. Clearly, first-
order scattering processes should dominate the optical
response. For a single-sinusoid profile, this ordinarily
leads to the strongest enhancement in that diffraction or-
der, which differs by only a single-grating wave vector
from the evanescent nonlinear polarization. The pres-
ence of higher harmonics in the surface profile can redis-
tribute intensity by providing first-order scattering chan-
nels into other propagating orders. Small contributions
of a particular higher harmonic to the surface profile can
thereby produce a dramatic and easily predictable
enhancement of a specific diffraction order. Quail and
Simon?®* observed this effect experimentally for a 1200
groove/mm holographically fabricated grating. They re-
quired the addition of a 3% contribution of the third spa-
tial harmonic to their theoretical profile function in order
to account for the large measured enhancement of the
+1 second-harmonic-diffraction order. For the 1200
groove/mm pure sinusoidal grating, significant enhance-
ment of the +1 order from SPP coupling at the funda-
mental frequency would otherwise have occurred only
through a third-order process.

The nature of the frequency and profile dependence of
SPP coupling at the second-harmonic frequency is also
lucidly revealed by a diffraction theory approach to
SESHG. At low frequencies, such as for CO, laser exper-
iments, the dispersion relation is approximately linear.
This allows a double resonance to occur, since the SPP-
enhanced second-order polarization lies on the surface-
plasmon-polariton dispersion relation (SPPDR) in the
same branch as the fundamental resonance.** Further-
more, by finding simultaneous solutions of the diffractive
coupling equations, given by

172
1) elw) [ 2
+2 1892 | =2 e+ | T
¢ | 1+elw) e a |
n==x1,%2,..., (4a)
) N 172 5
2o |_€Qo) | _20 o0 |27\,
¢ | 1+e2w) c a
m==x1,%2,..., (4b)

where 0 is the angle of incidence and a is the grating
period, approximate conditions can be found for a wide
range of incident frequencies, which result in excitation
of opposite branches of the SPPDR at the fundamental
and second-harmonic frequencies.

The variety of conditions for SPP coupling, combined
with optimum groove-depth effects and the influence of
spatial harmonics, reveals a richness in the profile depen-
dence for SESHG, which is largely unexplored. This pa-
per examines two aspects of the profile dependence of
SPP-enhanced second-harmonic diffraction from periodic
structures of silver using the theory of Farias and Mara-
dudin,?* which is derived for a general-profile function:
(i) the effect of higher spatial harmonics on the enhance-
ment of diffraction orders as determined by the scattering
of the SPP-enhanced evanescent nonlinear polarization
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wave, and (ii) the identification of the optimized profile
for enhancement of a particular diffraction order. Two
grating periods are considered for this latter case, includ-
ing one where coupling to SPP modes at both the funda-
mental and second-harmonic frequencies is especially
strong.

THEORY

Application of the reduced Rayleigh equations* to
second-harmonic diffraction using the source terms of
Sipe et al.,* will be briefly reviewed.?* As shown in Fig.
1, a p-polarized plane wave of frequency w is assumed in-
cident from vacuum on a periodic metal surface de-
scribed by the profile function {(x), with the plane of in-
cidence perpendicular to the grating grooves. The metal

is assumed to have complex dielectric functions €(w) and
J

ikx —ian(k ©
ox Tioolklalz S A,(kloe

p=—o
H,(x,zl0)=| N
B (klw)ezkpx pr(klm)z’ z<E,,
p in
p=_w
with
[(mz/cz)—kg]l/z, kl<a?/c?
% klO= ;2 (02/e2)12, k2> 0?/c? (72)

2 172

B, (klw)= e(w)—c“’?—k; , ReB,>0, ImB,>0,
(7b)
=k + 22 =2 Gng 1 22 p—0, 11,42, ... .
a c a
(Tc)

Assuming the Rayleigh hypothesis*®*’ to be valid, the
magnetic field satisfies the usual boundary conditions of
continuity for the tangential electric and magnetic-field
components.*® Expressed in terms of the magnetic field,
the boundary conditions in the (7,9,#) coordinate system
where f and 7 are the unit vectors normal and tangential
to the surface, respectively, become

