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Persistent currents in one-dimensional disordered rings of interacting electrons
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We calculate the persistent current of one-dimensional rings of spinless fermions with short-range
interactions on a lattice with up to 20 sites, and in the presence of disorder, for various band fillings.
We find that both disorder and interactions always decrease the persistent current by localizing the
electrons. Away from half-filling, the interaction has a much stronger influence in the presence of

disorder than in the pure case.

The recent discovery of persistent currents in meso-
scopic rings has addressed new interesting questions on
the thermodynamics of these systems. Although such
an effect was predicted some time ago, the unexpectedly
large amplitude of the measured currents led to impor-
tant questions. The role of e-e interactions is still un-
clear. It has been proposed! that the interactions con-
tribute to the average current, which is measured in a
many rings experiment.? On the other hand, the impor-
tance of the choice of the statistical ensemble to calculate
average values has also been stressed.® Although an ex-
planation, based on a perturbative calculation both in
interaction and disorder, seems to give a quantitative es-
timate closer to the experiment, it is still too small by
one order of magnitude and the interaction parameter
used in the theory is not well known.

In addition, for a single ring experiment,* the magni-
tude of the measured current is also not understood and,
up to now, perturbation theory has failed to explain an
enhancement of the current.’ It is only when disorder is
weak that experiment and theory seem to agree,® even
for noninteracting electrons.

At the moment, the role of the interactions in disor-
dered systems is still unclear and is an open subject. It
has been proposed recently that, in the presence of inter-
actions, the current could be as large as for free electrons,
the effect of the interactions being to counteract the dis-
order effect.”

The aim of this paper is to describe the interplay be-
tween the interactions and the disorder on the persis-
tent currents in one-dimensional (1D) rings. We choose
a model of spinless fermions with short-range interactions
on a lattice. Our main result is that a repulsive interac-
tion always decreases the amplitude of the current. It is
well known that the 1D description is certainly not the
most appropriate one to describe quantitatively experi-

ments which are performed in rings with finite width, in -

the diffusive regime. But our hope is to find numerical
results which may give indications for a more realistic
situation.

We describe a chain of 1D spinless fermions in the pres-
ence of disorder with the following Hamiltonian:

H=—t/2 Z[exp (2ir®/N) cf ¢;41 + Hec!]

+VZnim+1+Zwini, (1)
i i

1

where w; are on-site energies and are chosen randomly
between —W/2 and W/2 and V is the nearest neighbor
Coulomb repulsion. In the following we will take t = 1,
® is the total magnetic flux through the ring (measured
in units of flux quantum ®, = h/e), and N is the num-
ber of sites. (We use the conventional notation for the
amplitude of disorder W and for the nearest neighbor in-
teraction V. These notations are opposite to those used
in Ref. 7.)

Let us first recall some physical properties of this
Hamiltonian without disorder, i.e., W=0. In one dimen-
sion, for repulsive interaction, a metal-insulator transi-
tion occurs at half-filling due to the existence of umklapp
processes. However, away from half-filling, the umklapp
processes become irrelevant and the system is expected
to be metallic.® For Hamiltonian (1), the metal-insulator
(Mott) transition occurs at V=1. The system is insulator
for V > 1 and metallic for 0 <V < 1.

This transition can also be described in the spin
picture.® In the case W = 0, the model is integrable and
is formally equivalent to an anisotropic spin model, as
obtained by a standard Wigner-Jordan transformation.
In this way the new Hamiltonian reads

Hxxz = —t/2 Z[exp(2i7r<I>/N) St S, +Hc]

+V [N/4 +> 87 s,.zﬂ} . (2)

For the X X Z model, V = 1 corresponds to a transition
from an XY model (V < 1) to an Ising model (V > 1).
V = 1 corresponds to an isotropic Heisenberg system.
Note that a spin gap opens up for V > 1. It corresponds
to the gap in the charge excitations for Hamiltonian (1)
characteristic of the insulator. With disorder, W # 0, we
must add in (2) the following term:
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Hrandom = Zwi (Szz - 1/2) (3)

This term describes the interaction of the local spins with
random magnetic fields.

