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We discuss the role of stress in destabilizing flat surfaces of thin solid films. The presence of this insta-
bility in stressed *He and several heteroepitaxial films is widely acknowledged and well documented. We
pay special attention to the study of possible in-plane morphologies of the islands which appear as a re-
sult of the stress-driven destabilization of flat traction-free interfaces. We also discuss the critical thick-

ness at which these morphologies change.

I. INTRODUCTION

For many decades morphological instabilities of inter-
faces have been intensively studied. Traditionally, mor-
phological instabilities have been of primary interest in
crystal growth, metallurgy, fracture, geology, petrology,
etc. Within the past few years this list has been extended
into several new areas, including epitaxy, electronic pack-
aging, tribology, biology, etc. (see, reviews' * and refer-
ences therein).

Recent efforts by many researchers have resulted in
rapid progress and the development of much deeper un-
derstanding of the specific stress-driven‘‘rearrangement”
instabilities of inclusions, interfaces, and free boundaries
in solids, in particular of different phase boundaries.’ Of
the numerous purely energetic instabilities of this sort—
the instability of the ‘“‘stressed crystal-melt” system—
has attracted the most attention because of its universal
character, its most promising and wide applications, and
its apparent simplicity for experimental observation. The
instability of stressed crystal—melt system is close to the
instability of a stressed solid with respect to surface
diffusion along a traction-free boundary,® the relationship
has remained unnoticed until recently. Although the
study of diffusion requires the ideas and methodology of
irreversible thermodynamics, the instability studied by
Asaro and Tiller® is purely energetic in nature as well.

At present, the roots of the stress-driven rearrange-
ment instability have become quite transparent. Several
authors’"!® have demonstrated, using different ap-
proaches, that, regardless of specific symmetry, geometry
and elastic moduli, accumulated elastic (either linear or
nonlinear) energy can always be reduced by means of ap-
propriate mass rearrangement in the vicinity of the free
surface. Thus, neglecting surface energy, all nonhydro-
statically stressed solids, bounded by a smooth, traction-
free boundary, are unstable against appropriate mass
rearrangement of their constituent particles. The specific
features of the stress-driven rearrangement instabilities
depend on geometry, presence of other bodies and forces,
mass transport mechanisms, etc. The above statement
provides a universal means to more specific predictions of
the stress-driven destabilization of traction-free surfaces.
We mention, among other features, the instabilities of
stressed solids against surface diffusion,® of the phase
boundary between stressed solid and its melt,'! and
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several other instabilities of similar nature.® Recently,

the instability of the phase boundary separating melted
and uniaxially stressed crystalline* He has been observed
in quantitative experiments by Thiel et al.!> and Torii
and Balibar;'? the stress-driven rearrangement instability
fed by diffusion also has been evidenced in a publication
by Berrehar et al.'*

Because of its universal nature, the stress-driven ‘“‘rear-
rangement” instability provides insights into phenomena
in different branches of materials and other sciences, part
of which was discussed in Ref. 7. While this stress-driven
morphological instability has found widespread applica-
tions in different fields (see, for instance, the discussions
of the stressed solid—melt instability in the problems of
pattern formation in metallurgy,'® theory of gels,'® geolo-
gy ,17 and fracture'®), it has also received serious attention
in problems related to the growth of epitaxial films.>!
The reason for this interest can be traced to some recent
observations®® of dislocation-free Stranski-Krastanov
growth. These experiments have demonstrated clearly
that the Stranski-Krastanov pattern may not be triggered
by nucleation of misfit dislocations—as many had previ-
ously thought?’-and hence demands a different ap-
proach. The key roles played by misfit stresses and mass
rearrangement in this phenomenon were discussed in the
past by several authors exploiting different approaches.??
The most interesting parameters in the problems of epi-
taxy are those critical thicknesses at which the surface
morphology undergoes sudden qualitative changes.

In this paper we treat the phenomena relating to the
experiments with prestressed “He films and the observa-
tions on the dislocation-free Stranski-Krastanov growth
from the viewpoint of the stress-driven rearrangement in-
stability. We pay special attention to the two-
dimensional (2D) in-plane morphologies and their
changes at critical thicknesses of the film and/or critical
misfit or applied stresses. We also address the role of
mass forces, following the lectures and publication of No-
zieres.?