Hy(x,zl0)|,_ .- =H,(x,zl0)| _ .+ (8a)
and
1
<) B_H (x,zl0)|__ 0™ H (x,zlo)|, _ —t*
(8b)

where 3/0n is the derivative along the normal to the in-
terface. Substitution of Eq. (6) into the boundary condi-
tions (8) yields two infinite sets of coupled linear equa-
tions for the linear reflected and refracted amplitudes, in-
cludmg evanescent orders. The transformation of Toigo
et al.® yields the reduced Rayleigh equations for the re-
fracted amplitudes,

ikpx +iap(k|w)z’
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€(20) at the fundamental and second-harmonic frequen-
cies, respectively. Since only a single nonzero component
of the magnetic field exists for the p-polarized excitation
geometry, only the scalar-wave equations for the y com-
ponent of the magnetic field H, at the fundamental and
second-harmonic frequencies are required. For the linear
fields,

2

—ai— ™ 2+ Hy(x,z|w)=0, z>¢E(x), (5a)
2 2

&J,&WLQM H,(x,zl0)=0, z<&(x). (5b)

The magnetic field above and below the selvedge region
can be expanded in reflected and transmitted amplitudes,
A, and B, respectively, according to

>§max
(6)
[
a,(k|w)B, (klo)+k,k,
p=—o a,(kla))—Bp(k|a)) _p(aHBp )Bp(k|a))
_ 2el@)ay
- 1_6((1)) r0 » (9)
where
Y,_p(a,,Bp)zifﬂ/zdx exp{ ik, —k
+i[ar_Bp]§(x)} .
(10)

Only the refracted amplitudes are needed to solve the
nonlinear problem since it is the field inside the metal
that determines the nonlinear polarization.’® Further-
more, because the bulk nonlinear polarization of the elec-
tron gas can be expressed as the gradient of a scalar func-
tion [see Eq. (2)], the wave equation for the second-
harmonic field in the metal is homogeneous. The non-
linear polarization then enters into the problem only
through inhomogeneous boundary conditions. Hence,
the wave equation for the nonlinear problem can be writ-
ten as

9’ 3* | 402 _

§+¥2_+—2 Hy(x,ZIZ(D)—O, z>§(x), (11a)

3? 4 a +4w2€(2a)) H 120)=0 (x)

_ax2 —322 ———cz y(%,2|20)=0, z <§&(x) .
(11b)

The fields are again expanded in diffracted amplitudes ac-
cording to
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2 Ap(zkizw)eikp(Zk\Zw)x+iap(2k\2w)z’ Z>§max
p=—
H,(x,z]20)=1 , i (12)
2 Bp(zk'zw)elkp(ZkIZw)x IBP(ZkIZw)z, Z<§min
p=—w
with
[(40?/c®)—[k,(2k[20)P]?, [k,(2k[20)]* <4a?/c?
% 2KR20)= 11k (k|20 P— (402 /eD)]17, [k (2k|20) P> 40 /c? , (132)
2 172
B,(2k|20)= e(2w)%-—[kp(2kl2w)]2 , ReB,(2k|20)>0, ImpB,(2k|20)>0, (13b)
k,(2k|20)=2k +ﬁ;f’—=zcﬂsine+2—:3, p=0,+1,%+2,... . (13¢)

The parallel and perpendicular source terms given by
Eqgs. (1a) and (1b) give rise to a parallel surface current
and surface-dipole moment density, respectively. For a
planar metal surface, the inhomogeneous boundary con-
ditions are

X H(x|20)|t

= | (—2i0)4rb E (x| E,(xl0)]], - |2
(14a)
and
% -E(x|20)| £ =47{V[2ya,E,(x|0)E,(x|0)]l, —o} ‘X .
(14b)

If it is assumed that the phenomenological parameters a;
and b, are not affected by the slowly varying corrugation,
then the source terms can be used to determine the
boundary conditions at the corrugated surface by making
the transformation to the (,,f) coordinate system in
Egs. (14). After expressing the corrugated boundary con-
ditions entirely in terms of the magnetic fields, substitu-
tion of Eq. (12) into the boundary conditions yields two
infinite sets of coupled linear equations for the second-
harmonic reflected and refracted amplitudes. Again, us-
ing the transformation of Toigo et al.,*> the reduced
Rayleigh equations for the second-harmonic reflected
amplitudes, which are of similar form to Eq. (9) and de-
pend on the linear-diffraction amplitudes, are obtained.
These equations include coupling to all orders. This ap-
proach is intermediate in rigor between perturbation
theories, 2*3! which only include coupling to a particular
order and the approach of Reinisch and Neviere,>* which
uses an additional expansion for the fields in the selvedge
region. Equation (9) and its nonlinear analog are solved
by increasing the number of diffraction amplitudes in the
expansion until a preset convergence level is achieved.
The integrals (10) and those that arise in the nonlinear
theory are evaluated using a Gaussian quadrature
scheme.*® Our calculations agree quantitatively with the

