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Neutral donors and spin-flip Raman spectra
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An approach is presented for calculating the binding energy of neutral donors in semiconductor
heterostructures. The technique avoids the need for analytical solutions. A generalization of the
method to include central cell corrections, effective mass, and dielectric mismatch at heterojunctions,
together with band nonparabolicity, is discussed. The utility of the method is demonstrated via a
study of the spin-Sip Raman spectrum of double quantum wells. Finally it is shown how spin-Sip
Raman spectroscopy could be used, in conjunction with b doping of donors, as a probe of the possible
enhancements to the paramagnetism of a dilute magnetic semiconductor at a heterojunction with a
nonmagnetic material.

I. INTRODUCTION

Theoretical treatments of donors in quantum well sys-
tems have centered around two basic methods. The first
involves expanding the electron wave function as a linear
combination of Gaussian functions. ' While this tech-
nique has been successful in calculating the properties of
donors in simple quantum well structures, generalization
to more complex structures, including graded gap mate-
rials and systems where piezoelectric fields are present,
is nontrivial.

Another approach chooses a trial wave function as a
product of two terms, i.e.,

4 = Q(z)e

where r' is the electron-donor separation, A is a vari-
ational parameter, and @(z) is the uncorrelated eigen-
function of the electron in the quantum well without the
donor. ' The purpose of the present work is to show
that the latter restriction can be removed and that a
more general choice of the donor wave function 4 can be
made. Furthermore the formalism developed can be ap-
plied to a donor in any semiconductor quantum well (mi-
cro)structure, independently of whether analytical one-
particle solutions for Q(z) exist.

The paper describes the inclusion of central cell correc-
tions and demonstrates how band nonparabolicity and
dielectric and effective mass mismatch can be included
in the theory. In order to illustrate the utility of the
formalism, a study of spin-Hip Raman spectroscopy in
dilute magnetic semiconductor double quantum wells is
presented. Furthermore it is shown how this experimen-
tal technique could be used to investigate the magnetic
properties of heterointerfaces between magnetic and non-
magnetic semiconductors.

II. THEORY

Any theoretical study of the properties of neutral
donors in semiconductor quantum well structures neces-

sitates solving the standard Schrodinger equation for
such structures but with the inclusion of the additional
Coulombic term representing the donor potential. With
a view to generality, the aim of the following is to recast
this problem in a form which is suitable for numerical
solution thus making it applicable to any quantum well
structure, be it a double quantum well, a disused quan-
tum well, or a graded gap quantum well, etc.

A. Binding energy of a neutral donor
in a semiconductor heterostructure

12 2+ 2+ (z r )2 ~2+y2+zl2

and rg is the position of the donor along the growth (z)
direction. The z dependence of the wave function 4 of
an electron in such a system is taken to have the form

O' = X(z)e (4)

where the one-dimensional envelope function X(z) is yet
to be determined. The isotropy of the hydrogenic-type

I

factor e &, i.e., the fact that the x-y coordinates are as-
signed the same variational parameter liA as the z coor-
dinate, was implied by detailed calculations we have car-
ried out on excitons in quantum wells. The Schrodinger
equation corresponding to the Hamiltonian of Eq. (2)
contains a term of the form V'24 which can be shown to
be given by

V @ = [V,X(z)je & + 2V, X(z)V,e & + X(z)V e

Without loss of generality we choose our coordinate
system so that the Hamiltonian of an electron confined
in a semiconductor heterostructure defined by the one-
dimensional potential V(z) is given by

h2 e2
'R = — V'+ V(z)— (2)2m' 4«r"

where
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Hence the Schrodinger equation becomes

h,2 I I I

[V,g(z)je & + 2V,y(z)V, e & + g(z)V e

e2 I I I

, &( ) " + &( )&(z)e = @&( )e " (6)4mer'

where E is the total energy of the electron in the donor—
I

quantum-well system. Multiplying by e ~ and integrat-
ing over the zy plane leads to an equation of the form

