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We present a detailed analysis of the influence of the various phonon modes characteristic of the single
heterostructure Al„Gal „As/GaAs on its electronic transport by using a Monte Carlo simulation. The
electronic states of the system are calculated by solving self-consistently the coupled Schrodinger-
Poisson equations for the system. LO-phonon states are treated within the dielectric continuum model

by using two different dielectric functions to describe the two semiconductors, the usual Lyddane-Sachs-
Teller expression for GaAs and a generalized two poles expression for Al„Gal „As. Two sets of optical
modes characterize the system, the half-space LO modes and the interface modes. The scattering rates
for the interaction of these modes with the confined electrons are calculated from the Fermi golden rule.
A Monte Carlo simulation is then used to study the effect of the electron-phonon interaction on the

transport properties of a single Al„Gal „As/GaAs heterostructure in the presence of an electric field

applied along the heterointerface. The results of simulations performed at 300 and 77 K compare favor-

ably with available experimental data. Drag and heating effects related to nonequilibrium phonon efFects

are found and discussed.

I. INTRODUCTION

Heterostructures have achieved a relevant role in re-
cent years in the microelectronics field, as they have
brought an improvement in the transport properties of
electronic devices' and the modulation properties of op-
toelectronic devices. In two-dimensional structures,
high mobility has been achieved thanks to the modula-
tion doping technique, which was first applied by Dingle
et al. and Stormer to Al„Ga, „As/GaAs heterostruc-
tures. The idea of selective doping of semiconductor het-
erostructures is very simple and very powerful. During
the growth of the epitaxial layer a dopant is added only
in the barrier material (wider gap material), while the
well material (GaAs in our case) is grown as pure as pos-
sible. Thus a spontaneous and irreversible charge
transfer into the narrow-gap material is induced. The
spatial separation between the electrons and their parent
donors has important consequences. Electrons are
confined in a quasitriangular we11 near the interface
formed because band bending taking place due to the di-
pole formed between the positive (ionized donors) and the
negative (electrons) charges. Bound states are formed
which force the carrier motion to be efFectively quasi-
two-dimensional. The free-electron motion along the
heterointerface is characterized by a very high mobility
caused by the spatial separation between the carriers and
the parent donors.

Modulation doping is useful to increase the electron
mobility at low temperature, where the scattering be-
tween carriers and ionized impurities is the most relevant
mechanism, but becomes much less important at room

temperature, where the interaction with phonons is dom-
inant. The presence of the heterointerface does indeed
modify the vibrational properties of the lattice, but the
inhuence of this modification on the carrier transport
properties has never been studied.

In this paper, we analyze the transport properties of an
Al„Ga, „As/GaAs single heterostructure using a Monte
Carlo (MC) method, focusing in particular on the polar
interaction between electrons and phonons. The elec-
tronic transport in this system has already been studied
using a MC code by Yokoyama and Hess, who account-
ed for size quantization by solving the coupled
Schrodinger-Poisson equations, and considered bulklike
phonons in the calculation of the scattering rates. Here
we account for electron size quantization in a similar way
(considering both I' and L valleys) and consider explicitly
the two-dimensional properties of the phonon spectra by
adopting a dielectric continuum model (DCM). The
validity of the DCM in describing optical modes of het-
erostructures has been proven by Rucker, Molinari, and
Lugli' through a comparison with a microscopic phonon
model. We use two difFerent dielectric functions to de-
scribe the two layers, the usual Lyddane-Sachs-Teller ex-
pression for GaAs, and a generalized two poles expres-
sion for Al„Ga, „As (Ref. 11) which depends on the Al
composition of the alloy. The phonon frequencies and
displacements are used to calculate the electron-phonon-
scattering rates which, in turn, enter the MC calculation
of the heterostructures-transport properties. This paper
is organized as follows. In Sec. II, the self-consistent cal-
culation of the electronic states of the quasitriangular
well is presented. The energy levels and the correspond-