II. INTUITIVE ANALYSIS OF MECHANISM
OF STRESS-DRIVEN REARRANGEMENT
INSTABILITY

Let us consider the processes of crystallization of sub-

limation at the free surface of a uniaxially prestressed,

8310 ©1994 The American Physical Society



49 TWO-DIMENSIONAL ISLANDING ATOP STRESSED SOLID . .. 8311

FIG. 1. The mechanism of the stress-driven rearrangement
instability.

elastic crystal (see Fig. 1). We explicitly consider three
physical effects, namely elasticity, gravity, and surface
energy. The stresses within the solid can be generated by
an applied stress or be internal stresses, such as those as-
sociated with heteroepitaxy. For the sake of simplicity,
we consider that the solid is only two-dimensional, and
assume that deposition takes place in the form of elemen-
tary square cells of material, as per Fig. 1. Assume that
the material being deposited has a different lattice param-
eter from the substrate due to the presence of the uniaxi-
al, lateral stress. When cell A4 attaches to the uniform ad-
layer under it, its bottom stretches to match the lattice
parameter of the strained adlayer. Its top, on the other
hand, remains at its initial unstrained width, and the ini-
tially rectangular cell distorts into a trapezoidal shape.
Consider now the possible locations for cell B to attach
to the film in the vicinity of cell 4. Particle B may attach
itself to the adlayer in, e.g., positions 1, 2, 3, or 4. “Nor-
mal” gravity favors cell B to attach at the lowest possible
position (sites 1, 2, 3, and 4 are all equivalent from this
point of view, and they are preferable to the site on top of
particle A). Since surface energy favors as large a num-
ber of nearest neighbors as possible, sites 2 and 3 are
preferable to 1 to 4 due to the proximity of cell 4. This
is why gravity and surface energy favor the growth of as

smooth of a surface as possible. If cell B attaches to site
|

1 or 4, it will take on the strained, trapezoidal shape of
cell A. If, on the other hand, it attaches to site 2 or 3, the
wall B shares with A becomes vertical and therefore both
cells A and B become more strained than if cell B was at
either site 1 or 4. Therefore, strain energy works against
the surface smoothing tendencies of the surface energy.
Now, consider cell B becoming attached to site B, on top
of A. Since site B has the same number of nearest neigh-
bors as sites 1 and 4, the surface energy associated with B
is the same for attachment to sites 1, 4, or B. However,
while the bottom of cell B would be stretched at sites 1 or
4, its bottom is unstretched at site B because of the top of
cell A4 is unstretched. Therefore, consideration of strain
energy favors site B over sites 1-4. This is the stress-
driven morphological instability countered by gravity
and surface tension.

III. THE “MISFIT” DEFORMATION AND STRESS

Let us consider an elastic solid substance with elastic
energy density e(e;;) per unit volume in the initial un-
stressed state; €;;=(D;u; +D;u;)/2 is the dependence of
the linear deformation tensor on the displacements gra-
dient; D; is the symbol of differentiation with respect to
the Lagrangian (material) coordinates x' (the Latin spa-
tial indexes i, j, k, and / take on the values of 1, 2, and 3,
whereas the initial Latin indexes a, b, ¢, and d are either 1
or 2), and the Einstein convention (summation over re-
peated indexes—e.g., ki =x!+Kk3+K3, k¢=x]+x3) is im-
plied.

Consider an elastic, crystalline solid in the form of a
relatively thin layer (film) which is coherently attached to
a solid crystalline substrate modeled as the half-space (see
Fig. 2). The interface is initially flat. We examine the
cases of a rigid or deformable substrate. The interface can
be viewed as a perfect plane possessing the 2D lattice of
atoms. Because of the mismatch in the lattice parameters
between the unstressed crystalline film and the substrate,
the 2D interface lattice of atoms of the film is subjected
to the in-plane “misfit” deformation M2. Choosing the
coordinate system with the (x',x?) plane coinciding with
the interface, one can express the affine misfit displace-
ments in the film as

U, (x®)=ky4x? [or Uy(x,x2) =k x " +K,x? Uy(x',x?)=uyx+urypx?], (1

where K, is the 2D tensor defined by the in-plane lattices
(as we use the Cartesian coordinates only, there are no
distinctions in the covariant and contravariant com-
ponents). Thus the in-plane components of the 3D dis-
placements of film u‘(x/) should obey the interface
T (x3=0):

u (xL,x%0)=nrx Hrpx?,

uy(xL,x%,0)=rKyx ' Hrpx?, )
u3(x,x2,0)=0 [or u,(x%0)=U,(x?)=Kgx"] .

So far we have dealt with in-plane components of the
misfit deformation «,, only. However, it is convenient to

[
extend our original notion of the 2D misfit deformations
M? to the 3D misfit deformation, with the components
k;; defined in the following way. Let us consider the equi-
librium displacements of the unbounded elastic layer with
a traction-free and perfectly flat surface and flat interface
where the film is coherently attached to the substrate.
The lattice misfit M2 generates 3D uniform strains and
stresses within the film. We identify the components as
the 3D misfit strain and stress, with tensors «;; and p"°,
respectively. The indices of components «;; running over
1 and 2 are obviously equal to the components of the 2D
misfit deformation x,,. Since all material particles of any
arbitrary horizontal plane of the film experience the same
vertical displacement in the 3D misfit deformation, the
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FIG. 2. The geometry of the corrugated film. (a) Top view.
(b) Side view.