52
V,'y(z)I, + 2V,y(z)I, + y(z)I,

e2

x( )I.+ &( )x( )I = &x( )I (7)
4vre

where the integrals I~,j = 1,2, 3, 4 are defined below:

OO OO OO

I1 —— e ~ dzdy= e & 2xr~ dr~,
0 0 0

Substituting the integrals Iz, I2, Is, and I4 into Eq. (6)
gives after some manipulation

1 g2y z' gy 1 1

2 Bzz A (~z'[ + A/2) Bz 2A A (~z'[ + A/2)

ezm' 1 V(z) m'

4~.az (~z~~+ X/2)
+ r2

Em'
y=0, (17)

which can be solved numericallys s for any value of the
parameter A, according to the boundary conditions of
exponential decay of the envelope function y(z) into the
outer barriers of the heterostructure as z,' koo. The
parameter A was varied to minimize the total energy E
of the electron.

An important point to note is that no assumptions
about the form of V(z) have been made in the above
derivation. Hence the formalism can be applied to
any heterostructure simply by employing the appropri-
ate form of the potential V(z).

where r&~ ——x + y . Now

I2 2 ) I2

Therefore r'dr' = r~dr~, hence

OO

Ig —— e ~ 2' r' dr',
l~'I

(10)

B. Inclusion of a central cell correction

The central cell correction allows for a change in the
permittivity of the material as the electron approaches
the donor, i.e., the degree of electronic shielding is re-
duced and the permittivity changes. As a consequence
the Coulombic potential term contains an additional fac-
tor, which, for the purpose of illustration, is taken to be
as follows:

which can be integrated by parts to give e2

4«rl
(

(
1+=e-x'),

4xer' E. ) ' (18)

Also

OO OQ ( I

I2 —— e ~ Ve ~ dxdy
0 0

can be evaluated by parts to give

(12)

where A is a parameter describing the extent of the cor-
rection. As r' ', 0 it is expected that

4mer'

e2

4vrepr'
'

where eo is the permittivity of free space. Taking this
limit gives

( z')
I2 ——2m'( ——[e2)

The third integral

OO OO

Ig —— e & V2e ~ dxdy
0 0

(13)

(14)

1.e.)

Ep

(20)

(21)

can be transformed, as in the Appendix, and integrated
by parts to give

The eKect of these changes on the single donor analysis
carried out above occurs solely in the integral I4 which
becomes

and finally

(fz'[ 3)
Is ——2m( ——fe

(2A 4)
2F

I
1+=-e4, , i ) r'

This then gives

(22)

oo oo /A&
I4 —— dxdy=2m~ —~e . (16)

0 0
I4 ——I4+ 2m= A

A+ 2A
(23)



8244 W. E. HAGSTON, P. HARRISON, AND T. STIRNER 49

Hence the addition of such a central cell correction leads
to an additional term in Eq. (7), with the corresponding
form of Eq. (17) being

1$ y z' gy 1 1

2 Bz A ([z'~ + A/2) Bz 2A A (~z') + A/2)

e m 1 f 2:-A
4'lreh (~z'~ + &/2) ( & + 2A )

V(z)m Em
52 h~

C. Effective mass and dielectric mismatch
at the heterojunction

: m'(z), : e(z),

i.e., these two parameters have a z dependence.
In the material system considered later, i.e., CdTe-

Cd~ Mn Te with low x, in view of the lack of exper-
imental evidence to the contrary, both of these depen-
dencies are neglected. However, as noted earlier, their
inclusion in the theory is straightforward and in certain
systems, e.g. , Gaq Al As, is deemed necessary.