We now turn to the numerical calculation of the
ground-state energy as a function of the total magnetic
flux E(®) which is the first step of our work. The
ground-state energy is obtained from a standard Lanczos
algorithm.® First of all, let us briefly describe some tech-
nical aspects of the method. The calculation is limited
to relatively small system sizes IV, since (i) the Hilbert
space dimension grows exponentially fast with NV, (ii) we
have to average over many realizations of the disorder
(because of statistical fluctuations), and (iii) the disor-
der breaks the translation symmetry. The system sizes
we were interested in vary from 6 to 20 sites and we have
chosen to consider two different cases: half- and quarter-
fillings. Remember that the Lanczos method consists of
the construction of a tridiagonal matrix by applying iter-
atively the Hamiltonian on an initial random vector. In
this way a basis of normalized vectors ¥,, is defined as
well as a set of values e, and b,, given by the relation-
ship HY,, = bp—1¥n_1 + €n ¥y + b1 ¥n+1. Hence we
construct by iteration a tridiagonal Hamiltonian matrix
expressed in the ¥, basis that we diagonalize to obtain
the spectrum of the eigenvalues. This kind of process is
rapidly converging.

Let us now consider the calculation of the persistent
current in such rings threaded by a total flux ®. As
usual the current is defined by

1 8E(®)
o 8% (4)

where E(®) is calculated by exact diagonalization of the
Hamiltonian. As is well known, a flux can be gauged
out from the Hamiltonian so that the presence of an
Aharonov-Bohm flux through a ring is analogous to a
twist in the boundary conditions ¥(z + N) = ¥(z)eZ"®.
The spectrum and the persistent current have a flux pe-
riodicity of 1.10

In Figs. 1 and 2, I(®) is plotted versus ® for a 16-site

1(®) =

_1||vv||‘ll
1S

0.04 &

-0.04 0

0.04

o} V=2
o V=1
a V=0

—

-0.04 0

o b by b by 1y

—04 -02 O 02 049

FIG. 1. Current I(®) vs ® for a 16 site ring at (n) = 0.5
(a) or at (n) = 0.25 (b), fixed W =0,and V =0, 1, and 2.
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FIG. 2. Current I(®) vs & for a 16-site ring at (n) = 0.5
(a) or (n) = 0.25 (b), at fixed W = 0.5, and V = 0, 0.5, and
1.

ring at electron density (n) = 0.5 and (n) = 0.25 in (a)
and (b), respectively, for different values of the disorder
and the interaction. Figure 1 corresponds to the “or-
dered” interacting case W = 0 and disorder W = 0.5 is
introduced in Fig. 2. In Fig. 1, a discontinuity of I(®)
appears at ® = 0, for zero disorder (W = 0). Indeed,
in the absence of disorder, translation symmetry is pre-
served and total momentum is a good quantum num-
ber. As a function of ®, a crossing occurs between two
lowest energy levels with different momenta. This cross-
ing occurs at ® = 0 for an even number of electrons
or at ® = 0.5 for an odd number. This can be easily
understood in the noninteracting case where E(®) = —
Y [nee(n)) €08(kn+2m2/N) and the subset of the electron .

momenta k,, = 2w n/N is chosen in order to minimize the
total energy. Since translation invariance is preserved in
the presence of interactions, the discontinuity still exists
for finite V. When disorder is introduced (W # 0) in
Fig. 2, the scattering potential lifts the degeneracy at
the crossing point and hence leads to a continuous vari-
ation of the current. In Fig. 1(a) (half-filling) we clearly
observe the effect of the Mott transition on the currents:
we notice that for V < 1, I is slowly varying with V, but
when V' > 1 a drop of the current appears. However,
away from half-filling [see Fig. 1(b)], the current is not
affected for moderate interactions. At W = 0 and away
from half-filling, the system is always metallic.