components k3; and k3, vanish identically in crystals of
any symmetry. The three remaining components «;;
should guarantee the absence of traction at the free sur-
face (and, because of uniformity, at the interface as well):
p3%=p3=0, These algebraic equations can be rewrit-
ten in terms of the elastic constant tensor as ¢ >, =0.
The misfit strains and stresses can easily be computed for
the case of an isotropic elastic solid. In this case, the
elastic constant tensor is simply c¢7K=2878
+u(8*8/'+876/%), where A and p are the Lame constants
and §;; is the Kronecker delta function. Simple manipu-
lations lead to the following components of the misfit
strain and stress:

v
Kg3=0,K33= — 11—y %a>
(3)

pab0=2# Kﬁsab+K(ab) , pj3o=p3j0=0 ,

where v is the Poisson ratio, and «'%'=(k®+x%)/2 is
i

the symbol for symmetrization.

In the following sections, we use the notation T'; and
T, for the principal in-plane misfit stress (i.e., the eigen-
values of stresses p?*°) and choose the principal in-plane
directions (i.e., the eigenvectors) as the x! and x? axes.
We refer to “shearlike” misfit stresses when T, is approx-
imately —T,, and as “dilatationlike” misfit stresses when
T, is approximately 7T,.

IV. THE ELASTIC ENERGY
ASSOCIATED WITH CORRUGATIONS
OF THE FILM SURFACE

Here, we follow lectures® and the latter of Ref. 7. Con-
sider the “uncorrugated” (i.e., flat) elastic film with a free
surface at x*=H, which is coherently attached to an
infinitely thick elastic substrate at x>=0. The infinitely
thick substrate is stress free and has zero strain energy,
while the film is subjected to the misfit strain «;; and
therefore has a nonzero elastic energy E ., proportional

O and the elastic energy density
€reg = 3C Imagine that the free surface of the
film y becomes “corrugated” via rearrangement of the
material particles. The amplitude of the corrugation
eZ (x?) is assumed to be sufficiently small in the sense
that the corrugated surface y° is close to the original sur-
face y°:

yex3=H +eZ(x?), e<<1, (4a)
[ dx'dx?Z(x*)=0. (4b)
14

Equation (4b) reflects conservation of the film mass.
We denote the equilibrium displacement field and the ac-
cumulated elastic energy of the system with the corrugat-
ed, traction-free surface y as u;(x*,e) and E rreg (€), TE-
spectively. Expanding u;(x%¢) and E irreg (€) in series of
€, and inserting them into equilibrium equations and
boundary conditions, we find the following central formu-
la:’

e e ~ € ijkl
Ei"eg(E)"—Ereg(E)-’:_'—z_fmodwc D(jvi)D(ivk) . (5)
Here v,(x*) is the disturbance of the equilibrium dis-
placement field u; =k;;x’+ev;(x ky; it should satisfy the
following equations:

cfjk’DjD,vk =0 within the film and deformable substrate,

v, =0 ([v,]T=0) at the interface T,

c¥D jvpn; =8,p®°D,Z at the undisturbed traction-free boundary v° .

The right-hand side of (6;) appears because of the change
of the free boundary position; [v, ]T is the jump at the
matching surface.

Equation (5) shows that any corrugations of the initial-
ly flat, traction-free surface diminish the total strain ener-
gy of the system.

Integration in Eq. (5) expands over both solids: over
the film and the substrate since the corrugations induce
stresses in the substrate as well. Combining Egs. (5) and

l

(6), we arrive at the following 3D generalization of the
formula established by Nozieres® (which is very con-
venient for the computation):

irreg

e e = E abo 7
E; (E)—E,eg(£)=——2—p fyodyvbDaZ. @)

Consider now isotropic substances; Egs. (6) can be
rewritten in the bulk as
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2

3 b v, 3%3 where v, is the Poisson ratio, r2b=pa0/y ¢ are the non-
3x° 3x? 2v) |Agv, +— 22 P =0, dimensional misfit stresses, and p is the shear module of
X z
(8a) the adlayer. . '
21 —v) 82 3 Y L (1-2vA, w3t aa :a —0, We look for the Fourier solution of Egs. (8):
X
at the mterface I‘+of the rigid (deformable) substrate as(8b) Z(x9)= fR Ak, dky Ak, Ky e ik, x ’
Uy =0 ([Uk ]_ =0),
and at the free surface y° as 0 (/)= f dkdkyvp(ky Ky z)ea™
aﬁ+—aﬁ—rﬂ”—a£-o (8¢)
oz ax" ox® . .
where k(k,) is the in-plane wave vector of the corruga-
vf) +vf dv* =0 tions. The bulk Eq. (8a) lead to the following formulas
ox? ’ for u;p:

vip=Q e +R ze®7+Q e k4R 2 ~lklz | o)

