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We present a theory of resonant Raman scattering by acoustic phonons in semiconductor quantum
wells and superlattices for the case when translational invariance along as well as perpendicular to the
growth direction is perturbed due to layer thickness Buctuations and interface roughness, both with
and without an applied magnetic Seld. The breakdown of crystal momentum conservation along the
growth direction (q, ) leads to scattering from individual layers and folded acoustic phonons from
the whole mini-Brillouin zone contribute to a continuous emission background of geminate recombi-
nation. The Raman intensity is evaluated from the phonon displacement 6eld. It is proportional to
the difference in the amplitudes of pairs of counterpropagating waves constituting each mode. This
dependence causes characteristic intensity variations (peaks and dips) superimposed on the emission
continuum at energies of gaps of the folded phonon dispersion. Interface roughness also allows for
elastic scattering of photoexcited intermediate electronic states in the Raman process into states
with nonzero crystal momentum (q~~) perpendicular to the growth direction. This momentum can
be compensated by acoustic phonons in higher-order Raman processes. Due to this effect internal
gaps of the phonon dispersion, e.g. , at anticrossings of longitudinal and transverse acoustic branches
for

q~~ g 0, acquire enough strength to appear in the spectrum as additional structure.

I. INTRODUCTION

Resonant Raman scattering by longitudinal optic (LO)
phonons in bulk semiconductors and superlattices has re-
cently been studied intensively. Investigations of the res-
onant enhancement of the LO Raman intensity due to
the quasi-one-dimensional motion of electrons and holes
in a high xnagnetic field and singularities in the den-
sity of states for interband magneto-optical transitions
between Landau levels have provided inforxnation on
bulk material parameters, valence band mixing, conduc-
tion band nonparabolicity, exciton effects, and electron-
phonon interaction. Recent theoretical studies of one-
LO-phonon Raman scattering for both bulk2 and quan-
tum well systems6'~ have focused on the interplay be-
tween Landau quantization and electron-phonon interac-
tion via the deformation potential and Frohlich mecha-
nlsxIls.

For the theoretical description of experimental magne-
to-Raman pro6les, i.e., traces of LO-phonon intensity
vs magnetic 6eld for fixed laser excitation energy, the
fact that even in the highest presently available steady
magnetic 6elds the cyclotron energy just barely ex-
ceeds that of optic phonons poses a forxnidable prob-
lem due to the multitude of terms which contribute sig-
nificantly to individual interband resonances. To avoid
such drawbacks, recent experiments have focused on
acoustic-phonon magneto-Raman scattering, especially
from folded phonons in superlattices. There it was ex-
pected that isolated resonances could be investigated due
to the signi6cantly reduced difference between incident
and scattered photons. In addition to the characteris-
tic folded phonon doublets, such experiments revealed a

continuous Raman emission background in the acoustic-
phonon regime which exhibits strongly resonant behav-
ior in a magnetic 6eld. Some authors have labeled
this emission as geminate recombination, thus emphasiz-
ing the coherent character of the scattering process, i.e.,
the fact that one and the same electron-hole pair is ex-
cited, scattered, and subsequently recombines. It was
suggested that this background is due to Raman scatter-
ing by a continuum of acoustic phonons where crystal mo-
mentum is not conserved due to quantum well thickness
Huctuations and interface roughness s,xx Superimposed
on the background, characteristic intensity anoxnalies
(peaks and dips) were observed at energies correspond-
ing to gaps of the folded phonon dispersion. ' These
peaks and dips have also been noted in earlier studies
without magnetic field, but no explanation for their
relation to the phonon dispersion and to mechanisms
for Raman scattering has been given. Qualitatively, the
anomalies were attributed to antiresonances associated
with acoustic phonons at the mini-Brillouin zone edge,
to disorder-induced or q, nonconserving scattering,
or to local modes near the dispersion gaps. ' While the
observed features of background scattering and peaks and
dips are similar for experiments in zero and high magnetic
6elds, the considerable resonant field enhancement was
found indispensable when studying the efFects in wider
quantum wells, whereas in short-period superlattices sig-
nals are strong enough even without 6eld.

In this paper we present a theoretical model of Raman
scattering by acoustic phonons in disordered superlat-
tices (SL's) and multiple quantum wells (MQW's) which
describes the above features. We treat the intermediate
regixne where superperiodicity still holds for the phonons
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but the coherence of electronic states is destroyed by layer
thickness Buctuations and interface roughness. In view
of the close relation between spectra obtained with and
without high magnetic fields, we take advantage of the
computationally much easier calculations in the case of
Landau quantization. Nevertheless many of the results
should apply also without field, a case which, however,
can be treated analytically only in a rather simplified ap-
proach. After qualitative considerations of the problem
in Sec. II, a theoretical model of electron-phonon interac-
tion with acoustic superlattice modes and scattering by
interface roughness is presented in Sec. III. From the ex-

pressions derived there, the Raman eKciency for isolated
quantum well intermediate electronic states is calculated
in Sec. IV for both zero and high magnetic Gelds. In
Section V we discuss consequences of the model for the
characterization of interface roughness in layered semi-

conductor structures. Conclusions are given in Sec. VI.