D. Band nonparabolicity

A great deal of attention has been paid in the litera-
ture to the role of efFective mass mismatch at interfaces
in semiconductor heterostructures, e.g. , Bastard, 6 and to
the efFect this may have on donor energies. In particular
Fraizzoli et al. have studied in detail the role of a dielec-
tric constant mismatch at interfaces between dissimilar
materials and its efFect on shallow donor impurity lev-
els in GaAs-Gaq Al As quantum well structures. Such
considerations can be readily incorporated in the present
approach and from a formal point of view simply involve
making allowance for the fact that

simply a parameter that is evaluated numerically. How-
ever, one must always bear in mind the limitations of
such approximations.

In relation to the calculations below, we note that
Chaudhuri and Bajaj showed that, even with relatively
large potential barriers, band nonparabolicity was only
significant for wells narrower than half the Bohr radius of
the neutral donor. In the Cdq Mn Te system of interest
here, the Bohr radius A is typically 70 A; hence even if the
potential barriers were of comparable height to those in
Gaq Al As, band nonparabolicity would only be signif-
icant for wells of width ( 35 A.. Since the barrier heights
are significantly smaller in the CdTe-Cdq Mn Te sys-
tem than in the GaAs-Gaq Al As system (typically
(100 meV in the conduction band for a barrier man-
ganese concentration x (0.1), band nonparabolicity ef-
fects are expected to be small. For this reason they are
neglected in the present work, since their inclusion will
only have a minor efFect on the essential points that are
made later.

III. RESULTS AND DISCUSSION

A. Comparison of trial wave functions

We illustrate first the difFerence between the exact nu-
merical result for the one-dimensional function y(z), as
given by the solution of Eq. (17), and the one-electron
wave function g(z) appropriate to the Hamiltonian of
Eq. (2) but neglecting the donor potential (i.e., the third
term on the right-hand side). Consider Fig. 1, which
compares the envelope functions g(z) and y(z) of an elec-
tron in a 100 A CdTe well surrounded by 200 A. barriers
of Cdq Mn Te, with @=0.075. The donor is situated at
the well-barrier interface, i.e., it is located at z=200 A,
since the origin of the coordinates is placed at the left-
hand edge of the structure. (In all calculations 60% of the
total band discontinuity between the well and barrier ma-
terials was taken to lie in the conduction band, in agree-
ment with recent work. ~2) Note that, although the enve-

lope function y(z) appears to have moved to the right,
and therefore away from the donor, when the hydrogen-

Small well widths and large potential barriers could re-
quire the inclusion of the nonparabolicity of the conduc-
tion band. Ekenberg described the inclusion of non-
parabolicity on the subband structure of quantum wells.
This method can account accurately for a variety of phys-
ical phenomena, but is analytically complicated. Simpler
procedures have been proposed by various authors for the
more complex problem of a donor in a quantum well. For
example, Chaudhuri and Bajaj used the simple replace-
ment

0
~~
0
C

CL0

0)

: m'(E) = ao + aqE + a2E
+a3E + ~ ~ ~ +a E (26)

100 200 300 400 500
z (Angstrom)

where the a are a series of constants. Given the values
of these constants, the efFects of nonparabolicity can be
readily incorporated into Eq. (17) since the energy E is

FIG. 1. Comparison of the envelope functions y and 4'

for an electron bound to a donor situated at the vrell-barrier
interface (r&=200 A) of a 100 A quantum well.
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I

like factor e & is included, the complete wave function
@, as given by Eq. (4), is indeed localized towards the
donor. It is clearly demonstrated that, although g(z)
may be considered to be a good choice of wave function,
it is merely an approximation and does differ significantly
from the one-dimensional solution y(z). The difference
between the two functions is reduced as the donor moves
further into the barrier where it has less in8uence on the
electron. The similarity between the two wave functions
is also increased when the donor is located at the center
of the well and hence preserves the symmetry appropriate
to g(z). However, even in the latter case, y(z) is slightly
more localized within the well than g(z), which is to be
expected given the attractive nature of the Coulomb po-
tential.

B. Effect of central cell correction

70

60 '
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40
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0
0

FIG. 3. Effect of the central cell correction parameter A

on the Bohr radius of the electron-donor system, with the
donor situated at the center of a 100 A CdTe quantum well

surrounded by barriers of Cdo. 9&5Mn0. 075Te barriers.