v"(z)=i—l§|—2{[Q+ k| +R , (3—4v)]e =+ R , [k|e

—[—Q.|k|+R_(3—4v)]e M—R _|k|ze 1) +ig¥( T, ekl24+ T _e ~Ikl7) |

where O, R, and T, are constants, whereas q(q°) is the in-plane unit vector orthogonal k. The constants can be
computed with the help of Egs. (8b) and (8¢c). Then, using (6), one can find an elastic energy release caused by corrugat-
ing. This computation can be made more explicit by considering an isotropic elastic film and substrate. Omitting the

mathematical details, we find

Efreg=Elg=c*[ " [ K AMWA*(—K)dkydk, ,

(10

sinhh + Y coshh

where
1— 4(1—v ) [x(1—2v,)+1
K,=— L6l 122 1y ) nkon v 12y, )+ 1]
up | I (x—Dx(3—4v,)+1]
4)((1-\'/)(1—1/5)
ek G4+ 1]
M=h2— L

(x—D[x(3—4v,)+1]

T,Z’,

cosh+y sinhh

[x sinhh +coshh +(1—2v,)(sinhh +coshh)]

X[x sinhh +coshh +(1—2v,)(—sinhh +coshh)+2x(1—2v,)sinhA ] .

The following notation has been employed in Eq. (10):
Ky, Vs, B, and v, are the shear moduli and Poisson ratios
of the film and substrate, respectively (Y =u,/u;); 6 is
the angle between k and the principal direction of the in-
plane stress T;; e and q are the unit in-plane vectors
parallel and orthogonal to k, respectively; T,
(=T e?+Tre2=T,cos’60+T,sin’0) and T, [=T'e,q,
+7T%,q,=(T,—T,)sinfcosf] are the normal and
tangential components of the stress T, acting at the cross
section orthogonal to the wave vector k; the number
h =|k|H can be treated as a dimensionless wave vector or
film thickness.

V. THE ENERGY BALANCE
OF ELASTIC SYSTEMS WITH REARRANGEMENT
AND THEIR MORPHOLOGICAL STABILITY

In addition to the elastic energy, the surface E; and po-
tential energy E, also make contributions to the total en-

[
ergy of the film-substrate systems. The force field is as-
sumed to be one dimensional; the acceleration g depends
on the distance from the substrate. The surface energy is
assumed to be proportional to the product of the surface
energy density o and the total area of the free surface in
the stress-free reference configuration. We explicitly
neglect the contribution of the surface stress to the elastic
energy.?’ The change E! irreg” mg in total energy associated
with the formation of surface corrugation on an initially
flat surface is

Et Et

irreg reg
=" Tak, [

which can be computed explicitly for isotropic sub-
stances.

The function K(k,H) includes (i) the potential energy
K,; (ii) the bulk (elastic) energy K,; and (iii) the surface

kK (k, FDAA*(—K) (1
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energy K, which, to within an insignificant positive mul-
tiplier, is

K(k,H)=K,+K,+K,

=gp,(y —1)—|k|J,(e,h)+0k|?, (12)

where y =p, /p, is the density ratio of the solid film and
the melt. In the case of epitaxial film we insert gp, for
gp,(y —1) to account for the van der Waals forces.?
Though van der Waals forces play a significant role in the
behavior of polymeric films, it should be noted that these
forces depend strongly on the distance from the sub-
strate. On the other hand, there are several indications
that in Se-Ge and other semiconductor heteroepitaxial
composites the interactions between the films and sub-
strates are of a localized, covalent nature due to the for-
mation of strong covalent bonds. This is a qualitatively
different interaction than van der Waals forces. There-
fore, our analysis of the role of mass forces presumably
cannot be applied to semiconductor films.

In contrast to the potential and surface energies the
bulk energy term J,(e,h) depends on the mechanical
properties of the film and substrate, and of their
thicknesses.

We can label all types of corrugations as either stable,
neutral, or destabilizing depending on their wave vector,
the nature of the stress field, and the physical properties
of the materials. We find the following conditions for sta-
bility, neutrality, or instability:

K(k,H)>0, Kk, ,H)=0, K(k,H)<O0, (13)
J

k| | (1=v,)[A +(3—4v,)sinhh coshh ]

respectively. Corrugations which are unstable grow in
amplitude; corrugations which are stable decay in ampli-
tude and neutral corrugations neither grow nor shrink.
A film thickness for which all corrugations are stable is
referred to as stable. Situations in which at least one des-
tabilizing corrugation exist are unstable. The critical
thickness of the uniform film corresponds to the situation
in which there are no destabilizing corrugations, and for
which at least one mode of surface corrugation is neutral.
The corrugations with a wave vector k that minimizes K
are maximally unstable. In other words, this is the corru-
gation wave vector which decreases the energy of the sys-
tem with increasing amplitude faster than corrugation of
any other wave vector. This is the corrugation wave vec-
tor that will likely dominate the surface morphology.
However, different material transport mechanisms may
shift the fastest-growing corrugation to nearby wave vec-
tors. The function G = —K is proportional (in a certain
range of k vectors) to the (quasistatic) rate of growth of
the Fourier component of the configurations.