II. QUALITATIVE CONSIDERATIONS

It was shown earliers, ii, iv, zs that the wide back-
ground of geminate recombination observed in the acous-
tic phonon &equency range by backscattering Raman ex-
periments in MQW's and SL's can be explained by a
relaxation of crystal momentum conservation along the
growth direction. The observation of comparable inten-
sities for "forbidden" background and "allowed" folded
phonon peaks in the same spectrum lets us assume that
layer thickness Buctuations and interface roughness do
not completely destroy superperiodicity but only intro-
duce slight spatial Buctuations of the size-quantized. elec-
tron and hole energies, both along and perpendicular to
the growth direction.

The qualitative picture for the two limits of a perfect
multiple quantum well structure and a system strongly
disturbed by interface Buctuations can be described in
the following way: With good accuracy we can consider
electron and hole states to be localized in individual lay-
ers and neglect the penetration of their wave functions
into the barriers. For a perfect quantum well structure,
when all individual layers are exactly the same, the con-
servation of crystal momentum along the growth direc-
tion in a Raman process is due to a summation of contri-
butions from individual wells to the scattering amplitude.
Due to Bloch's theorem contributions to the amplitude
differ only by exponential factors related to the period-
icity of the system. The coherence of individual terms
is induced by the photon and phonon waves propagating
in the growth direction. In this limit only folded acous-
tic phonon doublets, i e , superlattice . f.eatures, would be
observed in one-phonon Raman spectra.

In the other limit there are fluctuations in the well
widths which result in an energy distribution of size-
quantized electron and hole states. For a given laser
&equency only some of the wells are in resonance. This
reduces the situation to the limit of single quantum well

scattering when the scale of the Buctuations is larger than
the characteristic homogeneous broadening of the elec-
tronic states. Individual contributions to the amplitude
difFer now not only by exponential factors but also by

the energy denominators for intermediate electron-hole

pair states whj. ch are close to zero for wells in resonance
with the incident or scattered photons and equal to some

energy detuning for others, allowing us to neglect their
contribution to the amplitude. Since a random distribu-
tion of gaps is expected, we are left with scattering from
single quantum wells which does not require crystal mo-

mentum conservation along the growth direction. This
results in the participation in the scattering of acous-
tic phonons with all wave vectors. The intensity of the
background signal decreases with increasing energy de-

tuning. Interface perturbations inherent in real quan-
tum well structures should account for the experimen-
tally observed appearance of single quantum well as well

as superlattice features in resonant one-acoustic-phonon
Raman scat tering.

To understand the occurrence of anomalies superim-
posed on the background near folded phonon dispersion
gaps, the dependence of the Raman intensity on phonon
crystal momentum has to be considered. In pure one-

phonon scattering from a single quantum well, profound
dips with zero intensity should be observed at disper-
sion gaps because of the zero in-plane component of the
phonon crystal momentum in backscattering and a van-

ishing one-dimensional phonon density of states. On the
other hand, only the lowest energy Brillouin line and the
folded phonon doublets correspond to scattering by the
perfect MQW structure with phonons from the folded
dispersion. Experimental spectra, however, show a more
complicated structure with nonzero intensity inside the
gaps and a peculiar sequence of maxima and minima for
frequencies near their upper and lower boundaries.

Qualitatively, these variations can be attributed to the
symmetries of phonon standing waves at either side of
a gap, where displacement profiles in both constituent
materials exhibit reflection symmetry with respect to
the layers' center planes. Symmetric and anti-symmetric
modes are thus related to any gap. These properties are
reflected in the Raman intensity and a characteristic al-

ternating sequence of peaks and dips is found, depending
on sample parameters. This behavior is analogous to gap
oscillations and selection rules for allowed folded phonon
doublet scattering near dispersion gaps.

Another series of anomalies occurs at energies where
longitudinal and transverse acoustic dispersion branches
cross. Apparently gaps are also observed at these points,
even though the modes should be orthogonal for the (001)
propagation direction in which the experiments were per-
formed. In order to explain these features we consider be-
low higher-order Raman processes which involve acous-
tic phonons and interface roughness. Via such processes
scattering by phonons with nonzero values of in-plane
crystal momentum becomes possible. Internal gaps of
the phonon dispersion where longitudinal and transverse
branches do interact may thus contribute to the Raman
signal.

III. THEORETICAL MODEL

The interaction of electrons with acoustic phonons can
be described by the deformation potential mechanism.
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In the following we treat the case of con6ned quantum well electronic states interacting with folded modes of the

acoustic phonon dispersion. Superlattice vibrations are described macroscopically by a periodic variation of densities

p and elastic constants.