results of Quail and Simon
of Dujardin and Theye.*°

The convergence properties of diffraction theories
based on the Rayleigh hypothesis are still a subject of ac-
tive investigation.*® Convergence is frequently discussed
in terms of the ratio of grating amplitude-to-period, §,/a,
without regard to the ratio of period-to-wavelength. At
least for linear diffraction, a recent investigation by Pau-
lick*¢ gives £,/a <0.0713 as the upper bound for the va-
lidity of the Rayleigh hypothesis, with previous investiga-
tions*”3! suggesting £,/a ~0.1 as an upper bound. For
surfaces formed from simple superpositions, the Rayleigh
hypothesis is valid but the radius of convergence is limit-
ed by the effective §,/a for the highest-frequency com-
ponent in the superposition.>? For profile functions ex-
pressed as an infinite Fourier series, the Rayleigh hy-
pothesis is theoretically never valid.> However, the
theoretical limit for application of the Rayleigh method
is not necessarily meaningful in practice since, as Wirgin
points out,>> a divergent result can be obtained at any
amplitude-to-period ratio by including too many terms in
the Fourier expansion for the fields. Furthermore, useful
results can be obtained for values of {;/a which exceed
the theoretical upper bound by using a severely truncated
expansion.>*> These effects likely result from use of a
complete but nonorthogonal set of functions*’ and/or the
numerical instabilities in the phase factors at large or-
ders.’! The convergence properties of the reduced Ray-
leigh equations for second-harmonic generation have not
specifically been explored. It is worth noting that this
treatment of second-harmonic diffraction does not ac-
count for SPP self-phase modulation or Gaussian beam-
dependent effects,>®>’ which may be encountered in ex-
periments.

23 using the dielectric functions

RESULTS AND DISCUSSION

Selective enhancement of diffraction orders

To study the effect of the spatial harmonics on the
propagating second-harmonic-diffraction orders, periods
ranging from 0.8 to 1.6 um in increments of 0.2, with
even profiles, were considered. Beyond the 1.0-um case,
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each period allows one additional propagating second-
harmonic order under first-order SPP coupling at the in-
cident frequency. This allows the next higher spatial har-
monic to interact with a propagating order and thereby
to be probed experimentally. All angles of incidence are
chosen as positive for these symmetric profiles, which
leads to positive first-order coupling for periods above 1.0
pm and negative first-order coupling otherwise. The
enhancement of the nth diffraction order is defined rela-
tive to the planar surface response at the same angle of
incidence according to

_ a,(2k|20)| 4,(2k|20)]?
" ao(2k|20)| 4,2k20)|2

(15)

where A is the planar surface-reflected amplitude.?**

Table I shows the change in enhancement, relative to the
pure sinusoidal profile case, for all of the propagating or-
ders which exist for each period considered, as a function
of the higher harmonic amplitude for the second through
sixth harmonics. Figures 2(a), 3(a), and 4(a) depict the
influence of the second, third, and fourth spatial harmon-
ics on the enhancement of the most strongly affected
diffraction order in each case. Figures 2(b), 3(b), and 4(b)
show the corresponding photon-plasmon coupling (PPC)
diagrams. Within the range of grating amplitudes which
optimize photon-SPP coupling at the fundamental fre-
quency, the SPPDR for a flat surface can be used to inter-
pret the selective enhancements. In the PPC diagrams,
the normalized planar SPPDR, derived using the free-
electron-gas dielectric constant and given by*

172

ul (16)

1—(cop/(o)2
kp

=—a)—
o 2—((9‘,/(0)2

P

where k, =w, /c and w, is the bulk plasma frequency, is
shown as the heavy solid line using o, for silver [9.04 eV
(Ref. 28)]. The free-electron-gas dielectric constant,
elw)=1—(o, /®)?, has been used only to generate the
SPPDR curves for the purpose of illustration. All calcu-
lations assume an incident plane wave at 1.06 um (1.17
eV) and use the dielectric functions of Dujardin and
Theye.® The heavy dashed lines in the PPC diagrams
form the light cone. All wave vectors lying outside this
region correspond to evanescent waves. Within the light
cone, the dotted lines describe the propagating diffraction
orders which, by definition, differ from the specular order
by an integer multiple of the fundamental grating wave
vector. The SPPDR, which approaches the light line at
low frequencies, describes a doubly degenerate surface ex-
citation that can interact with electromagnetic radiation
through surface roughness via an umklapp process.* In
the PPC diagrams, arrows indicate an umklapp process
in which either the incident wave is coupled to the SPP
mode or the SPP-enhanced nonlinear polarization wave is
scattered into a radiative channel at the second-harmonic
frequency. The diffraction-order enhancements shown in
Figs. 2(a), 3(a), and 4(a) were determined by varying the
amplitude of a particular spatial harmonic, expressed as a
fraction of the fundamental amplitude, with fixed
§o/a =0.01 for the fundamental.