VI. MORPHOLOGICAL PATTERNS
ATOP THE FILMS
BONDED TO A RIGID SUBSTRATE

The approximation of a rigid substrate seems reason-
able when dealing with very soft crystalline *He. We first
consider the case of a film attached to a rigid substrate
(v=3, x=0) in the absence of gravity. Then, this case,
Egs. (10)-(12) yield

G(k,H)=—0clk|*+

Introducing the angle 0 between e and the principal
in-plane stress, T, Eq. (14) can be rewritten as
(r,=T,/n, are the dimensionless principal in-plane
stresses)

4G 4B sin20+C(s +cos20?, (15)
,uf|k|(7'1"7'2)
where
__dolkl o _sinhk
lif("'l_fz)z, cosh *

(1—=v,)[h +(3—4v,)sinh h cosh h ]
4(1—v;)*+h*+(3—4v,)sinh *h

T+,
s=—".
TI—T,

The dimensionless parameter s characterizes the in-plane
misfit stresses, and it plays a crucial role in determining
the dominant surface morphology; s equals to =1 in the
case of uniaxial stress, vanishes for pure in-plane shear,
and is infinite for pure in-plane dilatation. The surface
energy term in Eq. (14) prevails at |k| approaching

pr | 41—v,?+h?+(3—4v,)sinh*h "

sinhA
2 coshh T,2 . (14)

f

infinity and, thus, corrugations with sufficiently small
wavelength always raise the total accumulated energy of
the system. In order for long-wavelength corrugations
(]k| << 1) to be stable, the function K (G) must be posi-
tive (negative). In that range Eq. (15) can be rewritten as

46 4o
plkl(r—7,)? py(r—1)
+H (1+2s cos20+s?) . (16)

The right-hand side of Eq. (16) reaches maximum at
cos20=1 or cos20=—1 (whichever is greater). We as-
sume that |r,| > |7,/ (it can be always achieved by chang-
ing  enumeration). Then the maximum  of
4(1\-m))XH7i-opu;"') is assumed at 6=0. That cir-
cumstance leads to the following formula for the first
critical thickness (Grinfeld>”!® and Spencer and co-
workers'?):

o
H_a_ﬂf

L= = (17)
T uA T

above which the free surface becomes rough.
We now examine the extrema on the right-hand side of
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Eq. (15), which we denote as @(6). Setting the first
derivative of @(0) to zero, we find that there are two
types of extrema satisfying

(a) sin26=0 and (b) cos26=

7-c°" (18)
The “a” solutions always exist, and correspond to k vec-
tors which are parallel to the directions of the lateral
principal stresses (i.e., corrugations with a valley perpen-
dicular to the directions of the lateral principal stresses).
The “b” solutions may or may not exist, depending on
whether the inequality

s=1 (19)

is satisfied.
Second derivatives of @(0) allows us to investigate sta-
bility:

C

+
l_B~C

¢"=8(B—C) s

(20a)
(20b)

for the “a’ solutions ,

¢'=—8(B —C)sin®20 for the “b” solutions,

where the plus sign in (20a) corresponds to the k vector
parallel to the x ! axis, whereas the minus corresponds to
the k vector parallel to the x? axis. The function G as-
sumes the following values for “a” and “b” solutions:

4G cxie

—— 2 ——=— 4 +C(s£1)
prlkl(ry—7,)
for the “a” solutions , (20c)
4G¢
—— = —=—4+B+ BC o
}l,flk‘(Tl_'Tz) B —C
for the “b” solutions. (20d)

According to Egs. (18)-(20), one of the “a” solutions
gives the maximum value of @(68), whereas the other cor-
responds to minimum values of @(8), provided that “b”
solutions do not exist [because of the violation of the ine-
qualities (19)]. If “b” solutions do exist and B > C, then,
according to Egs. (20c) and (20d) “b” solutions corre-
spond to maxima in @(@), whereas “a” solutions deliver
@(6) minima [if B <C, then the situation is opposite:
“b” solutions yield maximum of ¢(6)]. It is obvious that
at fixed |k| and 4 the solutions maximizing ¢ determine
the most probable surface morphology. “b” solutions ex-
ist for “shearlike” misfit stresses, but and do not exist at
the “dilatationlike” misfit stresses. In order to make
these results more concrete, we now consider several
specific applications of these results.

Certain special cases

1. Pure in-plane dilatation

In this case, the principal in-plane stresses are equal,
i.e.,, 7y=7,=7. As a result, the dimensionless parameter

a is infinite and Eq. (15) should be rewritten as

=—o|k|*+Cru,lk| (21a)
or, in the dimensionless form,
7H
GH _ __1_p24Ch where dati=FL 21b)
s Pay; 4

Thus, given h(=H]|k|) and |k|, all the Fourier com-
ponents of the corrugation have the same energy depen-
dence on amplitude, independent of the angle 6.