In Figs. 2(a) and 2(b), the influence of the repulsive in-
teraction is shown for a fixed impurity potential of mag-
nitude W = 0.5 and for the same parameters as in Fig. 1
(N=16, (n) = 0.5, and (n) = 0.25). Clearly, in the half-
filled case [Fig. 2(a)], the repulsion tends to suppress the
current even further. This is reminiscent of the Mott
localization, which occurs in the pure system. With in-
creasing W, I(®) decreases as expected due to a stronger
localization by the impurity potential. Such an effect has
also been found in a ring of spinless fermions with long-
range interactions.!!

More interesting is the effect of the interaction away
from half-filling where no localization is expected in the
absence of disorder. As seen previously in Fig. 1(b) the
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effect of the interaction for W = 0 is extremely weak,
because of the absence of umklapp scattering. However,
it is clear from Fig. 2(b) that the interaction is much
more effective in the presence of the disorder (W # 0);
while in Fig. 1(b) V has almost no effect, in Fig. 2(b),
for a relatively weak disorder, V leads to a significant
decrease of the current. Such a striking influence of the
interaction V is also seen in the metallic regime at half-
filling [compare, e.g., V = 0 and 1 in Figs. 1(a) and 2(a)].
At this point, we would like to describe more quali-
tatively the transition from the localized regime (insula-
tor) to the ballistic one (perfect metal). As stressed by
Scalapino et al.,'? the Drude weight 7D is a relevant pa-
rameter to characterize both of them. As originally noted
by Kohn,!3 the Drude weight wD can be calculated from
the dependence of the ground-state energy versus @,

where ®,, = 0 or 1/2 is the location of the minimum of
E(®). As mentioned earlier, ®,, depends on the parity
of the number of electrons. For an even electron number
parity, we take D as the second derivative at ®,,= 1/2.

Note that for free electrons D = (n)/m, where (n) is
the density of the mobile charge carriers and m = 1/2t
is their mass. Generally D is given by'*

p="{" (6)
where m* is the effective mass of the carriers renormal-
ized by the interaction. In this way, the D parameter can
determine the different regimes. A perfect metal (ballis-
tic regime) will be characterized by a finite value of D.
This corresponds to a persistent current I scaling as 1/N.
In the insulator, D vanishes exponentially as the size of
the system goes to infinity, D oc e N/¢  where £ is the
localization length. As a check of the numerical calcula-
tions on the Drude peak, we observed the correct finite
size scaling for W = 0, at half-filling D ~ Dy, + a/N?
for V<1land D x e M€ for V> 1 when N > ¢.

Since we consider disordered systems, we have to aver-
age over many realizations of the disorder. And since the
number of particles is fixed in each of our simulations, the
current has a well-defined sign. Thus, the average cur-
rent is finite. The number of configurations we averaged
over varied from 50 to 250, depending on the size of the
Hilbert space and the filling. In Fig. 3 ({(n) = 0.5) and
Fig. 4 ((n) = 0.25) D is plotted versus 1/N (N is the size
of the ring). We first consider the half-filled case (Fig.
3). When V = 0 and W=0, D goes to a finite value in
the thermodynamic limit (Dji, = 1/7). As long as W=0
(i-e., without disorder), the Drude weight is weakly af-
fected by a small interaction V' < 1 signature that the
system remains metallic. But for V > 1 (here V = 2)
D decreases faster with V, and the system becomes an
insulator. We now turn to the effect of disorder. Once
W # 0, we observe a tendency towards localization for
all V. With disorder in the system, the effect of the in-
teraction is also to increase the degree of localization. In
the light of the results given by Figs. 3 and 4, it appears

G. BOUZERAR, D. POILBLANC, AND G. MONTAMBAUX 49

<f,<!1[II$!I|!|II\I‘TYTK[I‘\[TI‘
.~ 1D t—v—w
-]

T <n>=0.5

Ll

T
<
Ii ﬁw
o0 o
o
1

D

ER]
1]

L

ap)

X
<
Il
o
|

E
Lo

el
oV

0.1
<
Il

0.2
I T T T T | T
> °
< g«
i
[ 1=
1 L L i 1

T S

Oy\||l|lllll|||1‘ll|\ll|llll

0 0.05 0.1 0.15 0.2 0.25
/N

FIG. 3. Scaling of D at half-filling ((n) = 0.5). D vs 1/N
for different V and W.

