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We present an experimental and theoretical study of the dephasing of heavy-hole excitons in a
70-A GaAs/Al Gaz As multiple-quantum-well structure. We measure the time-integrated three-
pulse four-wave-fixing signal of heavy-hole excitons in the quantum-well sample. We model the
third-order nonlinear optical response incorporating the eKects of a stochastic modulation of the
transition frequency. We Snd that the dephasing of the nonlinear polarization is mainly the result of
a spectral-migration process of the excitons and, to a lesser extent, due to a homogeneous dephasing
process. The time dependence of the four-wave-mixing signal is very well described by theory if the
spectral-migration process is assumed to be energy dependent.

I. INTRODUCTION

Time-resolved optical techniques are a powerful tool to
study the dynamics of excitations in semiconductors. ~'2

One technique that is particularly sensitive to probe the
dynamics of coherent excitations is time-integrated four-
wave mixing (FWM). In this technique, a sequence of two
or three pulses creates a third-order nonlinear optical po-
larization. The time-integrated measurement of the light
generated by this polarization as a function of the delays
between the pulses provides valuable information on the
mechanisms that lead to a decay of the polarization and
the population.

The dephasing of excitons in high-quality bulk GaAs
and GaAs/Al Gaz As quanti~m wells has been in-

vestigated previously with the two-pulse self-diKracted
FWM technique. In these studies, it was assumed
that the relaxation is exponential with a homogeneous
dephasing time constant T2. Both in bulk GaAs and
GaAs/Al Gaq As quantum wells, the value of T2 was
found to be a few picoseconds at low temperature (2 K)
and low densities (( 1 x 10~s cm s in bulk and ( 1 x 10
cm 2 in quantum wells). The value of T2 was found to
decrease with increasing density and temperature. With
the same self-difFracted FWM technique, the phase re-
laxation of free carriers in GaAs has been investigated.
The relaxation times of free carriers are found to be very
short (20—50 fs) and are determined by carrier-carrier
scattering.

The decay of the polarization is due to interactions of
the excited system with its surroundings. These interac-
tions will lead to a stochastic modulation of the transi-
tion frequency within a certain spectral distribution.

In most experimental studies, it is assumed that the fre-

quency fluctuation processes are either infinitely fast,
leading to homogeneous broadening described with a
phase relaxation time constant T2, or infinitely slow, lead-

ing to inhomogeneous broadening. However, efFects of
a spectral fluctuation on a picosecond time scale have
been observed both in time-resolved and in frequency-
resolved three-pulse FWM experiments, showing that
the frequency fluctuation is not always infinitely fast or
slow. In addition to these observations, a strong non-
exponential decay has been observed in time-integrated
FWM experiments on dye molecules in solution, ' also
indicating that the rate of the fluctuations can be inter-
mediate.

In this paper, we investigate in detail with time-
integrated three-pulse FWM the mechanisms that
induce the dephasing of heavy-hole excitons in
a GaAs/Al Gaq As multiple-quantum-well structure.
We show that the dephasing of excitons cannot simply be
described as a homogeneous or inhomogeneous dephas-
ing process. We find that the relaxation is dominated
by a frequency-fluctuation process that takes place on a
picosecond time scale.

This paper is organized as follows. In Sec. II we de-
scribe the experimental setup. In Sec. III we present a
model that describes the efFects of a stochastic modula-
tion of the transition frequency on the relaxation. In Sec.
IV the experimental and calculated results are presented
and discussed, and in Sec. V we present the conclusions.

II. EXPERIMENT
We perform time-integrated three-pulse FWM experi-

ments on a sample that contains ten 70-A. GaAs quantum
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wells. The sample is grown without growth interruption
at the interfaces, which prevents the formation of larger
areas with constant well thickness. The quantum wells
are part of a double-well structure, which contains a 70-
A. and a 45-A quantum well separated by a 50-A bar-
rier. The electronic states in the double well are out of
resonance at zero applied voltage (as in the present ex-
periment). The lowest electronic state of the 70-A-wide
well investigated here does not have a relaxation chan-
nel to the other well. The double-well systems are sepa-
rated by thick (20-nm) Alp. 35Gap. s5As barriers. The well
thickness is determined by photoluminescence (PL) and
photoluminescence-excitation (PLE) measurements and
agrees very well with the design value. The sample was
glued on a Sapphire disk and the substrate was removed
by standard wet-etching techniques to allow transmis-
sion experiments. In the PL and PLE experiments, the
sample showed a rather broad n=l heavy-hole exciton
transition (full width at half maximum = 3—4 meV). ~4

The shift between PL and PLE (Stokes shift) is on the
same order of magnitude.