Figure 2 shows the effect of varying the central cell
parameter A on the total electron energy E, for donors
located either at the center of the 100 A. well described
above (i.e., r~ is given by z=250 A) or at the first well-

barrier interface (rg=200 A.). It is clear that in both in-
stances the "binding" energy E of the electron increases,
as expected, with the increased Coulombic attraction re-
sulting &om the larger values of A. However, there is a
marked difference in the magnitude of the effect between
the two donor positions.

A decrease in the permittivity of the material in the
vicinity of the donor implies a localized increase in the
Coulombic attraction of the electron to the donor. Al-

lowing for the self-consistent adjustment of the electron
wave function, it turns out that when the donor is lo-
cated at the center of the well this also coincides with
the maximum in the probability distribution of the elec-
tron. Consequently the central cell correction can lead
to a large increase in the binding energy of the electron.
The latter is accompanied by a substantial reduction in
the Bohr radius A, as shown in Fig. 3, which in turn leads
to a significant change of the electron wave function 4'

as depicted in Fig. 4. Conversely, when the donor is lo-
cated at the well-barrier interface, the localized increase

interface

in the Coulombic attraction occurs in a region which is
spatially separated ( 50 A) from the peak in the elec-
tron probability distribution and hence the effect of the
central cell correction is reduced correspondingly. This
is the reason why the energy curve for this case shown in
Fig. 2 is relatively independent of the parameter A. For
this same situation, the Bohr radius A is also virtually
independent of A.

The actual extent of the central cell correction, as rep-
resented by the parameter A, can only be deduced by
a careful comparison of experiment with theory. Fig-
ures 2 and 3 illustrate a possible approach for deducing A,
namely, by measuring spectroscopically the energy of the
donor-bound exciton emission &om quantum wells which
contain donors that are h doped either at the center of
the well or at the well-barrier interface. Comparison with
the free exciton emission, and a knowledge of the binding
energy of an exciton to a donor, would enable a deduc-
tion of the magnitude of the central cell correction to be
made, i.e., an evaluation of the parameter A.

C. Spin-Hip Raman spectroscopy of double quantum
vrells

As mentioned earlier, one of the advantages of the
present approach is its applicability to any form of po-
tential V(z) occurring in semiconductor heterostructures.

-10
E

c -20
UJ

30
0

FIG. 2. Effect of the central cell correction parameter
A (given in angstroms) on the energy of an electron in a
donor —quantum-well system, for donors located either at the
center or the interface of the well.

200
z (Angstrom}

300

FIG. 4. Effect of A on the wave function 4 of the electron
bound to a donor corresponding to Fig. 3.
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To illustrate the technique, we will calculate the energies
associated with the Raman shifts due to spin flips of elec-
trons attached to donors in a double quantum well struc-
ture. In the present section the central cell correction is
omitted in the interests of clarity.

The double quantum well structure is shown schemat-
ically in Fig. 5. It consists of a 200 A. Cdp spMnp xxTe
outer barrier, a 100 A Cdp gyMnp ps Te magnetic well, fol-
lowed by a 20 A. Cdp spMnp xx Te central barrier, a nar-
row 50 A. CdTe well, and finally a 200 A. outer barrier
of Cdp SgMnp yy Te. In a magnetic field the degeneracy of
the electron (and hole) spin states in the semimagnetic
Cdx Mn Te is lifted, x with the my=+1/2 state band
edge increasing by 3A and the mg = —1/2 band edge
decreasing by 3A. Gaj et aL demonstrated that this
giant Zeeman splitting could be expressed in the form of
a modified Brillouin function BJ, i.e. ,

30

25

~ 20
E
~15

10
UJ

5

,
-1/2

0—
0

1/2 cj

~UZI

/ p
1

j(g/

I

t-----J

100 200 300 400

+1/2

-1/2

500 600
Donor position (Angstrom)

FIG. 6. Energy E of an electron in a
donor —double-quantum-well system in a magnetic 6eld of 6

T, for both electron spin states, as a function of the donor
position rd, , together with a schematic illustration of the cor-
responding conduction band potential.