A. Acoustic superlattice phonons

To keep the model general we consider an arbitrary propagation direction for phonons with crystal momentum

q = (qll, (b), i.e., components perpendicular to and along the growth direction (z). The displacement field in unit cell

n with two neighboring layers of different materials a and b corresponding to the excitation of a superlattice acoustic
phonon can be written as

6

U„e (r) = Ce exp(zq'ed+ iqlll~ rll) ) e"A',. (q)e' 'lel*e
(

—+z) 8
~
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i=1
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(C.,' „k,*' 'k„" —p s(d;b~ )e " = 0. (2)

Here C;q ——»&, (2
" )i) 2, Ls is the normalization vol-

ume, and e " is the polarization vector in layers a and
b related to the superlattice phonon with wave vector q
from branch i. A'(q) and B'(q) are the amplitudes of
the six waves propagating in the a and b layers (i.e., three
pairs of counterpropagating waves), respectively. O(z) is
a step function which guarantees the value of z being
from the interval (—a/2, +a/2) for layer a and ranging
within (a/2, b + a/2) for layer b. The superlattice period
is d = a+b. While q is the wave vector of the superlattice
phonon dispersion, the values of k," (q) are determined
by the bulk phonon dispersion relations of the constituent
materials. For arbitrary propagation directions they are
determined by the Christoffel equation which describes
sound propagation in anisotropic media:

I

face, while q,', related to the superperiodic modulation,
and the k,"+(q), corresponding to the z component of
the wave vector in the layers, are different. For prop-
agation along the growth direction one obtains six or-

thogonal modes, one longitudinal acoustic (LA) phonon
and two transverse (TA) branches for each of the di-

rections kq, of crystal momentume By expressing the
displacement 6eld as a linear combination of these six
modes, the ansatz of Eq. (1) includes the possible con-
version of phonons by intermode Bragg reBection when

qll g 0. This leads to the appearance of internal disper-
sion gaps at points other than the mini-Brillouin zone

edge or center and causes anticrossings of interacting
acoustic phonon branches. 4 Acoustic-phonon transmis-
sion spectroscopy and imaging have recently been used
for detailed theoretical and experimental studies of these
phenomena.

Cii „ is the elastic-constant tensor of each layer. The
dispersion of phonon &equency uz, as a function of su-
perlattice wave vector q is found &om the system of equa-
tions satisfying boundary conditions for the continuity of
displacement and stress Gelds normal to each interface as
well as periodicity. In practice, 6xed values of u and

q~~
~ ~

are chosen, the k," (q) are determined from the secular
equation

et Cgt~nkt k„" —p~ gw~,.b~~ = O,

and boundary conditions are applied. Note that k~~ and

q~~ are identical and must be conserved across each inter-
I

rz(qi)(
)

rzrz(qi)(
)

rzb(qi)(
)

= C;q —exp (iqllrll + iq,*nd)

B. Electron-phonon interaction

The electron-phonon interaction Hamiltonian for de-

formation potential coupling is given by the product of a
deformation potential constant tensor ='~ and the strain
tensor

„( )
1 ~&c)U;(r) (9&, (r) l

(4)
2 q Br~ Br;

associated with a phonon mode displacement field
U q(r) as given by Eq. (1).2i i and j are coordinate

indices x, y, and z. From Eq. (1) we obtain e&
' in the

period n of the superlattice phonon (q, i) as

x 0 —+ z 0 ——z e -'p-' q + e - 'p& q . A' q e'" ~

j=1

+0 z —— 0 b+ ——z e -p- q +em™p&q -B'qe'
2=1
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with the following notation:
ai, bi ai, bi

p, * = v*, J,, = v„p,.' = k,.' (q).
The electron-phonon interaction Hamiltonian is then

& *(r) = -" ~i (r) + =~b ~i (r)

exp (~qJJ
'

ll
+ iq,*nd)

6

x 0 —+ z 8 ——z ) p '" *A'(q)e*"*~'i ~'
2 29 2

6d)+8
~

z ——
~

8 b+ ——z ) p = 8'(q)e'"*'
2) 2 j=1

with an effective interaction constant given by

ai, bi [rn[ lai, biqai, bi
( ) + mai, biqai, bi( )]

1
be . . q e .