The time-resolved experiments were performed with
a tandem synchronously pumped dye-laser system de-
scribed previously 4 that creates pulses of 400—500 fs
pulse width, tunable between 700 and 815 nm. Figure
1 shows the schematical experimental setup. The pulse
train is split into three parts that are focused to a single
spot into the sample that is located on the cold finger
of a He-How cryostat. All three beams are copolarized.
The temperature can be adjusted &om about 10 K to
room temperature. The intensity of the laser pulses is
attenuated to reach the regime where the rate of decay
of the four-wave-mixing signal becomes independent on
the excitation power. This corresponds to an excitation
density of about 5 x 10 excitons cm . In the three-
pulse FWM experiment, the first pulse that enters the
sample creates a linear polarization. The second pulse
will transfer this polarization into a population grating
&om which the third pulse is diffracted in the direction
k4 ——k3 + k2 —kq. The time-integrated signal in this
direction is measured as a function of the delay times

T23 T12

k =k+(k —k, )

FIG. 1. Experimental con6guration for a three-pulse
four-wave-m&xing experiment. Pulse 1 creates a linear polar-
ization, pulse 2 transfers this polarization into a population
grating with wave vector k2 —kI, from which the third pulse
is diKracted in the direction k3 + k2 k$.

T~2 between pulses 1 and 2 and T23 between the pulses
2 and 3. The signal is measured by a standard lock-in
technique and read out by a personal computer. The
background signal due to scattering of the transmitted
beams 1, 2, and 3 is determined by measuring the signal
at large negative delays for which no diffracted signal will
be present. This background signal is substracted from
the measured transients.

III. MODEL FOR STOCHASTIC MODULATION
IN THREE-PULSE FOUR-VIVE MIXING

A. Introduction

In this section we describe a model that accounts for
the effects of a nuctuation of the transition &equency on
the time evolution of the linear polarization, the popula-
tion grating, and the third-order polarization that are
formed in a three-pulse FWM experiment. The rate
of the Buctuations of the transition &equency can be
defined by the inverse of a correlation time constant

3

(b(u(t)b(u(0)) = D e

where bu is the detuning of a single excitation &om the
maximum of the spectral distribution, D is the width of
the spectral distribution, and the aagular brackets indi-
cate an ensemble average. The decay of the polarization
is determined by both the correlation time constant T,
and the spectral width D. When the time constant T,
is very long compared to the inverse spectral width, the
polarization will predominantly decay as a result of the
dephasing of the different &equency components of the
spectral distribution. Ia this case, the spectral line is
inhomogeneously broadened and for a Gaussian shaped
spectral distribution the linear polarization will show a
Gaussian decay with a time constant 7;.„h——D . In
this inhomogeneous limit, the experimentally measured
absorption band will be the same as the spectral distri-
bution. If the phase of the oscillator is conserved when
the transitioa &equency changes, the decay of the po-
larization will become slower with decreasing T, and the
measured absorption line will become narrower (motional
narrowing). When T, is much smaller than the inverse
spectral width, the polarization at all &equency compo-
nents within the spectral width will decay exponentially
with a time constant T2 that is proportional to T . In
this limit, the absorption line is homogeneously broad-
ened. When T, is of the same order as the inverse spec-
tral width, the broadening of the absorption line is in
between homogeneous and inhomogeneous and the decay
of the polarization can become strongly nonexponential.

The &equency-6uctuation processes that induce the
dephasing are known in the literature as Kubo-Aaderson
processes. ' In such a Kubo-Anderson process it is as-
sumed that the transition &equency changes instanta-
neously after a characteristic time & within a station-
ary distribution. This distribution is often taken to be
Gaussian. The change of the transition &equency can
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be the result of many successive small &equency jumps
(weak modulation limit), is 2s which means that the fre-

quency after such a jump is strongly correlated to the
&equency before the jump. However, the change of the
transition &equency can also result from large jumps of
the transition frequency (strong modulation limit z

)
within the stationary distribution, which means that the
&equency Buctuation is noncorrelated. Of course the
strength of the modulation can also be intermediate be-
tween these two limits.

The effects of &equency fluctuations in the weak modu-

lation limit have been described analytically for a Gauss-
Markov stochastic process ' which is a &equency
Buctuation process in which the stationary distribution is
Gaussian and the correlation function for the detuning as
given in Eq. (3.1) decays exponentially. This description
has been applied to several optical techniques. In a
time-integrated FWM experiment, the &equency Buctu-
ation in the weak modulation limit will lead to a transi-

—4D 3Ttion from a nonexponential decay [with e 4+ ~s+' (for

r « T,)] to an exponential decay [with e 2+ +' (for
7 » T,)].i Hence the frequency fiuctuation leads to
a strong observable nonexponential decay of the third-
order polarization if T, is on the order of or larger than
D . Recently, two experimental FWM studies ' con-
firmed the description of Refs. 17—20 for the effects of a
&equency Buctuation in the weak modulation limit.