that the role played by the interaction in the presence of
disorder (W # 0) is clearly different for (n) = 0.5 and
for (n) = 0.25. On one hand, at (n) = 0.5 we see that
the interaction V leads to a real decrease. For example,
if we consider in Fig. 3 the case W = 2 and compare
the data for V = 0 and 2 we notice that the presence of
the interaction reduces the localization length £ by more
than a factor 3. On the other hand, at (n) = 0.25 (and
fixed W) the value of D is less affected by the interac-
tion V, as also observed in Figs. 2(a) and 2(b) for the
current. However, we note that the effect of V' is signifi-
cantly larger for W # 0 than in the pure case W = 0. In
summary, we do not observe any increase of D due to the
competition between the interaction and the disorder.
We finish this paper with a few remarks on the con-
ductivity spectrum. The optical conductivity is given by

0(w) = TDé(w) + Oreg(w), (7)

where 0reg(w) is given by the Kubo formula,
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FIG. 4. Scaling of D at quarter-filling ((n) = 0.25).
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o 2
Treg(w) = % > léﬂj_lo%-&[w — (Em — Eo)], (®)
m#£0 m 0

and j is the current density operator,

3 =—it/2 Z[CI ci+1exp(2in®/N) — H.c]. (9)

3

All quantities in (9) are calculated at & = ®,, and E,
are the excited many-body energies. The amplitude D of
the Drude §(w) peak was calculated previously. We have
explicitly checked the sum rule,

/0 ” o (w)dw = —(m/2N)(0| Huin|0), (10)

where (0| Hyiy|0) is the ground-state expectation value of
the kinetic energy.

In Fig. 5, o(w) is plotted versus w for a 16-site ring
at half-filling, with V = 0.5 and for W = 0 or W = 1.
In presence of the disorder we had averaged over 100
configurations. We clearly see, as expected, that in the
metallic case W = 0, the contribution at nonzero fre-
quency is negligible (7D ~ 0.98 and only less than 1% of
the weight is left at finite frequencies). However, when
we introduce disorder, a strong absorption appears at
nonzero frequency with a peak around w = 0.4¢, while
weight is removed from w = 0 (7D ~ 0.52).

This broad absorption can be interpreted physically in
the following way: if we assume that disorder localizes the
wave functions in small finite size regions with a broad
distribution of volumes, this leads to a correspondingly
broad distribution of finite characteristic frequencies. In
other words, the localized electrons can oscillate in dis-
connected regions of different sizes.

Let us summarize the main result of this paper. In
our model for interacting electrons, we never observe
an increase of the persistent current when interaction
is switched on. At half-filling, the interaction induces
a metal-insulator transition. The current strongly de-
creases, in qualitative agreement with the result of Ref.
11. Away from half-filling, the effect of the interaction is
much weaker in the absence of disorder. However when
impurity scattering exists, the interaction plays again a
crucial role and leads to an additional decrease of the
current. This is because it is more difficult to move cor-
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FIG. 5. Total conductivity o(w) for a 16-site ring at (n) =
0.5 and (a) with or (b) without disorder (W =0 and W = 1)
for a fixed V = 0.5. For W = 0, #1D ~ 0.98. For W = 1,

wDay ~ 0.52 and we averaged over 100 realizations of the
disorder.

related electrons in a random potential than independent
electrons. A priori our results do not contradict those of
Ref. 7, which deals with a model in which electrons move
in a continuum. Clearly, the destruction of the current
by the interaction is extreme for a half-filled band where
umklapp scattering is large. This is the reason why we
also studied the case of a quarter-filled band where lat-
tice effects are expected to be much weaker. Still in this
case, the interaction tends to decrease the persistent cur-
rent. Reference 7 corresponds, in fact, to the case of a
band filling very far from simple commensurability where
lattice effects are expected to be extremely small. It will
be of interest to know if the qualitative results obtained
in this paper still apply for a multichannel ring.
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