1
A = — zNpcts—p(z)Bz[B,z, T, Tp(z)], (27)

where sp(z) and Tp(z) are z dependent parameters, xs

the effective spin sp(z) accounts for the antiferromagnetic
spin pairing of neighboring Mn + ions, and Npo. =220
meV for Cdq Mn Te.

Figure 6 shows the energy of an electron in the donor—
double-quantum-well structure, for both spin states, in
the presence of an external magnetic field of 6 T, as a
function of donor position. It can be seen that the curve
corresponding to the +1/2 spin component of the elec-
tron contains just one minimuxn, whereas the —1/2 spin
component contains two minima. A plot of the wave
function for the —1/2 spin state, across the whole struc-
ture for various positions of the donor ranging Rom rg ——0
to rg=550 A. , is shown in Fig. 7. From the latter it can
be seen that the energy minimum centered on 250 A. is
attritutable to localization of the electron in the wide
(magnetic) well, whereas the energy minimum centered
on 340 A. is due to localization of the electron in the
narrow well.

Spin-flip Raman spectroscopy exploits the Zeeman
splitting of the conduction band and permits measure-
ment of the energy difFerence Ep~ between the two spin
states of the conduction band electrons. Figure 8 shows

the energy Epp, corresponding to an electron spin flip
between the two spin components of Fig. 6, as a func-
tion of donor position. If the donors are assumed to be
uniformly distributed across the entire heterostructure it
is possible, as demonstrated in Fig. 9, to represent the
data of Fig. 8 in the form of an intensity I versus spin-

flip energy E Raman spectra, by assigning a Gaussian
distribution to each point in energy space with a certain
linewidth, i.e.,

(& E»(«)—]2
exp— (28)

l

2/2 ln 2
(2g)

Figure 9 shows the effect of difFerent linewidths on the
predicted Raman spectra of the double quantum well. In
the lowest curve (l = 1 cm x) it is possible in principle
to resolve the donors in the left-hand barrier &om those
in the right-hand barrier. However, although this resolu-
tion is lost with increasing linewidth l = 1;4 cm
the high energy peak ( 82 cm ) corresponding to a spin
flip in the wide magnetic well is still clearly distinguish-
able. Also, even though the low energy peak ( 18 cm )
becomes a shoulder to the spin-flip energy of donors in

— 500

400

where Es~(r~) is the spin-fiip energy of the donor at
position rd and the standard deviation 0 is related to
the linewidth l (full width at half maxixna) by

I 1% 3% 0% 11%
—300

— 200

200A 100A 20A 50A 200A

100 200 300 400 500
z (Angstrom)

100

0

FIG. 5. Schematic representation of the double quantum
well structure.

FIG. 7. Wave function 4 for electron spin state —1/2, as
a function of donor position, from rs=O (bottom) to rq=550
A (top).
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FIG. 8. Raman shift at 6 T as a function of donor position
for the double quantum well of Fig. 5.

the barriers, it is still visible at I,=4 cm
In conclusion we have demonstrated the important role

of theoretical modelling for the interpretation of Raman
spectra &om double quantum well systems. In particular
the method employed here allows the spin flips observed
to be clearly identified and offers insight into the elec-
tron localization processes responsible for the spin-flip
spectra.

D. 8 doping as a probe of interface effects

It has been proposed that the magnetic behavior of the
first few monolayers of a dilute magnetic semiconductor
adjacent to an interface with a nonmagnetic semicon-
ductor could be significantly different from that of the
bulk i6—18 one contribution to this effect arises &om a
reduction in the nuxnber of antiferromagnetically coupled
pairs due to a decrease in the number of nearest neighbor
magnetic ions. 6 A single layer of donors b doped into a
quantum well structure in the region of the well-barrier
interface could provide a useful probe of the xnagnetism-
via observation of spin-flip Raman spectroscopy.