& q

~ ~aibi aibi] aibi aibi l aibi)

The value of:"." depends on the propagation direc-
tion and the polarization of vibrations in the superlattice.
For propagation along the growth direction, LA modes
have a strain component e„which yields a nonvanish-
ing contribution. to the interaction, while TA modes are
orthogonally polarized to q and do not interact. For
crystal momentum qll g 0 the modes are of mixed char-
acter and other elements of b, especially e and e„„,also
contribute. In bulk III-V semiconductors such as GaAs,
the longitudinal acoustic deformation potential constant
of conduction electrons is much larger than that of va-
lence band states (either longitudinal or transverse). zs 2~

It is therefore sufFicient to take into account only the
pure hydrostatic component of the strain caused by the
phonon displacement, i.e., the term transforming like

28
&xx + &yy+ &ss

In the following we consider resonant Raman scatter-
ing with incident photon frequencies in resonance with
electronic transitions in the well material (a layers). Elec-
tronic excitations created in the wells may interact with
acoustic phonons via the deformation potential. They
can also be scattered by the potential due to well width
Buctuations and interface roughness. Under these as-
sumptions only that part of the interaction potential
which corresponds to the a layer needs to be consid-
ered. For a quantum well with z coordinate within

(—a/2, +a/2) the electron-phonon interaction potential
thus reads

6

(p; (r) = iC, e'~~~'~~ ):-*p'A;(q)e'"*'
j=1

where the index a has been omitted.

C. Interface roughness scattering

Growth imperfections in real semiconductor structures
cause the interface between two different materials not to
be atomically and electronically Bat. We assume imper-

fections to be randomly distributed along the interfaces
in the form of growth islands, where one material pen-
etrates into the adjacent one as a monolayer step of a
certain lateral extent. ' This causes local variations
in the con6nement energies &om which electronic states
can be scattered with a change of their in-plane crystal
momentum component q~~.

The interaction potential of electrons or holes with
such islands can be written in the following form:

) ~«JJ)
(2vr)'

L Ly

This describes an impuritylike potential with strength

y(qJJ) being constant inside the well along the growth
direction and centered at the position rp~~ in the plane.
We treat it in the following as a source of scattering for
electrons or holes localized in the well assuming averaging
over position rp~~ which recovers translational invariance
for the in-plane direction.

The physical information on the imperfection of the
interface is contained in the Fourier coefBcients g(qJJ). A
constant value of g up to a certain maximum value of

qlJ (qll, ~) and g = 0 beyo nd desc»bes a potential of
the type sin(qJJ, rlJ)/(qJJ, rJJ) From the 6»t ~~~~~ of
this potential a characteristic length scale can be derived
and interpreted as the size of growth islands. Assuming
a Gaussian form of the interface roughness potential for
the in-plane direction Q(rJJ) exp (—rz/t ) the Fourier

II

coefficients to be substituted in Eq. (10) are y(qJJ)
t2 exp (—qJ2Jt /4), where t is a characteristic width of the
potential.

IV. RAMAN EFFICIENCY

Within a general approach for the Raman intensity
the scattering eKciency can be written as

d's ~,'~i ri(~d, ) .4, , & t- P&)p&)ps HAPP,c n(~&)

where 0 is the solid angle, c the velocity of light in vac-
uum, n(u) the refractive index, ei(e, ) the polarization
vector, ~i(ur, ) the frequency for incident (scattered) ra-
diation, and S ~pg the light scattering tensor of fourth
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rank. The diagram technique for calculating S ~pp has
been developed in Refs. 31 and 32. In the following we
shall evaluate the scattering efficiency for the two exper-
imentally relevant cases of isolated confined electronic
states in the presence of and without a strong magnetic
field.

-4)~+4)
4)q-tdt+ld

n, k&-q

A. Raman efHciency in a magnetic Held

Figure 1 displays two diagrams for the second order
process of an electron being scattered by a superlat-
tice acoustic phonon (wavy lines) and interacting with
the interface roughness potential (dash-dotted lines) in a
strong magnetic field. For electron and hole states com-
pletely confined in the well the numbers of size quantized
levels N in optical transitions should be the same. Al-

though in principle there is no N conservation in the
vertices of electron-phonon and electron-roughness inter-
action it was assumed for the diagrams in Fig. 1 since
it leads to stronger resonant conditions. The same argu-
ments hold for Landau numbers n. The values of the y
component of the wave vector are conserved in all ver-
tices. Conservation of the z component for the phonon
crystal momentum and the Fourier harmonic of the in-
terface roughness potential is introduced by the sum over

k„. There is no conservation for the z component of the
wave vector for scattering from a single quantum well
which is assumed to be dominant because of energy level
variations originating &om layer thickness Buctuations
and interface roughness. Note that the phonons are not
affected by the magnetic field, which only leads to an
additional confinement of electronic states and, conse-
quently, to an increase of the Raman intensity.