In the case of the incompressible film Eq. (21a) takes
the following form:

GH ___1_,, hhtsinhhcoshh

I.Lsz (Pagl 2 h 2 +Cosh2 h

Several plots of the right-hand side of Eq. (22) are
shown in Fig. 3. Positive maxima of these plots (existing
for all ®af; exceeding 1) depend on the value of ®al.

Another form of Eq. (21) is more convenient for an
infinitely thick layer:

(22)

1

k
Pag,

2
k where <I>a§i,2-5—fk—| .

(23)

G _
F’sz

+1_Vf

Equation (23) shows that the wave numbers |k| . and
|k|, corresponding to the neutral and most probable cor-
rugations (at which the G-function vanishes and reaches
its maximum, respectively) are

1
I—Vf

Hn
k[ e=(1—v) or ®ak =

b

(24)
[ sz
gl

2. Pure in-plane shear

In this case, the principal in-plane stresses are of the
same absolute value and of opposite sign: 7,=—7,=7.
In pure in-plane shear the dimensionless parameter s is
zero, such that Egs. (17) and (18b) can be rewritten as

GH
2
HTt

) b) o) | h

FIG. 3. The dependence of the contributed energy for
h=kH. (a) ®afi=1. (b) ®af=1, (c) Pak=2.
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46 _ _olk| | p 004 C cos20 , (25a)
c0s20=0 . (25b)

Equation (25b) shows that “b” solutions always exist in
pure shear and have optimal k vectors bisecting the prin-
cipal in-plane directions. Equations (25) result in the fol-
lowing extreme values of the G function for “a” and “b”
solutions, respectively:

#f|k|72 ’
(b) 4G£xtr _ A+B
,“f|k|7'2
4G°, —4G?
extr extr =B—C . (26)
#f|k|7'2

In the case of incompressible isotropic film, we arrive
at the following inequality:
2 . . _
B—C= 4h “sinhh +cosl;h(smh§h 2h) >0 @7
4 coshh (h“+cosh”h)
and, according to Eq. (27), the ‘“b” mode of corrugation
is the most probable. For incompressible film Egs. (26)
can be rewritten as

G4 .
pr 2 h2+cosh?h
Gbx .

ext =—dal 2+ sinh A , 28b)
ot cosh A

the first of which is identical to Eq. (23). The graphs of
the plots of the right-hand side of Eq. (28) are similar to
those plotted in Fig. 3.

3. The infinitely thick film
(arbitrary misfit stress)

According to (17), for infinitely thick film the parame-
ters B and C are equal to 1 and 1—v/, respectively. In-
serting these values into Eq. (21) and considering “a”
modes for the corrugations, we find

Ga
2| (v s ||k
,‘Lf(T]—TZ) da
(1)—1,)?
where QakEEf—l——z— , (29
olk|
which leads to the following analogs of Eq. (24):
(r;—1,)?
[k|ne=%(1~vf)(si1)2u
o
or (30)

dak - 4 ,
" (1= )(st1)?

— 2
k|, = (1 —y 21T
P 8

Equations (30) give the most probable corrugations
when “b” modes no not exist. In the case at hand, Eq.
(18b) for orientation of the k vectors, the existence in-
equality (19) and Eq. (21b) for GZ,,, can be reduced to the
following forms, respectively:

v Y
cos20=—7L—g, l L gl<1,
1=v, 1—v,
4GY , : (31)
. —v
= — 4o k| o+ 1+ —Ls? k]
pp(ri—13) pplri—13) Vg

4. The growing film of finite thickness
(arbitrary stress)

The special cases discussed above clearly demonstrate
that different patterns of islanding which can occur in
even the simplest situation of isotropic incompressible
elastic films. Equation (15) can be rewritten in the follow-
ing dimensionless form:

4GH
,sz(’rl_'rz)z
=—f—§h2+[Bsin229+C(s+c0520)2]h, (32)
a

where ®af! equals p 70~ !(r-7))H, and increases with
growth of film thickness.

The first term on the right-hand side of (32) is negative,
while the second is positive. Regardless of the magnitude
of ®afl, the first term prevails for a sufficiently large .
Therefore, the G function is negative for a large A. The
dimensionless parameter h is proportional to |k| at a
fixed H. Thus, for each fixed thickness, the film is stable
with respect to the corrugations of the free surface with
sufficiently small wavelengths.

At h approaching zero, Eq. (32) can be rewritten as

4GH
,L‘f(7’1—’f2)2

For small fixed & and |7~ !| > |7?|, the right-hand side
of Eq. (33) reaches its maximum:

h?.  (33)

1+2cos20+s%— LH
Pa

4ri 1

hi= —
(r,—m)?  ®af

4
F1P—— (34)
(s+1) Pall

at the angle 0 determined by the equation cos26=1.