The effects of frequency Buctuations in the strong
modulation limit have been described for free-induction
decay ' and FWM 28 In a two-pulse self-diffracted
FWM experiment, a frequency fiuctuation in the strong
modulation limit will only lead to a nonexponential for
very small delays, irrespective of the value of T,. Hence,
in this limit it is very difficult to determine whether the
absorption line is homogeneously broadened, inhomoge-
neously broadened, or of intermediate character. How-

ever, in a three-pulse FWM experiment, the &equency
Buctuation will lead to a strong nonexponential decay
if T, && D . This non-exponential decay is due to
the effects of the &equency Buctuation on the popu-
lation grating that exists between the second and the
third pulse. The effects of a fluctuation of the transi-
tion &equency on population gratings is often denoted
as spectral diffusion. The spectral diffusion models
of Refs. 30—33 only consider the effects of the &equency
Buctuation on the population grating. The rate of this
modulation is defined with a time constant T3 that is
exactly the same as the time constant T .

(H.„.+H. ) 4(t) =ih 84
(3.2)

B. Optical Bloch equations for three-pulse four-wave
mixing

The system is described as a spectral distribution of
two-level systems with transition &equency u. In this de-
scription we will not incorporate the efFects of many-body
Coulomb interactions between the excited excitons.
The optical Bloch equations for the polarization and the
population of these two-level systems can be obtained
directly &om the time-dependent Schrodinger equation:

with H,„,the Hamiltonian of the system, 4(t) the time-
dependent wave function, and H, the Hamiltonian of
the electromagnetic field. In the electric dipole approx-
imation, the Hamiltonian H, equals e P„r„Ecos(ur it)
with e the elementary charge, r the position operator of
the nth electron, E the envelope function of the electric
field, and u~ the central frequency of the electromagnetic
field.

The electromagnetic field can induce a transition be-
tween the two eigenstates of H,~, with time-independent
wave functions Pi and P2 (H,„,gi ——heidi and H,„,P2 ——

hu2$2). The time-dependent wave function 4'(t) can
then be written as

@(t) = C (t)~ (t)+C (')~2(t)

with Qz(t) = P~e
' i~. The optical Bloch equations are

obtained by substituting Eq. (3.3) into Eq. (3.2). The
optical Bloch matrix element p;~(ur) is defined as C,C',
with u equal to ~2 —uq. When we substitute p2qe'~

for p2i(ur) and we neglect the rapidly oscillating terms
(rotating-wave approximation), we obtain the following

equations for the optical Bloch matrix elements:

Bp&i(~) Bp12(~)
V[ ( ) ( )]Bt Bt 2

—x((u —(ui) p2i((u) ) (3.4a)

[V () V ()]Bt Bt 2

(3.4b)

with V = p2iElh, &—zi ———e($2[2„r„~gi).
The polarization P is related to the off-diagonal

optical Bloch matrix element p2i(~) through 'P

N(pi2 f ~p2i(ur)e ' + c.c.) with N the number den-

sity. The transition dipole moment @~2 is assumed not to
depend on the transition frequency u. When P is written
as z (Pe ' ' + c.c.), the envelope function P is equal to
2Npi2 f ckupzi(tu). The population of the excited state
is given by the diagonal optical Bloch matrix element

p22(~)
The optical Bloch equations (3.4) do not contain any

relaxation mechanisms. However, the stochastic modula-
tion of the transition &equencies will lead to a decay and
a gain of pzi(u) and p22(ur) at each particular ur. The
decay is assumed to be exponential with a time constant
2T, for p2i(id) and T, for p22(ur), where T, is defined
as in Eq. (1.1). The total decay of the polarization is

given by f d~'pzi(ur')/2T, This total a.mount of p2i is
redistributed over all p2i(u) according to a spectral re-
distribution function F(~,u'). The function F(~, ur') is
normalized [fdid'F(u, u') = 1]. The gain of p2i(u) is
thus given by f M'F(cu, ur')pq (~'i)/2T, . The shape of
F(u, u') deterxnines whether the system is in the weak
or in the strong modulation limit. If the value of F(a, ur')

rapidly drops when cu' becomes different from cu, the mod-
ulation is weak and many jumps of the &equencies are re-
quired before the frequency is significantly changed &om
its original value. If F(tu, u') does not depend on w', the
modulation is very strong and the function F(u, u') be-
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comes equal to the stationary distribution. In this limit
the gain of pzj (~) due to spectral redistribution is given
by F(~) J' d~'pz&((at')/2T A. similar description can be
used to describe the eEects of a stochastic modulation on
the population.