0163-1829/94/49(12)/8178(13}/$06.00 49 8178 1994 The American Physical Society



49 EFFECT OF HALF-SPACE AND INTERFACE PHONONS ON. . . 8179

ing wave functions are evaluated numerically. In Sec. III
we calculate the modes characteristic of the
Al„Ga, „As/GaAs single heterostructure by using a
dielectric continuum model and a two poles dielectric
function for the alloy. Results of Secs. II and III are used
to calculate the electron-phonon-scattering probabilities
in Sec. IV. Transport properties of an
Al„Ga, „As/GaAs single heterostructure as studied by
our MC simulation are presented in Sec. V, focusing in
particular on the contribution of the different modes
characteristic of the system, and on the role of nonequili-
brium phonons. '
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II. SELF-CONSISTENT CALCULATION
OF ENERGY LEVELS AND WAVE FUNCTIONS

IN A SINGLE HETERO JUNCTION
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The electronic level wave functions in the single
Al„Ga, „As/GaAs heterostructure described by a self-
consistent potential 4, , are calculated by solving the
coupled Schrodinger and Poisson equations:
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where m' is the electron effective mass, Vb is the
conduction-band discontinuity at the interface, e is the
electron charge, e, is the static dielectric constant, ni and

g; are the number and wave function of electrons in the
subband i, and N„(z) and Nn(z) are the position-
dependent acceptor and donor concentrations. At equi-
librium, the Fermi energy of the electrons EF and the
quantities n;, E;, and m ' are related by the equation

m 'kII T E~ E, —
ln 1+exp (3)
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The solution of the coupled equations is obtained via a
standard iterative method' ' which starts from an ini-
tial guess of the electronic density and energy levels, and
evolves until convergence is achieved. We determine the
number of valleys to consider, two (I' and L} in the
present case, fix the subband number in each valley, and
initialize the subband energies to reasonable values. Two
valleys (I' and L) are considered explicitly, each de-
scribed in the efFective-mass approximation scheme.
Within Al„Ga& „As the effective mass is expressed as a
function of the A1 composition x according to the follow-
ing rules: m, /m0 =0.067+0.083x for the I valley, and
m, /m0 =0.11+0.03x for the L valley. In this paper we
neglect the X-valley contribution. This is a reasonable as-
sumption for an Al composition x ~0.35 (Ref. 19) and
moderate electric Seld values (E ~ 5 kV/cm}.

Figure 1(a) shows the potential shape for both I' and L
valleys, at 300-K temperature, for an Al composition
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FICx. 1. (a) Calculated effective potential for I and L valleys
at a 300-K lattice temperature, for an Al composition x =0.3
and a bidimensional electron-gas concentration N~=SX10"
cm . The A103Ga07As barrier region is doped with a donor
concentrations Nz =5 X 10' cm, while the GaAs region is in-
trinsic. (b) Calculated wave functions for the three lowest sub-
bands in the I valley corresponding to (a). (c) Same as (b) but
for the L valley.
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x =0.3 and a surface carrier density X, =5 X 10" cm
The Alp 3Gap 7As region is doped with a donor concen-
tration Xz =5 X 10"cm, while the GaAs is assumed to
be intrinsic. Figures l(b) and 1(c) report wave functions
corresponding to the first three subbands of the I and L
valleys, respectively. At the present Al composition the
conduction-band discontinuity between the two semicon-
ductors is 256 meV in I and 75 meV in L. In the I val-

ley, the electron wave function penetrates only slightly in
the alloy. In the ground state electrons are localized
within about 200 A from the interface, while for higher-
energy levels the degree of carrier localization decreases.
Things change drastically in the L valley, where the
much lower potential barrier allows strong penetration of
the wave functions in the Al Ga& „As region. We have
in this case a strongly coupled system, in which the wave
function of the first level is localized in the GaAs well
while the other are mainly localized in the Al„Ga, As
barrier. Therefore we cannot properly speak of carrier
confinement for L-valley electrons.
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FIG. 2. Two poles dielectric function, used to describe the
ternary semiconductor.