The unstable corrugations exist provided that the
coefficient of 42 in (34) is positive; this condition leads to
the dimensionless inequality
2

4 (7'1_7'2)
dal <daf where ol = =
crit crit (1+5)? 7_%

(35)

Thus growing film with flat, free surface and sufficiently
small thicknesses is stable against all surface corruga-
tions. Certain corrugations, however, destabilize the free
surface if the thickness exceeds the critical magnitude
H_,;,. For that magnitude, the dimensionless number
®a’ yields the inequality (35). We say that the film is
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slightly unstable when H is slightly larger than H _;,, and
that the ®a” number is slightly larger than ®a,. As-
sume now that (i) the parameter s is not equal to zero or
infinity (these special cases were already discussed above),
and that (ii) the film is slightly unstable. It appears that a
periodic system of trenches, which are orthogonal to the
direction of the maximal in-plane misfit stress 7, are the
prevailing pattern of corrugations.

Let us now consider a growing film whose rate of depo-
sition is much faster than the rates of growth of the un-
stable corrugations. It then seems reasonable to investi-
gate the film’s free-surface pattern of small corrugations
for a thickness H and a ®a” number much greater than
the critical magnitudes. There can be two essentially
different scenarios which depend on the misfit stress pa-
rameter s and the Poisson ratio v,. The first of these
occurs if there is no A satisfying the inequality (19); then
the system of parallel trenches of one and the same orien-
tation is the dominant pattern of corrugations at each
transcritical thickness. The distance between the
trenches depends on the magnitude of the ®af number,
and is determined by the maximum of the function

4G¢

ext

=— 4 picis+n. (36)
“f(71_72)2 ¢aH

The second scenario occurs if there are positive A’s,
satisfying the inequality (19). Its existence obviously de-
pends on the function C/(B —C). Several plots of the
function C /(B — C) are shown in Fig. 4: the function ap-
proaches infinity as h approaches zero. Therefore, the
domain of the values h which satisfy Eq. (19) is separated
from the origin A =0 provided that s differs from zero.
This fact shows again that when the film thickness in-
creases, the first unstable corrugations which appear are
determined by ‘““a” solutions (corresponding to the system
of parallel trenches at the surface); with further thicken-
ing, these trenches then change in a fashion similar to
that in the first scenario until the second critical magni-
tude of ®aX is reached. At the second critical thickness,
the value h * satisfies the equation

—CY) (37)
B(h*)—C(h*)
J

(1—v,)[|k|H +(3—4v,)sinh (|k|H)cosh(|k|H)]

FIG. 4. To the equation of polarization of the wave vector k.

At that thickness, the optimal polarizations of the k
vectors of “a” and “b” solutions coincide. With further
growth (at ®af > dafl), the most unstable corrugations
switch to the “b” solutions. The length and orientation of
the optimal k vector are now determined by Eqgs. (18b)
and (21b). According to Fig. 4, “b” solutions for certain
vy and s can disappear again for some thicknesses, and
the morphology switches back to the “a” trenches. For
other cases, “b” solutions exist for all ®a> ®a. When
®a'! approaches infinity the most probable corrugations
approach those described in the third example.

VII. THE INFLUENCE OF MASS FORCES

The interaction of mass rearrangement, gravity, sur-
face energy, and stress in destabilizing phase boundaries
and free surfaces in isotropic elastic half-planes has al-
ready been studied thoroughly”®!%2* in connection with
the instability of the phase boundary separating melted
and crystalline “He. In the following discussion we focus
on the role of mass forces in the trenchlike pattern “a”
(pattern “b> can be investigated similarly). Pattern “a”
permits complete consideration in the framework of 2D
elasticity. Equation (12) allows one to compute the criti-
cal thickness and neutral wave vector for the arbitrary
function g (H). In 2D we can rewrite it as

k| ~'0* + [k 3* =

4(1—v; >+ (|k|H)*+(3—4v,)sinh*([k|H)

using dimensionless parameters I'* and =*.

_8p,(y— iy _ gpstis se= THs (39)

r* ,
T? yT} T}

For positive I'*(H), the left-hand side of Eq. (38) reaches
the minimum 2V T*3* at |k| =V T*3* ! (see the sketch
in Fig. 5). The right-hand side of Eq. (38) depends on |k|
and H. It is sketched in Fig. 5 for several values of H (the
graph for arbitrary H can be obtained by shrinking the
graph for H =1 parallel to the |k| axis with coefficient
H). At the critical thickness H_;, both graphs are

(38)

[
tangential to each other. The abscissa at the point of

tangency gives the neutral wave number |k|,.. For fixed
H and sufficiently small g, the constant T'* is also small.
Equating tangents at the point of tangency, we obtain the
following critical thickness and wave number:

172
3+4v
Hoy=3*+2 |2 Lpezes|
3 l_Vf
1/4 (40)
k. =4 6(1_‘Vf) T*
" 3+, 343
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FIG. 5. The graphs of the accumulated energies of the film
attached to the rigid substrate (R,, R,, and R; are the graphs
for the subcritical, critical, and transcritical thicknesses, respec-
tively).