The effect of a second spatial harmonic in the surface

TABLE I. The enhancement of diffraction orders, relative to the case of a pure sinusoidal profile, is
shown for different values of the higher harmonic amplitudes. A high level of selectivity and sensitivi-

ty, which increase with harmonic order, is apparent.

Period
I_(%) I_3(%) I_,(%) I_(%) Iy(%) I1:,(%)
(pum) %
I_,(0) I_5(0) I_,(0) I_,(0) 1,(0) I.,(0)
0.8000 0 1 1 1
second 2 0.998 1.58 1.06
Harmonic 5 0.994 3.62 1.20
10 0.983 9.86 1.50
1.000 0 1 1 1
third 2 1.00 1.09 26.3
Harmonic 5 1.01 1.24 129
10 1.01 1.52 467
1.2000 0 1 1 1 1
fourth 1 380 1.20 1.02 0.999
Harmonic 3 3416 1.80 1.06 0.997
1.4000 0 1 1 1 1 1
fifth 1 27272 2.50 1.37 1 1
Harmonic 3 245454 21.3 2.30 1.02 1
1.6000 0 1 1 1 1 1 1
sixth 1 9.42Xx10° 600 24 1.23 1 1
Harmonic 3 6.3X107 12 500 4 1.33 1 1
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profile on the specular SHG mode is shown in Fig. 2 for a
grating period of 0.8 um. The second-harmonic ampli-
tudes are set equal to 0%, 2%, 5%, and 10% of the fun-
damental amplitude. The specular-order enhancement is
seen to approximately triple with addition of a 5% con-
tribution of the second spatial harmonic. The presence of
this higher harmonic selectively enhances the specular
SHG mode, while the other propagating orders are only
slightly modified as shown in Table I. The PPC diagram
provides an approximate interpretation. For conditions
under which photon-SPP coupling occurs in first order at
the fundamental frequency, the resulting intense second-
order evanescent polarization wave is phase matched
with the evanescent second diffraction order at the
second-harmonic  frequency. This  SPP-enhanced
second-order polarization wave is then selectively scat-
tered into the specular SHG mode by the second spatial
harmonic which provides a more probable first-order
channel. Figure 3 shows the effect of a third spatial har-
monic. In this case, the +1 SHG diffraction order is
selectively enhanced, since the SPP-enhanced evanescent
second-order polarization and the +1 SHG diffraction
order are connected in first order by this spatial harmon-

125.0 ¢
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FIG. 2. Influence of the second spatial harmonic for a 0.8-
um period silver grating: (a) Intensity of the specular order vs
angle of incidence 6 (in degrees) for different second spatial-
harmonic amplitudes. (b) The corresponding photon-plasmon
coupling diagram.
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ic.?* The sensitivity of the +1 order to the third har-
monic is seen to be much greater than in the second har-
monic case, since a 5% contribution gives rise to a
several order-of-magnitude change in the enhancement.
Figure 4 and Table I reveal the influence of the fourth,
fifth, and sixth spatial harmonics, which selectively
enhance the —2, —3, and —4 diffraction orders, respec-
tively. The trend towards increased sensitivity for the
higher harmonics is apparent. A 3% contribution of the
sixth spatial harmonic gives rise to a nearly eight order-
of-magnitude enhancement for the —4 diffraction order
of the 625 groove/mm grating, relative to the case of a
pure sinusoidal grating with the same period. Again as
shown in the PPC diagrams, these selective enhance-
ments occur by providing a first-order scattering channel
for the SPP-enhanced second-order polarization wave
into specific orders. The generality of this effect is pre-
dictable simply by combining the grating equations at the
fundamental and second-harmonic frequencies under
first-order photon-SPP coupling conditions at the funda-
mental frequency, with the phase-matching condition for
the SPP-enhanced nonlinear polarization wave, which is
well defined for weak corrugations. Note that in terms of
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FIG. 3. Influence of the third spatial harmonic for a 1.0-um
silver grating: (a) Intensity of the +1 order vs 6 (deg) for
different third spatial-harmonic amplitudes. (b) The photon-
plasmon coupling diagram.
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absolute intensities these selective enhancements result in
signals which are strong enough to be measurable?®??
even for the higher spatial harmonics with amplitudes
which are only 1% of the fundamental and which
enhance otherwise very weak diffraction orders.