III. DIELECTRIC CONTINUUM MODEL

Within the dielectric continuum approach, the vi-
brational properties of a given structure are determined
from the following set of equations:

—p,co'u(R) = —p, (o(),u(R)+e I E'"(R)

and the polarization microscopic expression is

P(R)=nle( u(R)+n(a(E"'(R),

(10)

V 4(R)=—V P(R),=1
E'p

P(R}=e(g„(ol)E(R},

E(R)= —V4(R),

(4)

(5)

P(R) is the polarization field, E(R) is the electric field,
y„(ol}=e„(co) 1 is the d—ielectric susceptibility in the nth
layer, and 4(r) is the electrostatic potential of the
optical-phonon modes, which can be factorized as

where u(r) is the relative displacement of an ion pair, p(
is the reduced mass of an ion pair, cop, is the frequency as-
sociated with the short-range forces between ions, e

&
is

the effective charge of a unit cell, n, is the number of unit
cells per unit volume, a, is the electronic polarizability
per unit cell, and the local electric field E' =E+P/3eo.

In the ternary semiconductor the relative motion in a
unit cell can take two different characteristic equations of
motion, one GaAs-like and one A1As-like:

—
p2, co u (R)= —

i(t2 (oo2 u (R)+e2;E"'(R),
y(z )ei(q r rot)— (7) i = A, G (12)

~L2A )(~ ~L2G )
2 2 2 2

{ el}2=o~ e2{~' ~T2A }(~' ~T2G }
(9)

where the subscripts 1 and 2 are for the GaAs and
Al„Ga& As regions, respectively, and L represents the
LO and T the TO phonon modes, respectively. The two-
mode behavior of the ternary semiconductor in Eq. (9) is
evidenced by the subscripts A and G, which stand for
A1As- and GaAs-like modes, respectively. " The two
poles dielectric function behavior is reported in Fig. 2. In
the diatomic binary semiconductor (GaAs) the equation
of motion, within the continuum approximation, is

where q and r, respectively, are the components of the
phonon wave vector and of the position vector parallel to
the interface.

In the case of an Al„Ga, „As/GaAs single hetero-
structure, the dielectric functions in GaAs and
Al„Ga& As are given, following the generalized
Lyddane-Sachs-Teller relation, as

(CO COL I )
e((Ci) ) —e~ I (~2 ~2 )

and, as a result, the polarization field can be approximat-
ed to the first order in the material composition x, as

P(R) =n2[xe2AuA(R)+(I —x )e2GuG(R)]

+n2a2E"'(R) . (13)

d({,(z) dy2(z)
( e() co=e2(ol)

dz dz
{15}

which are derived by imposing the continuity of the in-
plane electric field and of the transversal electric displace-
ment. Equations (14) and (15) lead to two sets of modes:
interface modes, if both (coe) and e2(co) are different from
zero, with

The normal mode frequencies and the corresponding
4(R), P(R}, and E(R) can be obtained by solving Eqs.
(5)—(13) together with the appropriate electrostatic
boundary conditions at the interface. "

For the z component of the phonon potential, we have

P((z ) =({)2(z)

and
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and half-space LO modes [whose potential goes like
sin(q, z)] if one of the two dielectric functions is zero.
The frequencies of the interface modes are given by the
solution of the equation
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With e, 2(Io) given by Eqs. (8) and (9), Eq. (17) is a third-
degree equation in co, with three real and distinct solu-
tions which give the three interface normal mode fre-
quencies: co& originating from the GaAs modes of the
GaAs region; and co& and co3 originating from the AlAs-
like modes and the GaAs-like modes, respectively, of the
Al„Ga, „As region. " Figures 3(a) and 3(b) show the
spatial dispersion of the interface (dashed line) and half-
space LO modes (dotted line and dashed-dotted line), for
two different values of q and q, . Here the origin is fixed
at the interface plane.