Thus the corrections for small mass force is of order g'/?
for the critical thickness, whereas for the neutral wave
number k. it is of order g!/* (according to Refs. 23 and
25, for infinitely thick film k., ~g'/?).

Consider now an isotropic film of thickness H
coherently attached to an infinitely thick isotropic de-
formable substrate. This case is more relevant to the
study of epitaxial growth of nanofilms when elastic
modules of the film and substrate are close in magnitude
(see the warning in Sec. V). The observations of epitaxial
growth?® show that islanding begins with the corruga-
tions which are much longer than the film thickness. Ac-
cording to Eq. (22), asymptotic formulas for the accumu-
lated elastic energy at h(=|k|H) approaching infinity
differ crucially depending on substrate rigidity. For the
cases of (a) rigid (y=p,/pu;=0) and (b) deformable
(x#0) substrates, one can find the following formulas:

X=0: Ef,—E&;~h(T}+T}), (41a)
XF0: Efreq—Elg~x[(1—v)T}+T}] . (41b)

Therefore, in the absence of mass forces, every crystal-
line layer coherently attached to a deformable substrate
can always be destabilized by corrugations which have
sufficiently long components. We denote by k% the neu-
tral wave vector of the surface corrugations in the case of
negligible mass forces and substrate or relative rigidity y.
Then, Egs. (22) and (41) give the following equation for
the trenchlike pattern (provided &% <<1):

27 =fi 2
KX wy [kI9

(42)

Equation (42) shows that the neutral wavelength of corru-
gation increases proportionally to the substrate rigidity.
Thus, at arbitrary nonzero thickness each laterally un-
bounded film appears to be unstable with respect to
sufficiently long corrugations. In other words, there is no
critical thickness for solid films growing atop deformable
substrates in the absence of mass forces. Mass forces,
however, are most effective in suppressing the unstable
corrugations having long wavelengths. That cir-

cumstance provides the change of obtaining nonvanish-
ing critical thickness.

Following Nozieres,”> we take into account van der
Waals forces acting on growing films. These forces
strongly depend on the distance from the substrate; hence
the acceleration g becomes a function of H. Combining
Egs. (12) and (42) we arrive at the following formulas for
the critical wave number and thickness:

pg | 1—v, T
]k]"ez - =" b

o 2 opg

_(=v)* T, @)
pfg(Hcrit)_ 4 U',LL_% .

The latter of Eqs. (43) has to be treated as the equation
with respect to the unknown thickness H_,. Solutions of
this equation depend on the function p,g(H). Consider,
for instance, the power dependence p,g(H)=WH ",
where W is a constant. Then we arrive at the following
formula (it slightly generalizes the formulas of the critical
thickness established earlier?>26)
—2/n

,'l'?/na-l/ann|'4/n . (44)

1—v

s
flcrit:VVV4 2

Equation (44) prompts us to conclude that the critical
thickness tends to go to infinity as u, approaches infinity.
However, this would not be a correct statement, since we
have used the asymptotic formula (41b) while deriving
(44) (the asymptotics is not uniform in the u,).

VIII. CONCLUSIONS

In the absence of surface tension a flat boundary of
nonhydrostatically stressed elastic solids in always unsta-
ble with respect to “mass rearrangement.” Some features
of the instability in numerous phenomena certainly de-
pend on specific circumstances such as the mechanisms of
mass transport, physical and mechanical properties of the
materials, existing force and thermal fields, etc. On the
other hand, the occurrence of the instability is purely
thermodynamic in nature and does not depend on these
mechanisms. The instability allows to explain some re-
cent experiments in the *“He crystals under stress.!> Also,
it delivers opportunities to the theory of dislocation-free
Stranski-Krastanov pattern of epitaxial growth.

There may exist two critical thicknesses associated
with the instability in prestressed elastic films attached to
a solid substrate. The first corresponds to the destabiliza-
tion of flat films in favor of long parallel, periodic corru-
gations. For some types of stress, a second critical thick-
ness exists, corresponding to the formation of another set
of corrugations. The corrugations, then, produce a two-
dimensional superlattice of rectangular islands rather
than a one-dimensional lattice of trenches.

Attractive mass forces (i.e., those with positive ac-
celeration g) always increase the static critical thickness
of stressed solid films attached to the substrates. Both
the critical thickness and its corrugation for gravity are
detectable in experiments such as those described in Ref.
13.
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FIG. 2. The geometry of the corrugated film. (a) Top view.
(b) Side view.