Optimized profiles

The nature of the selective enhancement of diffraction
orders by spatial harmonics suggests that an optimized
profile for second-harmonic diffraction into a particular
order should exist. For a purely sinusoidal profile, the
existence of an order-dependent optimum groove depth
for second-harmonic diffraction is well established. 2!2%33
However, in considering a more general profile function
the peak enhancement obtainable in a particular order is
not necessarily expected to be limited by the peak
enhancement achieved at the optimum groove depth for
the corresponding sinusoidal profile. Depending upon
the major source or sources for intensity in a particular
order, the optimized profile should in general contain
higher harmonics with optimized amplitudes, which
directly connect intense evanescent orders with the prop-
agating order being considered. To investigate this possi-
bility, we examined the profile dependence of enhance-
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FIG. 4. Influence of the fourth spatial harmonic for a 1.2-um
silver grating: (a) Intensity of the —2 second-harmonic order vs
6 (deg) for different fourth-harmonic amplitudes. (b) PPC dia-
gram.

ment for gratings with groove densities of 1200 and 1290
grooves/mm, where in the second case coupling to the
SPP at both the fundamental and second-harmonic fre-
quencies is especially strong. We first find the optimum
groove depths for the different propagating orders order
of the purely sinusoidal profiles with these periods. The
optimum amplitudes for the order-enhancing higher har-
monics are then found for different fundamental ampli-
tudes.

The existence of an optimum groove depth for second-
harmonic diffraction is clearly related to the excitation of
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FIG. 5. Groove-depth dependence of the enhancement vs 6
(deg) for the three propagating orders of a 1200-groove/mm
grating: (a) —1 order (b) 0 order (c) +1 order.



8328

the SPP at the fundamental frequency and corresponding
field enhancement. '*~ 16 However, we find that the value
of the groove depth which optimizes SHG is different
from the value which produces the maximum field
enhancement. Furthermore, the optimum groove depth
typically increases for orders which differ increasingly in
wave vector from the SPP-enhanced evanescent polariza-
tion wave. Although all of the diffraction order ampli-
tudes are coupled at each frequency in the reduced Ray-
leigh method within an undepleted pump approximation,
these trends can be analyzed by considering the major en-
ergy pathways. Figure 5 shows enhancement at different
groove depths for the three propagating orders of a
1200-groove/mm pure sinusoidal grating of silver. For
SPP coupling in the —1 linear diffraction order, enhance-
ments are seen to optimize at approximately {,/a =0.02,
0.03, and 0.04 for the —1, 0, and +1 diffraction orders,
respectively. With respect to the SPP-enhanced second-
order polarization, enhancement of the —1, 0, and +1
SHG diffraction orders occurs through first-, second-,
and third-order scattering processes, respectively. These
processes become more favorable as the grating depth in-
creases, in analogy with the radiation damping of the
SPP.®% The optimum groove depth for the —1
second-harmonic order arises from a competition be-
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FIG. 6. Groove-depth dependence of the enhancement vs 6
(deg) for the two propagating orders of a 1290-groove/mm grat-
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tween efficient excitation of the SPP at the fundamental
frequency and scattering of the resulting evanescent
second-order wave into this propagating order. The cou-
pled process apparently optimizes at a slightly deeper
groove than required for the maximum surface-field
enhancement at the fundamental frequency. The surface
field was found to maximize at §,/a =0.016, which also
maximizes the evanescent second-order polarization-
wave intensity. The existence of a deeper optimum depth
for the 0 and +1 second-harmonic orders likely arises
from the increased efficiency of second- and third-order
scattering of the second-order polarization and from the
spreading of energy at the fundamental frequency into
other diffraction orders as the groove depth is increased.
In particular, the O and +1 linear orders, which strongly
affect the corresponding second harmonic orders, receive
a rapidly increasing fraction of the total diffracted energy
for groove depths beyond which the SPP wave becomes
damped. As the groove depth is increased further, the
fraction of energy in these orders eventually declines as
higher orders receive an increasing share of the total. In
the presence of two or more intense evanescent
diffraction orders, the interaction between different or-
ders through the nonlinear polarization could also be im-
portant.