The two-dimensional Fourier transform 4(q, z} of the
phonon potential 4(R) determines the electron —optical-
phonon interaction Hamiltonian, which is given, for each
normal mode, by "'
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where & and &+ are. the usual annihilation and creation
operators. For the interface modes, the interaction Ham-
iltonian can be written as"

2 -2 1/2
'tie L 1 —q~z~ iq r(y +g+ )
e C (m) v'q

50 100 150 200H, I= +
q
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(19) FIG. 3. (a) Phonon potential as a function of position for in-

terface (dashed line) and half-space LO modes (dotted line and
dashed-dotted line). Interface modes are evaluated at an in-

plane phonon wave vector q=10' m ', and half-space LO
modes at a perpendicular phonon wave vector q, =10 m
The interface is at z =0. (b) Same as (a) for q =q, = 10 m

where L 2 is the interface area, and Cz(co)
=(BIBIo)[ (e)ro+ez(co)]

The Hamiltonian for the half-space LO modes is given
by9

' 1/22tie a)L)
H, p )

——
q„)0 q

1/2

el(0}

e'q' +2 sin(q, z)[8, ,(q)+8, , ( —q)]
Qq'+q, '

(20)

for the binary material, and by
' 1/2

Ae
cp, 2 3

q, )0 q

IV. ELECTRON-PHONON INTERAt;rrON

~qr
(C2(~))' '

Qq'+q, '
In previous sections we have derived expressions for

the electronic wave function, phonon potential, and
electron-optical-phonon interaction Hamiltonian, which
are all necessary ingredients to evaluate the electron-
phonon scattering rate via the Fermi golden rule:

X 2 sin(q, z )[it&,(q)+8 &+, (
—q) ]

(21)

P(f& ), f&'))= /(u'[H'fu ) / 5(E„E„). —for the ternary one, "where C2(co) =Be2(co) IBco. Here L
is the volume of the heterostructure, coL

&
is the frequency

of the LO phonons in GaAs, and e, and e,(0) are the
optical and static dielectric constants. No phono n
dispersion is considered for these modes.

(22)

Here P describes the probability per unit time for the sys-
tem to make the transition from an initial state

~
u ) at en-

ergy E„ to a final state ~u') at energy E„under the eff'ect

EFFECT OF HALF-SPACE AND INTERFACE PHONONS ON. . .
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of a small perturbation, represented by the perturbation
Hamiltonian H'.

The transition probability per unit time from an elec-
tronic state K in subband i to an electronic state K' in
subband j is given by

1/2
Zm co

0

2k 2 —2m CO

1/2

—2k k2+ 2m
cosO

1/2

n+1
P (K,K')=

n

Ak
2m

Ae

eoL Cl(co)

Ak
2m

6;.(q )

q

(23)

P' '(K, K')=
227M

qC2(a))eoL

Analogously, in the Al„Ga1 „As region

while the integrated scattering probability is
Ak' Ak
2m' 2m' (27)

2

Pl(K) =
277fl EpCI(Ci) )

Gl(k', 8)x f de, (24)
Qko +k 2kko c—ose

where

Giij(q)= fgj (z)y;(z)e ~i'idz fgj'(z')y;(z')e ~i'idz'

and

P' '(K)=
LJ

where

2&e m

(2n. ) Cz(co)EoR

p, ',"(k,', e)
x d0

0

n+1

(28)

and

+%co' =+fico+ (E E, ). — .

P,"1 '(q)= f yl". (z)y;(z)dz

x f' y,*(')q, (z )

In (23) and (24) q=+ko +k —2kko cose is the com-
ponent of the phonon wave vector in the interface plane
which is obtained from momentum conservation, and the
6 sign refers to the absorption and emission cases, re-
spectively. The calculations of the scattering rates in
terms of the electron and phonon states (iK) and in ),
respectively), are reported in Appendix A. The integra-
tion over 8 is performed numerically.

For the half-space LO phonons, we find (see Appendix

P'"(K,K') =
2'77e COL 1

eoL q

1 1

e„i ei(0)

n+1
x F,.',"(q)

Ak' lk
2m 2m

(25)

and

~e ~L1m

(2m) co%

P,"I"(k;,e)
x de"

0

for the GaAs region, where

1

e, (0)

(26}

F "(q }=f y'. (z)y, (z)dz

x "q*( )g.( )dz(e- i
-'i —e-~i"i)

J

and

k' = k2+ 2m'a)'
0

1/2

Xdzi(e —qiz —z'i e
—qiz+z'i

)

q= 2k + 2m'a) —2k k2%
2m'ci)'