In order to calculate the Raman efBciency we need to
evaluate matrix elements with electron and hole wave
functions in the well in a high magnetic field. In the
Landau gauge they are given by

@„,~,s„(r) = " v „(z—zq„)rl~(z) vo(r), (12)
exp(ik„y)

L„

where L L„ is the area of a quantum well. N and n
are quantum numbers of the size-quantized and Landau
levels. The wave function of a one-dimensional oscillator

+,N, n, k&
j tgN, n,ky

,ky

FIG. 1. Diagrams of second-order Raman processes with
acoustic-phonon (circle, wavy line) and interface-roughness
induced (square, dash-dotted line) scattering of intermediate
electronic states.

in the Landau sublevel n is given by

m~ 1/4 1

2mee(
xHH„x

ri~(z) =

'9N(z) =

xNzcos, N = 1,3, 5, . . .
a

xNzsin, N = 2, 4, 6, . . . .
a

(14)

The center position of the oscillator for electrons and
holes is equal to zs ——pl~~k„, l~ = /he/eH is the
magnetic length and ve(r) the Bloch function. After in-
tegration over the z coordinate within the well and over

r~~, the matrix element for the interaction of Eq. (9) and
the wave functions of Eq. (12) reads

with the Hermite polynomials H„(z) and
eH/m, (~)c being the cyclotron frequency for electrons
and holes of mass m, (a). The wave functions for electron
and hole states in the well are

R„'&(k»q)= (N, n, k' ~p;~(r)~N, n, k„)

= iC;qbp I, +q gN;~ + 1):-'~@~A'(q)exp fail&q~ k„——" K„(q~~)T~[k,'~(q)],
j=1

(16)

( I'
q~'~ & |'I'

q(( &

K„(q[~) = exp — L„

T~(k, ) = sin ( 2* ) 4N2

(ak )z
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where L (z) is the Laguerre polynomial and N, z the
Bose-Einstein distribution. Under resonant conditions
and strong magnetic quantization it suffices to consider
only the electron-hole pair states with specific quantum
numbers N and n which are closest to the incoming or
outgoing resonance considered.

In the same way we find for the matrix element of
electron and hole interaction with the interface roughness
potential

(q[)) = (N n ~ 14q)) (r[~)IN n 4)
(2m)

2

4„,a +p„X(q())~n~

x exp +2l~q, k„——" K„(q~~), (19)

where nd is the areal concentration of defects related to
the interface roughness.

An important feature of the matrix element for inter-
action with phonons is the appearance of a factor which
involves amplitudes A'(q) of all six waves in the layer
and results in a strong dependence of the Raman effi-
ciency on the relative contribution of the pairs of waves
which propagate in opposite directions with respect to
the growth direction.

With the help of Eqs. (11), (16), and (19) we find
6nally for the differential efficiency of scattering corre-
sponding to the contribution of the two diagrams shown
in Fig. 1 for a Raman shift ~~ —~,

= Spj(N, , +1)dS
d(ds

[20„N —(ldi —(u, )]2 + 4I'2

(fl.'N + I') ([fl-N —(~l —~.)]'+ I')'
(20)

where

O~N = &l &g 4/N (dN (A + 1/2) (pl, + ~h, ), (22)

e ~a 6 Ags, = ——
4)~ Ai mOC P(~& —~e) s H

(21)

and the con6nement and cyclotron energies for electrons
and holes. The appearance of L, in the denominator
of Eq. (21) results from the calculation of the scattering
efficiency for a single quantum well when the superlat-
tice vibrations were normalized to the sample size I, .
The total efficiency of scattering is independent of the
normalization volume. The diagrams in Figs. 1(a) and
1(b) result in similar contributions to the scattering effi-
ciency with slightly different energy denominators. Due
to the elastic character of interface roughness scattering,
the 6rst diagram in Fig. 1 gives the main contribution to
scattering in incoming resonance whereas the second one
is mainly important for outgoing resonance. This follows
&om the second power to which the resonant term re-
lated to the electron-hole pair state before and after the
interaction with interface roughness occurs in the energy
denominator for the scattering efficiency.

B. Raman efficiency without magnetic field

The case of zero magnetic field can be treated in a way
similar to scattering in the presence of a strongly quan-
tising magnetic field but taking all intermediate states
of the electronic subsystem as plane waves in the lat-
eral directions instead of the wave functions of Eqs. (12)
and (14). The spectrum of phonon excitations as well as
the electron-phonon and electron-roughness interaction
[Eqs. (9) and (10), respectively] can be taken in the same
form as for the case of a high magnetic field.

Calculations without magnetic field become more cum-
bersome because of the additional integral over

q~~
of the

electronic intermediate states. This integration cannot
be performed analytically without some approximations
such as, for example, assuming an infinite effective mass
for holes. Below we neglect

q~~
in the energy denom-

inators corresponding to the electron Green's functions
(see diagrams in Fig. 1). Since in our model all features
related to folded acoustic-phonon dispersion gaps reflect
the properties of the matrix elements for electron-phonon
and electron-roughness interaction rather than those of
resonant denominators, we believe that such an approxi-
mation is valid. Making use of Eqs. (9)—(11), (18), (19),
(21), (23), and (24) we find

(23)

dS

where

SpJ(N, . +1)
(Q + I'2) ([flN (pl! ld )]2 + I'2) ' (25)

(26)

W;(q) = ):-;p,*A,*(q)TN[k;, (q)]y(q~)) (24)