The dynamics of the polarization and the population
can be described with a number of &equency-fluctuation
processes that all have their own characteristic values for

T, and the spectral width D and their characteristic form
of F(u, u'). However, for frequency-Huctuation processes
for which T, is very small or very large compared to 7'

(= D ~), a simple homogeneous or inhomogeneous de-

scription sufBces. We will assume that there is only one
&equency-fluctuation process with an intermediate value

for T,. This T, is allowed to be &equency dependent.
In the following we will denote this &equency-fluctuation
process with intermediate T, as a spectral-migration pro-
cess. For excitons in a quantum well, such a process
can result &om the migration of the excitons along the
boundary between the quantum well and the barrier.

We assume that in addition to this spectral-migration
process there is another process with a T, that is very
small compared to its characteristic w;„p. If T, is very
small compared to ~;„p,the exchange of &equency com-

ponents is so fast that the phases of pzq(ur) no longer
evolve with u and become locked. The sum of all pzq(tu)
will decay exponentially with a time constant Tz that
is equal to 2D T both in the weak and in the strong
modulation limit. Such a very fast &equency-fluctuation
process can result from the interactions of excitons with

acoustic phonons.
A third possible relaxation process that wiQ inQuence

the dynamics of the polarization and the population is
formed by the decay of the excited-state population.
Such a decay can be caused by radiative recombination
of the exciton. Although this process will not lead to a
fluctuation of the transition &equencies, it will still con-
tribute both to the decay of the polarization and the
population grating. The decay of the population due to
population relaxation is accounted for with an exponen-
tial relaxation-time constant T1. The decay of the polar-
ization due to population relaxation is accounted for by
incorporating T1 in the time constant of the homogeneous
dephasing: 1/Tz ——1/Tz + 1/2'.

We will describe the generation of the third-order po-
larization in the direction k4 ——k3+k~ —k1 by a sequence
of three laser pulses with a perturbation approach which
implies that the nth-order optical Bloch matrix element
is proportional to the nth power of the applied electro-
magnetic field. 35 The initial spectral distribution of two-
level systems is given by the zeroth-order diagonal optical
Bloch matrix elements p11 and p~~ . The linear polariza-

tion 'P( ) is given by 2Npzz (u) pqz. Similarly, the third-

order polarization is given by 2N pz& (u) y, qq. The popula-
tion grating is given by the second-order diagonal optical
Bloch matrix element pzz (u). Using the perturbation
approach and introducing the three relaxation processes
with time constants T„T~,and T1, we obtain the follow-
ing equations for a three-pulse FWM experiment:

-(1) ~Ig-(~)(k. ~) i ) (~) (~) / 1 1' = —p (t)[p (a) —p ((u)] —i((u —u)()pz~ (~) —
pzg (~) I

—+
I
+ "~ F(~ ) 2T I

Pzi (~)
Bt 2 ~ z~ z~ (Tz 2T, (ur) ) 2 c'(~ )~

(3.5a)

0 'k —k

Bt 2 . z P21 2~~ 2 4 P12
(2) & 1 1 ') d,F I P»(~)(&)

pm (~)
l ~ + z,

~ )&l
+ f ~ (~, ~ ) ~ ~,)

(3.5b)

c)pz~ (ks + kz —kg)ur) . (z)
-(3)

= 'Fs(&)&22 (kz —k»~)] + '5'z(&)&» (ks k»~)l —'(~ —~&)P21 (~)
~ (&) -(3)

(3.5c)

with the indices i and j denoting pulses 1, 2, and 3. The
t—~ 2~ 2

envelope function E~ is given by Roe I( ) j' I with 7&

the delay of pulse j and v.
„

the pulse duration.
The coupled differential equations (3.5) are numeri-

cally solved using a fourth-order Runge-Kutta method
implemented on a 486-33 personal computer. A typi-
cal simulation of a FWM experiment in which the time-
integrated third-order polarization is calculated at 90 de-
lays takes about 10 min.

Equations (3.5) form a general description for the gen-
eration and decay of the linear polarization, the popula-

tion grating, and the third-order polarization. The equa-
tions can be used irrespective whether the relaxation in-
duced by the stochastic modulation is of homogeneous,
inhomogeneous, or intermediate character. In addition,
the stochastic modulation can be weak, strong, or of in-
termediate modulation strength. The main difference of
Eqs. (3.5) with a spectral diffusion modelM s is formed
by the terms f ku'F(~, ~') ps'(u')/2T (u') in the equa-
tions for the linear and the third-order ofF-diagonal opti-
cal Bloch matrix elements. In a spectral diffusion model
these terms are absent, which means that these mod-
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IV. RESUITS AND DISCUSSION