1/2

cos0

1/2

Figure 4(a) shows the different contributions to the emis-
sion scattering rates per unit time for the 1~1 intrasub-
band transition within the I valley, compared with the
GaAs bulk phonon curve. The continuous line refers to
half-space LO modes characteristic of GaAs, the dashed
line to the interface GaAs-like modes originating from
the GaAs region, the dotted line to the interface A1As-
like modes originating from the A1As region, and the
dashed-dotted line to the GaAs-bulk phonons. The sum
of the contributions of all modes characteristic of the het-
erostructure leads to a total probability very similar to
the GaAs-bulk phonon curve. %e see, moreover, that for
the Al composition x =0.3 considered here, the contribu-
tion of the GaAs-like IF modes is about a factor 2 higher
than the A1As-like ones. The relative importance of
these interface modes is a function of the Al content x,
and is determined by two factors. The first is the
electron-phonon polar coupling, which is stronger for
AlAs-like modes than for GaAs-like ones. " Thus the
former becomes dominant around x =0.4. The second
factor is the phonon thermal populations. Due to the
higher energy of the optical phonon, the A1As-like popu-
lation is much lower than the GaAs-like one, about a fac-
tor 2 at room temperature (0.17 versus 0.33). Since, for
X=0.3, the square Hamiltonian (which appear in the
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scattering rate expression} of the interface GaAs-like
modes is still slightly higher than those of the AlAs-like
modes, by accounting for the different phonon popula-
tions we obtain the factor 2 mentioned above.

Figures 4(b) and 4(c) refer to the subband transitions
2~1 and 3—+1, respectively, of the I valley. The mean
features are similar to those described for the 1 —+1 tran-
sition, but in these cases the relative contribution of the
interface modes is reduced, because, as seen previously,
the electrons in the subbands 2 and 3 are less localized
with respect to those in the ground state.

The results obtained for the first three subbands of the
L valley are shown in Figures 5(a}—5(c). Here, for sake of
simplicity, we have not included the GaAs-bulk phonon
curve. With respect to the I valley, a relative increase of
the contribution from interface and half-space A1As-like
modes is observed, in agreement with the wave-function
analysis of Sec. II.
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FICi. 4. (a) Phonon emission scattering rates for the intersub-
bands transition 1~1of the I -valley, at 300 K, for an Al com-
position x =0.3 and a two-dimensional electron-gas concentra-
tion Nz=5X10" cm . A comparison between the modes
characteristic of the system and the GaAs-bulk modes (dashed-
dotted line) is shown. (b) Same as (a), for the intersubbands
transition 2~1. (c) Same as (a), for the intersubbands transition
3~1~

V. ELECTRONIC TRANSPORT
IN SINGLE HETEROSTRUCTURE

The scattering rates analyzed in Sec. IV have been in-

cluded in a MC code to study the transport properties of
an Al„GaI „As/GaAs heterojunction in the presence of
an electric field applied along the heterointerface (for a
comparison see Ref. 6}. We have used a two-valley (I'
and L) model for both GaAs and Al„GaI „As layers,
with size quantization in both valleys, as described in Sec.
II. We have simulated 10000 electrons in a standard en-
semble MC scheme. ' The following scattering mecha-
nisms have been included: polar-optical phonons, ionized
impurities, and the intervalley I -L interaction treated
with deformation potential. "Real-space transfer" effects
are not explicitly accounted for, the only possibility of
finding carriers in the Al„Ga& „As layer being a conse-
quence of wave-function penetration in the barrier.

In principle it is necessary to update the potential
profile and screening parameters as the electron distribu-
tion in the different subbands is modified in high electric
fields. As already stated by Yokoyama and Hess, a solu-
tion of the Schrodinger equation for each MC step re-
quire enormous computational resources, and we have
therefore ignored the changes of the potential well and
screening in our calculations.

Our simulation program allows us to take care of the
nonequilibrium phonon population' ' by using a MC
algorithm developed in recent years by the authors and
co-workers. ' ' ' 5' We have performed simulations
with both equilibrium and nonequilibrium phonon popu-
lations for an Al composition x =0.3 at 300 and 77 K.
MC results are compared with experimental data by
Masselink and co-workers. ' Such measurements are
performed by applying a superposition of a large
sinusoidal electric field and a small dc electric field to the
sample, and measuring the dc current as a function of the
peak ac field.