As shown above, the effect of the central cell correc-
tion on the electron energy is negligible when the donor
is located at the well-barrier interface of a relatively wide
~

~

~

~

~

~

~

~

~ ~

~

~

~

100 A.) well. In the present section a narrower well (40
) with lower potential barriers (Cdo ssMno o2 Te) is cho-

sen so as to enhance any interface effects—the electron
probability density at the interface of a narrower well

being higher than in a wide well. However, the central
cell correction is still neglected for the reasons mentioned
above, namely, its effects are anticipated to be small and
its inclusion would not affect the essential points being
made.

Assuming the exchange integral Now associated with a
dilute magnetic semiconductor does not change near an
interface with a nonmagnetic material, then a decreasing
number of nearest neighbors for each xnagnetic ion would
imply an increased paramagnetism. Now the product
+so(z) in Eq. (27) can also be written as z,~s, where
s is the spin of a magnetic ion, in this case s = 5/2.
This allows the magnetisxn to be discussed in terms of
an effective manganese concentration z,g. In the present
series of calculations the effective concentration near an
interface was expressed in the form

*.'ir' = (*.e, (30)

i.e., if (=1, there is no enhancement of the magnetism,
but ( ) 1 corresponds to enhancements of the mag-
netism. Independent work~2 has suggested that the en-
hanced magnetism extends over about two monolayers
adjacent to the interface. Figure 10 shows the effect on
the potential of this enhanced magnetism, for the +1j2
spin state corresponding to a value of (=4 over a two
monolayer region. The corresponding electron wave func-
tion 4' associated with a donor located at the well-barrier
interface, i.e., rg=340 A. in each of these potentials, is also
shown in Fig. 10. Although there appear to be only mi-
nor differences in the two wave functions, the effect of
the increased interface magnetism on the energy of an
electron in the donor —quantum-well system is marked.
This is shown in Fig. 11 where the corresponding spin-
flip Raman shift at a field high enough to saturate the
Mn2+ ions is shown as a function of the parameter t', . The
figure shows that such enhancements in the magnetism
would lead to appreciable changes in the Raman shifts of
donors at the magnetic-nonmagnetic interface. It is clear
&om these considerations that experiments involving the
b doping of donor atoxns in quantum well structures at
various positions in the well and barrier when coupled

Ca

CD

4

3

2

~1
20 40 60 80 100

Raman shift (1iem)

FIG. 9. Simulated spin-Sip Raman spectra for assumed
linewidths l of 1 cm (bottom) to 4 cm (top).

150
I I

250 350
z (Angstrom)

450

FIG. 10. EfFect of enhanced paramagnetism at the mag-
netic-barrier —nonmagnetic-well interface (as represented by
the parameter () on the potential and the wave function 4'

of an electron bound to a donor situated at the well-barrier
interface.
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sented and its extension to include effects such as band
nonparabolicity, effective mass mismatch at heterojunc-
tions, and central cell corrections described. The utility
of such calculations have been demonstrated by evalu-
ating the spin-flip Raman spectrum of double quantum
wells. Furthermore it has been demonstrated that spin-
flip Raman spectroscopy, together with b doping of donor
atoms, would be an ideal probe of the effects of interfaces
on the magnetic properties of dilute magnetic semicon-
ductors.

APPENDIX

FIG. 11. Effect of enhanced paramagnetism on the spin-Hip
Raman shift for donors located at the well-barrier interface.

Consider the term

(Al)

with calculations of the type presented here should per-
mit a determination of any enhancements in the mag-
netism at heterojunctions, via the use of spin-flip Raman
spectroscopy.

and similarly

(A2)

IV. CONCLUSION
Similar expressions follow for the y and z directions to
give

An approach for calculating binding energies of neutral
donors in semiconductor heterostructures has been pre-
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