A. Time-integrated three-pulse FWM experiments

In Fig. 2 the results of the time-integrated three-pulse
FWM experiments are presented in a contour plot as a
function of the delay Tq2 (= 72 —7y) between pulse I
and pulse 2 and the delay T2s (= 7s —&2) between pulse
2 and pulse 3. Figure 3(a) presents four measurements
in which Tq2 is varied and T23 is kept constant. Figure
3(b) presents four measurements in which T2s is varied
and Tq2 is kept constant. In both Figs. 3(a) and 3(b)
a strongly nonexponential decay is observed, indicative
of a spectral-migration process with a time constant T
on a picosecond time scale. If the absorption would have

10
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els assume that the linear and the nonlinear polarization
only decay as a result of purely homogeneous and inho-

mogeneous dephasing processes.

been simply homogeneously and inhomogeneously broad-
ened, the relaxation would have been purely exponential
with a time constant T2/4 in the case of strong inho-
mogeneous broadening and T2/2 in the case of strong
homogeneous broadening. If the spectral-migration pro-
cess is in the weak modulation limit, an increase in the
rate of decay is expected in the experiments in which
Tq2 is varied. ~ If the spectral-migration process is
in the strong modulation limit, a transition &om a fast
Gaussian to a slower exponential decay is expected in the
experiments in which Tq~ is varied. The latter relaxation
behavior is observed in Fig. 3(a) so that the modulation
in the spectral-migration process must be strong, which
implies that the jumps of the &equency in the kequency-
Quctuation process are large and the width of the spec-
tral redistribution function F is similar to the width of
the initial spectral distribution p(&z) (ur). As a result, the
function F(ur, ur') does not depend on u' and the spectral
redistribution terms f der'F(u, u')p(ur') in Eqs. (3.5a)—
(3.5c) can be written as P(ur) I der'p(u')

The measurements are compared with calculations ob-
tained with the model of the previous section. The
dashed curves in Figs. 3(a) and 3(b) represent calcu-
lations of the signal using the model of Sec. III. All the
simulations presented in Figs. 3(a) and 3(b) are car-
ried out with the same values for T, and T2. In all the
calculations we assumed an equal (Gaussian) spectral de-
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FIG. 2. Time-integrated three-pulse four-wave-mixing sig-
nal as a function of the delay Tzz between pulse 1 and pulse
2 and delay T23 between pulse 2 and pulse 3.

FIG. 3. Time-integrated three-pulse four-wave-mixing sig-
nal. The dashed curves represent numerical simulations of the
measurements using the model of Sec. III. In (a) the delay
Tq2 between pulse 1 and pulse 2 is varied while the delay T2q
between pulse 2 and 3 is kept constant. In (b) the delay T2s
is varied while the delay T&2 is kept constant.
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pendence for pii (~), p22 (~), and Ii (~), all centered at(o) (o)

~0 and with a width of 0.75 THz (3.1 meV). The calcu-
lations are performed assuming 500-fs Gaussian shaped
pulses. We found that the experiments could be fitted
well without incorporating the efFects of population relax-
ation (Ti ——oo). We took T, to be frequency dependent,
varying between 56 ps for low-energy excitons to 9 ps
for high-energy excitons. The value of the time constant
T, of the spectral-migration process is much larger than
7;„i,(= 350 fs for a spectral width of 0.75 THz), which
implies that the &equency fluctuation is close to the inho-
mogeneous limit. Nevertheless, the observed relaxation
behavior strongly differs &om the simple exponential de-
cay that would result if the time constant T, would have
been infinitely large. As a result of the strong inhomo-
geneous character, the signal in the diffracted direction
is mainly formed by a photon echo and the signal in Fig.
3(a) is strongly asymmetric as a function of Tiq. For T2
we used a value of 70 ps.

1. Variation of the delay betrseen pulse 1 and 2

In Fig. 3(a) we observe that for large constant T2s the
signal shows a rapid Gaussian decay as a function of Tq2.
This observation can be understood as follows. The spec-
tral redistribution between the second and the third pulse
will lead to a decay of each pzz (u) until p22 (&u)/T, (cu)

becomes equal to I'(u) f du'p2lzl (&u') /T(~'). lf T, would

not depend on frequency, each p22 (ur) would finally de-(2)

cay to a value F(~) J' du'pzz (ur'). The value of the latter
integral has a Gaussian dependence on Tq2 and becomes

equal to zero for Ti2 » w; h. As a result, all p2& (u) will

decay to e "/ ' their initial value if Ty2 » ~1Dh and will
not decay at all if Tq2 &( 7;.„h.Hence, if T23 is large, the
population grating and the generated polarization will

show a clear initial Gaussian decay as a function of T&2.