Figures 6(a) and 6(b) report the drift steady-state veloc-
ity as a function of the electric field applied along with in-
terface, at 300 and 77 K, respectively. MC curves are
presented both for nonequilibrium (continuous line) and
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probability is proportional to the inverse of the phonon
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electric field, leading to an increase of the drift velocity in
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FIG. 5. (a) Phonon emission scattering rates for the intersub-
band transition 1~1of the L valley, at 300 K, for an Al compo-
sition x =0.3 and a two-dimensional electron-gas concentration
Nz =5 X 10"cm . Here, for sake of simplicity„ the GaAs-bulk
phonon curve has not been included. (b) Same as (a), for the in-
tersubband transition 2~1. (c) Same as (a), for the intersub-
band transition 3~1.

Field (kV/cm)

FIG. 6. Steady-state velocity vs field characteristic at (a) 300
and (b) 7'7 K. Comparison between Monte Carlo calculations
with nonequilibrium (continuous line) and equilibrium (dashed
line) phonon distributions and experimental data of Refs. 30 and
31 (dotted line). The dashed-dotted curve represents the experi-
mental data corresponding to the undoped GaAs-bulk case.
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respect to the equilibrium phonon case (drag effect' ).
With increasing field and carrier mean energy, the cou-
pling between the carriers and the peak phonon perturba-
tion decreases, and the electrons reabsorb mainly pho-
nons with randomly distributed wave vectors. In this
case, the dominant effect is the overall increase in the
phonon population with respect to the unperturbed case,
which is responsible for a larger frictional effect with a
consequent reduction in the drift velocity (heating efFect).

At the lattice temperature of 77 K [Fig. 6(b)], the drag
regime was not detectable by our simulation. The ab-
sence of phonon drag efFect for this case of higher elec-
tron mobility can be ascribed to a more dominant "pho-
non heating, " related to a stronger frictional action of the
phonon disturbances. A similar result also has been ob-
tained in bulk GaAs. ' In any case, all curves show an in-
crease of velocity in respect to the room-temperature sit-
uation; this is due to the reduction of the phonon popula-
tion with temperature, which implies a reduction of the
electron-phonon-scattering rates.

The velocity-field curves show the well-known negative
differential mobility efFect. This effect is due to the in-
crease of the efFective mass and consequent slowing down
experienced by the carriers when they pass from the I to
the L valley. Carriers in the I valley with energy higher
than the I -L transition threshold can pass in the L val-

ley, thus reducing their velocity. An increase in the elec-
tric field causes an increase of the carriers' mean energy.
Consequently the fraction of electrons which are
transferred to the L valley rises, leading to a reduction in
the drift velocity.

Both at 300 and 77 K, the peak velocity of the two-
dimensional electron gas is lower than that of electrons in
lightly doped bulk GaAs (dashed and dotted lines) and
occurs at somewhat lower electric fields. This behavior is
explained through the electron size quantization in the
GaAs region of the single heterostructure. In fact, since
the electrons are spatially confined, the density of states is
steplike with the lowest energy available for electron
states coinciding with the lowest I - and L-valley sub-
bands. The intervalley gap then becomes the gap be-
tween the lowest subbands of the two conduction valleys,
being reduced from about 300 to about 280 meV. Since
the intervalley transfer and the peak velocity depend on
this energy difference in an exponential manner, the
reduction of the effective valley separation plays an im-
portant role.

Figures 7 and 8 show the stationary nonequilibrium
phonon distribution as a function of the bidimensional
phonon wave vector q, and of the cosine of the angle
which it forms with the direction of the applied field, for
the half-space GaAs-like LO modes and the GaAs-like
interface modes, respectively, at 300 K, for a I-kV/cm
field. The equilibrium distribution (Planck distribution),
assuming no dispersion for the optical phonons, should
be represented by a flat histogram, whose value at 300 K
is around 0.33. As we reported above, the perturbation
involves mainly phonons with small q in the electric-field
direction. In Sec. III we found that, because of the shape
of the phonon potential and the electron wave functions,
the coupling of the carriers to the interface modes is

((p' m ') cosy
1.0 p 54 Oo

Q

FIG. 7. Three-dimensional plot of the stationary perturbed
phonon distribution for the half-space GaAs-like LO modes, as
a function of the two-dimensional component q of the phonon
wave vector and of the cosine of the angle between q and the
electric field, at 300 K for an electric field of 1 kV/cm.

weaker than to the half-space GaAs-like LO modes. As a
consequence we observe a stronger increase in the half-
space LO-phonon population than in the interface modes.