The contributions of electrons and holes to the homo-
geneous broadening are included in I' = (p, + ph)/2.
0 ~ measures the detuning of the exciting laser photons
Rom the interband critical point at which resonance oc-
curs. Its energy is given by the contributions of the gap

ON = ul —
ldll

—cuN —uN, and Sp = Sp(p l~/h ). Be-
cause of the approximation taken, the resonance behavior
of Eq. (25) is more singular than it would be if

q~~
was

taken into account in the energies of intermediate elec-
tronic states. It is known that in the two-dimensional
case resonances have logarithmic character. ' By com-
parison of Eqs. (20) and (25) we find that the crucial
dependence on q, which is responsible for the intensity
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anomalies superimposed on the continuum emission, fol-
lows &om the dependence of the scattering efficiency on
W;(q). This function is involved in the equations for both
Raman scattering in zero and in high magnetic fields.

V. DISCUSSION

In the following we shall illustrate consequences of our
model of acoustic-phonon Raman scattering in disordered
multiple quant»m wells and superlattices.

Among the phonons with crystal momentum along the
growth direction, only the longitudinal acoustic modes
have a strain component e„which allows for diagonal
matrix elements of the deformation potential interaction
with the confined electronic states. The TA modes may
couple light hole with heavy hole bands but do not lead to
backscattering. Therefore Eq. (9) reduces to the sum over
the two LA modes with superlattice crystal momentum
kq, . Each of these modes is a linear combination of
two counterpropagating LA waves with wave vectors kk,
in the well layers. For brevity their amplitude factors
are labeled by Ap, respectively. The electron-phonon
Hamiltonian of Eq. (9) thus reduces to

CT

0.5

C5

0.0

ED

QC

CO

Eh
C
0)
C

0
0

(c)

10 20 30 40 50
Raman Shift {cm t)

P;z(r) = ig;ze' t~"~~=Jc, (A~e'"" —A e '""). (27)

Evaluating the matrix elements with electron wave func-
tions from Eqs. (14) and (15) the Raman eKciency is
found proportional to

dS
fA+ —A

e
(28)

It is via this term that the folded character (i.e., the
Bragg reflections) of the phonon dispersion enters into
the Raman spectrum. Otherwise the result for

q~~
——0 is

analogous to the one derived in Ref. 8. Figure 2 shows
(a) the LA phonon dispersion, (b) the variation of the
above intensity factor vs Raman shift, and (c) the exper-
imental Raman spectrum for a symmetric GaAs-A1As su-
perlattice with layer thicknesses of 16 monolayers. The
spectrum was measured at 6K in a magnetic field of 11
T using the z(o, o' )z scattering geometry. The exci-
tation energy was 1.727eV, in resonance with the n = 1
Landau level of the lowest heavy hole to electron tran-
sition. At the energies of dispersion gaps in Fig. 2(a)
Bragg reHection at the interfaces causes the LA phonons
to have a displacement field of standing waves, i.e., the
amplitudes A~ are equal in magnitude but either oppo-
site or equal in their relative signs. Consequently the
Raman intensity factor in Fig. 2(b) vanishes at one side
of each gap whereas it has a finite value on the other
one. This behavior is reBected in Fig. 2(c) for all inten-
sity anoxnalies related to LA dispersion gaps. To obtain
the experimentally observed spectrum, the Raman effi-
ciency has to be evaluated according to Eq. (20), which
yields a continuously decreasing background of geminate
recombination with superimposed peaks and dips due to
the intensity factor. Further comparisons between exper-
iment and theory will be published elsewhere. We want
to emphasize once more that the key point of our model

FIG. 2. (a) LA phonon dispersion for a symmetric
GaAs-A1As superlattice with layer thicknesses of 16 mono-
layers; (b) Raman intensity factor according to Eq. (28); (c)
experimental Raman spectrum for such a structure showing
peaks and dips superimposed on a continuous emission back-
ground.

is the interplay between electronic disorder, leading to q,
nonconserving scattering, and superlattice efFects, which
persist for the phonons and are manifested by the inten-
sity factor of Eq. (28).

As mentioned in Sec. II, the behavior of the Raman in-
tensity near boundaries of the mini-Brillouin zone is anal-
ogous to gap oscillations studied earlier. ' According
to Fig. 3.8 of Ref. 20 or Fig. 2 of Ref. 19 the magnitudes of
folded phonon dispersion gaps oscillate in a characteristic
fashion as a function of relative layer thicknesses. This
causes Raman-active zone boundary modes to lie either
below or above the nonactive ones in energy. Changes in
this relative ordering occur each time the magnitude of a
gap goes through zero. Figure 3 illustrates the variations
of the intensity factor for LA phonons in GaAs-AlAs su-
perlattices with a constant period of 30 monolayers. The
various curves were calculated for difFerent thickness ra-
tios a of AlAs layers with respect to the total period.
The respective values of o; are given next to each trace.
While the magnitude of the gap widens for the first zone
edge anomaly near 10cm for values of o; around 0.5,
the characteristic vanishing of the intensity at the lower
side of the gap and the overshoot at the higher energy
does not change over the whole range of a. This re8ects
the behavior found in Ref. 20 where the lowest energy
gap does not go through zero for any value of a, except
for those corresponding to bulk materials. For the first
zone center feature near 20 cm the symmetric and an-
tisymmetric modes change their relative positions only



8270 V. I. BELITSKY, T. RUF, J. SPITZER, AND M. CARDONA

fIJ

O
LL

EO
C

C

a= ZE

0.9

ZC ZE ZC

0.8

0.7

0.6

0.3 L /

02

0.1

/ L
/ 3 / !