In addition to the decay of the population grating,
the diffracted intensity decreases due to the decay of the

pi2 (—ki, ur) between pulse 1 and pulse 2 and the decay of-(~)

pzi (ks+ k2 —ki, ~) before the photon echo is formed. For

Ti2 » 7 hthe values of'I duP'i2 (—ki, u')/2T (ur') and

J' der'p&2 (k2 —ki, ur')/T, (u') become very small. In that
limit the intensity of the photon echo decays exponen-
tially with a time constant 1/(4/T2 + 2/T, ), if T, would
be &equency independent. However, we observe in Fig.
3(a) that the time constant of the exponential decay in-

creases with increasing T23. In addition, we observe that
for T23 ——1 ps the decay of the signal is nonexponential,
even when Tq2 is larger than w;„g. These observations
indicate that the different &equencies in the spectral dis-
tribution have different values of T, . If the spectral dis-
tribution contains &equency components with different
values for T, the dynamics of the signal will be domi-
nated by the &equency components with a small T for
small Tq2 and small T23 and by the frequency compo-
nents with a large T for large Tq2 or large T23. Hence,
for small T23, the observed time constant of the relaxation
will increase with increasing Tq2 as is indeed observed in

Fig. 3(a). If T2s is large, the third-order polarization
generated by the third pulse will be strongly dominated

by p22 (k2 —ki, w) at frequencies u for which T, is large.(2)

Therefore the time constant of the decay for Tq2 » 7;„h
will become larger with increasing T23, which is also ob-
served in Fig. 3(a). We find that the experimental re-
sults in Figs. 3(a) and 3(b) can be fitted well with a T
of 56 ps for low-energy excitons and 9 ps for high-energy
excitons. The &equency dependence of T, is presented
in Fig. 4. We assume that the transition &om 56 to 9
ps has a linear dependence on &equency. We find that
the exact shape of this transition is not very critical. In
contrast, the value of the central &equency of this transi-
tion strongly influences the shape of the measured signal
because this &equency determines the relative amount
of rapidly and slowly spectrally migrating excitons. The
time constant of 56 ps for low-energy excitons agrees very
well with the value of 60 ps that has been found previ-
ously for the spectral redistribution of localized excitons
in a GaAs/A1GaAs multiple-quantum-well structure. ss

This time constant is also in good agreement with the
time constant that is calculated for the phonon-assisted
migration of localized excitons. The time constant of
9 ps for high-energy excitons can be explained &om the
phonon-assisted migration of delocalized excitons.

2. Variation oj the delay betrseen pulse 2 and 8

In the experiments of Fig. 3(b) two regimes can be
distinguished. In the first regime pulse 3 enters the sam-
ple between pulse 1 and pulse 2 (T2s ( 0). In this
regime the population grating is formed by pulses 1 and
3 and pulse 2 is difFracted &om this grating. In the sec-
ond regime pulse 3 enters after pulse 2 (T2s & 0) and
pulses 1 and 2 will form the grating from which pulse
3 is difFracted. If the absorption would have been ho-

mogeneously and inhomogeneously broadened, the decay
would have been purely exponential in the first regime
and no decay would have been observed in the second
regime (when Ti ——oo). However, we observe a strongly
nonexponential decay in the second regime, which shows
the presence of a spectral-migration process with a time
constant on a picosecond time scale. If pulse 3 enters

shortly after pulse 1, the pi2 (—ki, ur) generated by pulse-(~)

1 will not be dephased before the population grating is

formed, so that the spectral redistribution between pulse
3 and pulse 2 hardly leads to a decay of the signal. This
explains the small peak in the signal measured with Tq2 ——

14 ps at a delay T23 of —14 ps. We also observe in all mea-
surements of Fig. 3(b) that the signal shows a relatively
slow decay as a function of T23 when pulse 3 enters the
sample between pulse 1 and 2. This can be understood
in the following way. The difFracted signal will decay as a
function of T2s due to the decay of pi2 (—ki, ur) between-(~)

pulse 1 and 3 and the decay of p2i (ks+ k2 —ki, ur) before-(3)

the photon echo is formed. For Tq3 » v;-„h, this decay
will be exponential with time constant 1/(4/T2 + 2/T, ).
However, if pulse 3 enters the sample between pulse 1
and 2, the signal will rise with increasing T2~ due to the
smaller decay of the population grating between pulse 3
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and pulse 2. For Tq3 » 7;„b,this rise of the diffracted sig-
nal will be exponential with time constant T,/2. The rate
of decay observed in the experiment will be the difference
between the two processes and will thus be exponential
with a time constant T2/4. Hence the value of the time
constant T2 of the homogeneous dephasing can be accu-
rately determined from the measurement of the decay of
the diffracted signal as a function of T23 for constant Tq2.