The possibility of resonant excitation of the counter-
propagating SPP at the second-harmonic frequency can
influence the optimum groove depth and the peak
enhancements at optimum as arises for the case of a
1290-grooves/mm grating. Figure 6 shows enhancement
as a function of groove depth for the two propagating or-
ders of this grating. In this case, the incident fundamen-
tal and outgoing second-harmonic specular orders both
differ from the SPPDR by a single-grating wave vector.
The 0 and — 1 second-harmonic orders are seen to optim-
ize at approximately {,/a =0.02 and 0.04, respectively,
with the peak enhancement for the specular mode
exceeding that of the —1 order by more than a factor of
2. In this special case, the propagating orders are reso-
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for a 1200-groove/mm grating with §,/a =0.016. A 75%
second-harmonic amplitude is shown to maximize SHG
reflection in this case.
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nantly enhanced through first- and second-order chan-
nels.

To find optimized profiles for second-harmonic
diffraction in the weak corrugation limit, an optimum
value for the amplitude of the higher spatial harmonic
which connects the SPP-enhanced evanescent second-
order polarization to the propagating order under con-
sideration must be found. Since the —1 second-harmonic
order differs by only one grating wave vector from the
enhanced evanescent nonlinear polarization for the two
gratings considered, a purely sinusoidal profile at the op-
timum groove depth will maximize enhancement for
these orders. For the remaining orders, a two-Fourier-
component optimized profile should exist. Figure 7
shows the enhancement of the specular order of the
1200-groove/mm grating for 0%, 20%, 75%, and 90%
contributions of the second spatial harmonic for a funda-
mental amplitude of §,/a =0.016, which optimizes the
magnitude of the evanescent nonlinear polarization. The
specular order is seen to maximize at a very strong
second-harmonic amplitude of 75% with the peak inten-
sity exceeding that of the specular order at the optimum
groove depth for a single sinusoidal grating by approxi-
mately a factor of 14. Slightly larger enhancements were
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obtained by slightly reducing the magnitude of the funda-
mental and increasing the second-harmonic amplitude.
For this grating period, the effect of the second spatial
harmonic on the specular order was also examined at the
pure sinusoidal optimum groove depth of {,/a =0.032,
but no significant enhancement over the sinusoidal case
was found. Enhancement of the +1 order was also ex-
amined as a function of the third-harmonic amplitude.
For £,/a =0.016, enhancements significantly exceeding
the optimized pure sinusoidal case were found but no op-
timum third-harmonic amplitude was obtained in this
case, although for §,/a=0.02 an optimum third-
harmonic amplitude of 30% was found. For the 1290-
groove/mm grating, which only allows two propagating
orders, Fig. 8 shows the effect of the second spatial har-
monic on the specular SHG mode for §,/a =0.016 and
0.04. An optimum is found in each case but the overall
contribution of the higher harmonic to the enhancement
is relatively small. The maximum enhancement obtained
is very near that of the pure sinusoidal case since the op-
timum is largely controlled by the SPP resonance at the
second-harmonic frequency in the evanescent —+1
diffraction order. In this particular case, the optimized
profile for second-harmonic reflection is essentially the
sinusoidal profile.

CONCLUSION

The profile dependence of surface-enhanced second-
harmonic diffraction has been explored using the reduced
Rayleigh equations as originally developed by Farias and
Maradudin.?* The presence of weak spatial harmonics in
the surface profile is found to selectively enhance specific
diffraction orders in an easily predictable way, demon-
strating the generality of the experimental observation of
Quail and Simon.?* Under conditions where the incident
photon couples to the SPP in first order, the enhanced
evanescent nonlinear polarization wave, which is distinct
for a narrow but important range of groove depths, is
phase matched with a second diffraction order at the
second-harmonic frequency. This relatively intense
evanescent wave then differs from the available propaga-
ting orders by an integer multiple of the grating wave
vector. The sensitivity of these selective enhancements to
the magnitude of the spatial harmonic increases with har-
monic order. In light of the quantitative accuracy of the
theory,?* this method should provide a sensitive probe of
profile quality for near sinusoidal profiles. Furthermore,
the design of optimized profiles for second-harmonic
diffraction with the potential for producing strong,
second-harmonic beams, which are spatially separated
from the fundamental reflection, appears feasible.
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