This behavior becomes more evident at increasing
values of the in-plane electric field. Figures 9 and 10
represent the room-temperature stationary nonequilibri-
um phonon population, at 3 kV/cm for the half-space
GaAs-like LO modes and the GaAs-like interface modes,
respectively. The perturbation in the nonequilibrium
phonon population is stronger here because of the higher
carriers' mean energy. The A1As-like interface mode dis-
tribution behaves in an analogous way to the GaAs-like
one. The only difference is that, because of the lower cou-
pling between these modes and electrons discussed in Sec.
IV, the perturbation intensity is sensibly reduced.

In order to increase the contribution of interface
modes, it should be necessary to reduce the size of the
confining well; that is, to increase the field strength along
the direction perpendicular to the interface or, in other

()p' m ')

~Q

FIG. 8. Same as in Fig. 7, but for the interface modes.
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The electronic wave functions for electrons confined in the z direction but free in the xy plane can be written as

%K(R)=g;(z )e'"',

where i is the subband index.

(Al)

IMx~ = Ae

e~'Cz(~)

'" &n+1
&n

—qfzJ

y fg(z)e '"' e +'q'g;(z)e'"'dR
V~q

''" ~n+1
eoL C (co)

—qfz)

y f e '~ *«&'dr f P, (zg, (z) dz .J

Here, the integral over r represents the 5-Dirac function, which allows us to select the phonon wave vector q deter-
mined by the momentum conservation (k —kkq=0). By performing the sum over q in this way, we obtain

MKx =I A'e

eoL, Cz(~)

'" V'n+1 —qlz/f gz'. (z)g, (z) . dz, (A2)

1M~K I'= Ae

eg'Cz(~}
n+1 —G; (q),n q

(A3)

where

G;,(q)= fP(z)g;(z)e «'~dz fg;(z')g;(z')e "'dz'.

The transition rate from electronic state K to K' is

P (K,K'}= ~M~K ~ 5(Ef E;„)—
which, together with Eq. (A3), gives directly the expression of Eq. (23), with

%2k'2 RkE = +E +fico, E;„= +E; .
2m* 2m'

The argument of the 5 function is written as

fi k' A'zkz

2m 2m'

where +fico =kfuo+(E E; ). The total—probability that an electron in the state ~K) performs a transition assisted by
an interface phonon is given by

L2
P; (k)= fP(ki, k'j )dk'

(2~)'

(2m) & eoL Cz(co)

n+1 G'(q) 'a~k ~ W~k
5 — +%co* dk'

n q 2m* 2m

2

2m eocz(co) f

iraq

~
Rk' Ak

n
& 2m* 2m'

By writing q =+k' +k —2kk' cos8 and passing to polar coordinates, we have

2
pI

2meoc;(a))

fi k
2m

' k'dk'.

Ak'
5n+l

d8 Gz(k', 0)
Vk' +k 2kk'cosO—

The integral over k' can be performed analytically by using the energy-conserving 5 function. The final result is
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where

2

2M eoCI(co)

n + 1 z GI(k' g)

' V'k'+k' —2kk' e
(A4)

1/2

k2+ 2m co
0

APPENDIX B

1. Binary semiconductor

1

e)(0)

The interaction Hamiltonian for the half-space LO mode in a binary semiconductor is given by Eq. (20). By follow-
ing the same procedure as in Appendix A, the matrix element

We ~g)
1/2

M~„', =-&~ I&.+ll y y
q, &0 q

4A'e coL)

2ecL

' 1/2
1 1

e„, e, (0)

»' ~n+i
V'n

el/ r

sin(q, z ) I K &

q, &0 q Qq +qz

can be written explicitly as

1/2
4fie coL)

2eoL

1

e)(0) gfg;ze sin(q, z )g, (z )e '"'d R

' 1/2
4Ae coL)

2eoL 3

1

e,(0)

''" v'n+l
v'n

sin(q, z )

g f e '" "*~"drf g'(z)g;(z) dz .