L

04 & 3 J Q j
/

V)
~~
C

0$
(a)

sity of states from one-dimensional to a modi6ed three-
dimensional character. Consequently the Raman inten-
sity in Fig. 4(b) vanishes for shifts approaching zero.
Presumably due to insufEcient stray light rejection, this
decrease in the intensity could not be observed for the
present sample. Clear indications of the expected be-
havior, however, have been seen in other short-period
superlattices. A comparison of the observed anoma-
lies with LA and TA phonon dispersions is given in
Fig. 4(c). The interacting quasilongitudinal and qua-

10 20 30 40
Raman Shift (cm ')

50

FIG. 3. Ramsn intensity factor according to Eq. (28) for
a GaAs-AlAs superlattice with period of 30 monolayers and
varying relative thicknesses. The ratio n of barrier layer to
total thickness is given for each curve.

once near n = 0.55, the point where that gap vanishes. 2

The two remaining anomalies involve two and three Hips,
respectively, corresponding to zero gaps at o, 0.4 and
0.7 and o. 0.3, 0.55, and 0.8.

In Secs. III and IV we demonstrated how superlattice
phonons with qii g 0 may contribute to backscatteriag
Raman spectra via a second-order mechanism involving
one step mediated by the interface-roughness potential.
Due to the dependence of the Raman intensity on crys-
tal momentum, internal gaps may also cause intensity
anomalies in the spectra. Structures of this origin are
showa in Fig. 4. Figure 4(a) shows the experimental
Raman spectrum of the (16/16)-moaolayer GaAs-AlAs
MQW structure discussed before. It is to be compared
with the best fit &om our model, shown in Fig. 4(b).
In Fig. 4(b) aa integration over

qadi
was performed up to

a maximum value of
qadi

= 0.4vr/d. To approximate the
interface-roughness potential, Fourier coefficients y(qii)
were chosen constant up to that value of

q~~
and zero

beyond. The features marked by asterisks are anoma-
lies due to gaps of the LA-phonon dispersion at the edge
and center of the mini-Brillouin zone. They have the
characteristic vanishing and enhanced scattering intensi-
ties predicted by the factor from Eq. (28) and Fig. 2(b).
The anomalies marked with triangles originate in inter-
nal gaps where LA and TA dispersions couple and an-
ticross. Intensity anomalies predicted for these gaps are
also in close agreement with the experiment. The one
TA branch which couples to LA phonons near the Grst
gap at the Brillouin zone edge acquires enough strength
to show up in the spectrum as a kink labelled with the
circle in Fig. 4(b). The iaclusion of phonons with qii g 0
in the calculation leads to a change in the phonon den-
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(h

I
C

1.0

0.5
N

U

0.0

/p
Iy q

QT/I'
T

QL

0.6

0.4
0.2

0. 1

~~
V)
CI
C

0.0

t a ~ I ~ ~ a a I a

10 15 20
Raman Shift (cm ')

I

25 30

FIG. 4. (s) Experimental Rsmsn spectrum of the (16/16)
monolsyer GsAs-A1As superlsttice compared to (b) the best
theoretical profile obtained by integration over a range of
in-plane crystal momenta q~~. Stars, triangles, and the circle
denote peaks and dips due to LA, LA-TA internal, and TA
dispersion gsps, respectively. (c) Exemplary folded phonon
dispersion vs q calculated for a nonzero in-plane wave vector

qii
= 0.4x/d. Solid, long-dashed, sud short-dashed lines indi-

cate the dispersion branches of quasilongitudinsl (gL), qus-
sitrsnsverse (QT), snd pure transverse (T) modes. Zone-edge
and internal gaps give rise to the intensity anomalies denoted
in (b). (d) Theoretical spectra calculated for various values
of qii indicated next to each trace in units of x/d. See text for
details on parameters used in both calculations and experi-
ment.



THEORY OF DISORDER-INDUCED ACOUSTIC-PHONON RAMAN. . . 8271

sitransverse modes are given by solid and long-dashed
lines, respectively. The dispersions have been calcu-
lated with an in-plane crystal momentum component of

q~~
——0.4'/d. Zone edge and internal dispersion gaps

can be directly compared to the respective background
intensity anomalies of Figs. 4(a) and 4(b). The purely
transverse acoustic branch (T), given by the short-dashed
lines in Fig. 4(c), causes neither continuum emission nor
anomalies.