From the simulation of the measurements in Fig. 3(b)
we deduce that T2 is 70 ps. This value was also used in
the simulation of the measurements of Fig. 3(a). The
value of 70 ps is large compared to the time constant T,
of the spectral migration of high-energy excitons. This
means that the decay of the polarization as a function of
Ti2 as measured in Fig. 3(a) is strongly dominated by
the spectral migration of the delocalized excitons.

We were able to determine the contribution of the ho-
mogeneous processes to the dephasing due to the fact
that a spectral-migration process leads to a decay of
both the polarization and the population grating whereas
a homogeneous dephasing process only induces a decay
of the polarization and does not affect the population
grating. This can be understood in the following way.
Both the spectral migration and the homogeneous de-
phasing process can be modeled as frequency fluctuation
processes with characteristic values for T, and the width
of the spectral distribution. The simultaneous occur-
rence of both processes can be modeled by describing
each &equency component in the spectral distribution
of the spectral-migration process as a spectral distribu-
tion of the homogeneous dephasing process. For a purely
homogeneous dephasing process the fluctuations are in-

finitely fast so that the phases of pi2 (~) within the spec-
tral distribution of the homogeneous process will remain
the same. As a result, the p22 (hd) generated by the sec-(2)

ond pulse will also all have the same phase. The spectral
redistribution between pulse 2 and 3 leads to a decay
of each p2(z (u) to a liiniting value of F(u) f p2(&1(hd)Chd

(in the strong modulation limit). If all pzz (ur) have

the same phase, the value of p22 (cu) is exactly equal to(2)

F(u) f p22 (u)der. Therefore, the very rapid fluctuations(2)

within the spectral distribution of the homogeneous pro-

Detuning (THz)

FIG. 4. Spectral dependence of the time constant T, for
the modulation of the transition frequency. The dashed curve
represents the spectral distribution used in the calculation of
the third-order nonlinear response of the heavy-hole exciton.

cess will only lead to a decay of the polarization and
do not affect the population grating. For the spectral-
migration process, the value of T is large compared to
D i so that the pi& (u) will rapidly dephase. The value

of I pzz (ur) du will be small if the delay between the first
two pulses is larger than D so that the spectral redis-
tribution between the second and the third pulse will lead
to a decay of all p2(z (~). As a result, a spectral-migration
process induces a decay of both the polarization and the
population grating. Therefore, with a time-integrated
three-pulse FWM experiment, in which the signal is de-
termined by the dynamics of both the polarization and
the population grating, it is possible to distinguish be-
tween the contributions of homogeneous dephasing and
spectral-migration processes to the observed dephasing.

If pulse 3 enters after pulse 2 (T2s ) 0), we observe a
nonexponential decay of the signal as a function of T23.
For small T~2 the decay can be nonexponential because
in that case the spectral redistribution between pulse 2

and 3 leads to a decay of each p22 (k2 —ki, hd) to a fi-(2)

nal value of F(ur) J' dhd'pzz (k2 —ki, ur'). This is observed
in Fig. 3(b) for Ti2 ——I ps. If Ti2 ——0 ps, one would
expect that the signal does not decay at all as a func-

tion of T2s because all pzz (k2 —ki, u) remain in phase.
However, due to the limited bandwidth of the pulses,
the central &equency components of the absorption band
are more efficiently excited than the &equency compo-
nents in the wings of the absorption band. The spectral
redistribution between pulse 2 and pulse 3 makes that
the initially excited narrow &equency distribution of the
population grating will gradually change into the broader
distribution as defined by F(w) Due to th. e limited band-
width of the third pulse, this broader distribution is less
efficiently transferred into a third-order polarization al-

though f du'pzz (k2 —ki, hd')/T, is still the same.

For Ti2 )) 7;~h the value of

fdic'pzz

(k2 —ki, ur')/T,
becomes very small so that the diffracted intensity should
decay exponentially as a function of T23 with a time con-
stant T /2. However, we observe in Fig. 3(b) that even
for large T~2 the decay appears to be nonexponential.
This nonexponential decay for Tq2 » w;„h shows that for
small T23 the decay is strongly influenced by &equency
components that have a small T, whereas for large T23
the decay is dominated by &equency components with
large T, .