Once again the integral over r represents the 5 function
5(k' —khan) for momentum conservation, which allows
us to perform the sum over q and obtain

2

P "(k,k')= e coL )

'l ' g2
1 1

e ) e)(0}

IMxxc I'= 4Ae coL)

2eoL '

G,',"(q, )
x g

q)o q +q

1

e, (0}

n+1 G(1)(q

q +q,

fi k'

2p7z

Ak
27?l

where

G,.". ~(q, ) =f g (z)g, (z) sin(q, z)dz

X f g(z'}g,.(z') sin(q, z')dz' .
0

By using the same transformation of the 5 function as in
Appendix A, for the differential scattering rate we have

We define the "form factor" A,"(q ) as

A,'"(q)= f '
dq,

„G,',"(q, )

~J 0 q2+q2

=f g*(z)g;(z)dz

z

2~ &e
P "(k,k')=

2e~'
1

e)(0)

„4sin(q, z }sin(q, z')dz'

0 2 +q
2

T

q &o q +q, 2m' 2m*

By converting the sum over q, into an integral in q,
[g &o (L lqr}f o"dq, ], we have

The integral on the far right,

„4sin(q, z) sin(q, z')dz'
I=4 dq, ,

~ ~

0 q +qz

can be put in the form
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iq (z+z') iq (z—z')
qI

2

q2

I

z ~ ~

I

z

2

I ~

z
e ' ooI= — dq, + dq,-~ q+q, -~ q+q,

and solved with the residue method, to give in our case

and

2

P(1)(k k~)—
7M COL )

v ' e~2q
1

e') (0 )

Thus

A," (q)= —f g (z)g;(z}dz

n+1 g»k ~2 g»k 2

X F "(q )5 — +A'co'
2m' sm'

(Bl)

P(z')g (z')dz'(e ' ' —e '+')
)J i

where, for sake of simplicity, we have set

A,z"(q ) =FJ"(q )(n Iq ). The total scattering rate is

L 2 me col &

P,"(k)= fP'"(ki, kj')dk'
(2m) (2n) eo

1

e)(0)

n+1 F (} "2 2 2 2
(r) k

haik

n 2m* 2m ' (B2)

which leads to Eq. (26) after transformation to polar
coordinates and integration of the k' integral.

2. Ternary semiconductor

The interaction Hamiltonian is given by Eq. (21). The
functional form of this Hamiltonian is the same of that of
the binary semiconductor. Therefore calculations are
performed in the same way, changing only the
coefficients, and remembering that co can assume other
one of the two values a)I »„and coL»G.

In this case the form factor is given by

A' '(q)= f dq,
G(2)(q

V 0 q2+q2

=f g;(z)g;(z)dz

x

2
P(z)(k kg)

2)r lie

Cz(a) )eg

qz A' kG(2)( ) 2 i2

~&o q+q, 2m'

G '(q, )=f g;(z )g, (z)2 sin(q, z )dz

0
X '. z'

,
z' 2 sin q,z' z' .

()12k

2m

By transforming the sum over q, into an integral, we ob-
tain

„4sin(q, z ) sin(q, z' }dz'X» dq, .
~ ~

0 q +q,

The integral over q, has already been evaluated for the
binary semiconductor; here we give only the final result:

A, '(q)= —f g'(z)g, (z)dz

X f '
g;. (z')g, .(z')dz'

P~~J~ (k, k') = 2

C2 ( co )eoL

n+1
x (e

—ql& —~'I —qlz+z'/
) 7

q +q,

Ak Ak
2m 2m *

from which Eq. (27) follows immediately, where the nota-
tion A,(J '(q)=F( )(q}(mlq) is used. Analogously to the
binary semiconductor case, the total scattering rate of
Eq. (28} is calculated through the integration over all
final states.
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