Figure 4(d) shows a number of spectra calculated for
difFerent values of

q~~
given next to each trace in units

of x/d. Parameters were chosen according to the experi-
mental conditions under which the spectrum in Fig. 4(a)
was obtained. The homogeneous broadening I' was taken
to be 1meV. For

q~~
——0 only the three anoxnalies of the

LA dispersion are obtained. As
q~~

increases, LA-TA an-
ticrossing features and the kink at the TA zone edge gap
develop signatures of increasing strength. Increasing

q~~

also shifts the dispersion gaps towards higher energies.
From this sequence it becomes evident that by compar-
ison with experimental spectra a range of values for

q~~

can be determined. For
q~~

around zero, the LA-TA fea-
tures are much less pronounced than for larger in-plane
wave vectors. On the other hand, for

q~~
too large, such

as illustrated by the top curve of Fig. 4(d), absolute and
relative energies of peaks and dips deviate increasingly
from their experimental positions. We find that by inte-
gration over a range of

q~~
the ratio of the LA anoxnaly to

the LA- TA anticrossing and the TA kink can be adjusted
quite sensitively. The spectrum in Fig. 4(b) was thus ob-
tained for 0 &

q~~
& 0.4vr/d, assuming constant y(q~~) g 0

within and a zero value outside of this range.
As mentioned in Sec. III the Fourier spectrum. chosen

corresponds to approximating the roughness potential by
islands of the form»n(qll, rll)/(qll, rll) From the
first zeros of this expression, a characteristic length scale
can be deterxnined. For the saxnple investigated a value of
A 450 L is obtained. The height of roughness-potential
steps has been recently determined &om variations of
hole-intersubband energies due to inhoxnogeneous broad-
ening in electronic Raman scattering experiments &om p-
modulation doped GaAs-Alo 43Gao 57As MQW and was
found to be of the order of a monolayer fluctuation. 0

However, no information on the lateral extension of these
defects could be obtained. Due to their sensitivity to q~~,

Raman spectra in the acoustic-phonon regime allow the
characterization of the extension and possibly the size
distribution of growth islands in epitaxially grown inter-
faces.

We want to point out that the expression for the
Raxnan efBciency in the presence of a strong magnetic
field given by Eqs. (20)—(24) contains a factor K„(q~~)
[Eq. (17)], which leads to an exponential suppression of
the scattering intensity for in-plane crystal momenta

q~~

larger than the inverse of the magnetic length /~. In the
treatment for zero magnetic 6eld this factor, which comes
from the overlap of Landau wave functions, does not ap-
pear. Experixnental spectra, measured both with and
without magnetic 6elds, show similar behavior for the LA

zone edge and LA-TA internal gap features from which
lateral length scales of interface roughness were obtained.
The main eH'ect of the magnetic 6eld is that it provides
additional confinement and thus an enhancement of the
Raman intensity which is especially ixnportant for wider
quantum wells. In short-period superlattices, however,
the efFects can be studied even without field. The dif-

ferences in the two limits of our model are likely to be
reconciled by a xnore involved treatment which takes ex-
citonic efFects into account.

The spectra shown in Figs. 4(b) and 4(c) contain no
folded phonon doublets. This is due to the single quan-
tum well scattering treated in our model. To include crys-
tal momentum-conserving contributions, a coherent sum-
mation over several inhomogeneously broadened MQW
has to be performed. The ratio of folded-phonon dou-

blet to background-emission intensity has recently been
analyzed with respect to the relative magnitude of homo-
geneous and inhomogeneous broadenings of MQW elec-
tronic structure.

VI. CONCLUSIONS

We have developed a theoretical model of acoustic
phonon Raman scattering which explains the continu-
ous emission background and superimposed peaks and
dips in geminate recombination spectra of sexniconduc-
tor multiple quantum wells and superlattices. Disorder
from layer thickness fluctuations and interface roughness
causes an inhomogeneous broadening of electronic struc-
ture. Individual confined levels within this distribution
can be resonantly excited in a Raman experiment so that
translational invariance and crystal momentum selection
rules break down for the electronic states, whereas the
vibrational structure remains rather unaffected. This
leads to scattering from all phonon modes of the re-
duced mini-Brillouin zone. Gaps of the folded phonon
dispersion appear as characteristic peaks and dips in the
spectra. Their intensities follow from the dependence
of the Raman efBciency on phonon crystal momentum.
Second-order Raman processes with one step mediated
by interface-roughness scattering have been invoked to
explain the observation of intensity anomalies at internal
anticrossing gaps of LA and TA dispersions. The ratio of
LA zone edge and LA-TA internal gap features depends
on the lateral extension of the roughness potential. This
provides a possibility to determine characteristic sizes of
growth islands.
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