B. Time dependence of the spectral distribution

The different time constants T, for the low-energy and
the high-energy side of the absorption band not only lead
to a transition from a fast to a slow exponential decay
but also to a shift of the excited spectral distribution to
lower energies with increasing delay. In Fig. 5(a) the
spectral distribution of ~pzi (ur)

~
at the time of the pho-

ton echo (t = vs+ T2 Ti) is presented for three d—ifferent
values of Ti2 and T2s ——0 ps. In Fig. 5(b) this spectral
distribution is presented for three different values of T23
and Tq2 ——0 ps. In both 6gures a shift of the excited
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FIG. 5. Spectral distribution of ~p~~~l(u)~ at the maximum
of the photon echo (t = r3 + r2 —rq). In (a) the spectral
distributions are shown at three different values of 7~2 with

T23 —0 ps and in (b) at three difFerent values of T23 with Tzz
= 0 ps. The dashed curve represents the spectral distribution
used in the calculation.

C. Discussion

We find that the observed nonexponential decay of
the excitons results from a spectral-migration process in

spectral distribution to lower energies is observed with
increasing delay. It is also observed in both figures that
the excited spectral distribution is narrower than the ab-
sorption line due to the fact that the used laser pulses are
not infinitely short. The kinks in these figures are due to
the fact that we assumed in the calculation that the time
constant T, changes linearly &om 56 ps to 9 ps. In Fig.
5(a) the signal strongly decreases with increasing Tq2 due
to the Buctuation of the transition frequency with time
constant T, and the homogeneous dephasing with time
constant T2 In contra.st, in Fig. 5(b) the signal hardly
decays with increasing T23. In this figure the value of Tq2

was taken equal to 0 ps so that the PI& (—kq, u) are still in
phase as they are transferred into a population grating by

pulse 2. Hence the value of f eke'p2(2 (u')/T, (ur') will be
large and the spectral redistribution will hardly lead to
a decay of the population grating. Due to the frequency
dependence of T, the loss will be larger than the gain at
high frequencies whereas the gain will be larger than the
loss at low &equencies so that the spectral distribution
will shift to lower energies with increasing T2~.

the strong modulation limit. In previous studies on dye
molecules in solution ' it was found that the nonexpo-
nential decay resulted &om a spectral-migration process
in the weak modulation limit. The stochastic modula-
tion for dye molecules in solution will be weak because
in the liquid phase the frequency fluctuation is due to
small reorientations of the molecules. The fact that we

observe a strong frequency fluctuation for the excitons in
quantum wells shows that the boundaries of the quantum
wells and the barriers possess a certain roughness, which
allows the excitons to change their &equency by a rather
large amount within a small distance along the interface.
The migration along the interface is probably phonon
induced. However, the data obtained in the present ex-
periment do not allow an unambiguous identification of
the microscopic processes that induce the strong Huctu-
ation of the transition &equency.

The relaxation behavior of the third-order polarization
for a single spectral-migration process for which T, 7

strongly differs from the relaxation behavior for an ab-
sorption line that is both homogeneously and inhomo-

geneously broadened. The third-order polarization is
formed by either a photon echo, a free-induction decay or
a signal in between, but never by both a photon echo and
a free-induction decay. This is also the case if the broad-
ening of the absorption line results &om a single spectral-
migration process with T, —~;„hin the weak modulation
limit. However, in the strong modulation limit, we calcu-
late that the third-order polarization can be formed by a
simultaneous photon echo and &ee-induction decay. The
simultaneous occurrence of a free-induction decay and a
photon echo has been observed experimentally and was

explained by two spectrally overlapping homogeneously
and inhomogeneously broadened absorption lines. We
believe that it is much more likely that this observation
is caused by a single spectral-migration process in the
strong modulation limit.

V. CONCLUSIONS

We have investigated the dephasing mechanisms of
excitons in GaAs/A1GaAs quantum wells with time-
integrated three-pulse four-wave mixing. The experimen-
tal results are compared with a model for three-pulse
FWM which provides a unified description of homoge-
neous dephasing, inhomogeneous dephasing, and spec-
tral migration. We find that time-integrated three-pulse
FWM can distinguish between the contributions to the
dephasing of homogeneous dephasing and spectral migra-
tion. In addition, the strength of the modulation in the
latter process can be determined.

We observe a nonexponential decay of the FWM signal
that can be simulated well assuming a spectral-migration
process in the strong modulation limit with a T of 56
ps for low-energy excitons and a T of 9 ps for high-

energy excitons. The time constant of 56 ps agrees very
well with the rate of phonon-induced migration that has
been found previously for localized excitons. We find a
&equency-independent value of 70 ps for the time con-
stant T2 of the homogeneous dephasing. This value is

large compared to the time constant of the spectral-
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migration process. Therefore we conclude that the ob-
served dephasing of excitons in quantum wells is domi-
nated by a spectral-migration process that is much faster
for delocalized excitons than for localized excitons. The
observation that the spectral migration is in the strong
modulation limit indicates that the &equency fluctua-
tions may be the result of a phonon-induced migration
of the excitons along the boundary of the quantum well
and the barrier.
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