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%'e investigate electronic states and the far-infrared absorption spectrum of a two-dimensional (2D)
hydrogenic impurity in a parabolic quantum wire in a magnetic field. The problem is mapped into the
problem of interacting nonlinear harmonic oscillators. The evolution of the energy levels and level

statistics from a 2D to a 1D effective hydrogen atom is investigated in the quantum and classically chaot-
ic regimes. The ground-state energy reAects a delicate balance between a blueshift due to confinement

and a redshift due to an increase in binding energy. In the absence of a magnetic field, the model reduces
to the well-known problem of quantum chaos in a 3D hydrogen atom in a magnetic field in a zero
angular-momentum channel. The presence of a magnetic field in the wire breaks the scaling behavior in-

herent in the 3D hydrogen problem.

INTRODUCTION

There is currently a great deal of interest in the optical
properties of low-dimensional structures. ' Far-
infrared (FIR}optical properties are often determined by
impurity transitions while interband optics involves
bound electron-valence hole pairs. Both processes re-
quire the solution of the effective hydrogenic-impurity
problem. In this paper, we study the problem of a two-
dimensional (2D) hydrogen impurity in a parabolic quan-
tum wire in the presence of a magnetic field normal to the
plane. This model represents the simplest generic system
available to study donors and localized excitons in quan-
turn wires. It allows us to investigate the evolution from
a quasi-two-dimensional to a quasi-one-dimensional atom
as a function of the strength of the confining potential.
This evolution is nontrivial due to the infinite binding en-

ergy of a 1D hydrogen atom. We shall also demonstrate
that as a result of the 1D confining potential, the underly-

ing classical dynamics of an electron becomes chaotic.
This makes the computation and the interpretation of the
energy spectrum nontrivial.

There is currently a great deal of interest in the quan-
tum properties of systems with underlying chaotic classi-
cal dynamics. Much of the progress in the current under-
standing of the relationship between classical and quan-
tum chaos comes from studying experimental systems. A
very good example is the optical spectrum of a hydrogen
atom in a magnetic field. In the 3D hydrogen problem,
chaotic behavior arises because of the destruction by the
magnetic field of a continuous rotational symmetry and
associated with its constants of motion. Surprisingly,
both experimental and theoretical progress have been
achieved ' only very recently. %'e show here that the
hydrogenic impurity in quasi-two-dimensional parabolic
wires provides an interesting experimental possibility to
study quantum systems with chaotic classical dynamics.

Let us consider the electronic states and absorption
spectrum of a hydrogen atom confined in a two-
dimensional parabolic quantum wire. The positively
charged center represents either a localized photoexcited
valence hole or a donor impurity. The magnetic field is
applied perpendicular to the plane of the wire.

The Hamiltonian for a single electron with mass m
moving in the (x,y} plane in the field of an attractive
Coulomb potential and in a magnetic field B in the z
direction is given in symmetrical gauge by

2 2
1 eB 1 eBH= p~ p + py+ x

2m 2c 2m " 2c

2

(I)
c.~r

Here e /e~r~ is the attractive potential of the donor
(hole), e is the background dielectric constant, mco~y /8
is the parabolic confining potential in the y direction, and
we take Pi= 1. Measuring lengths in terms of the effective
Bohr radius ao and energy in terms of the effective Ry we
can write the dimensionless Schrodinger equation for the
wave function f (x,y) as

s.'+s„' +~L +—'y (x +y )+—'P y—
2 2 8

1

V'x'+y'

Xf (x,y) = f (x,y), (2)—
with I.,=xp —

yp being the z component of the angular
momentum. The parameter y =co, /2 Ry and parameter

P=tor /2 Ry measures the strength of the magnetic field

The chaotic behavior results from the destruction of the
rotational symmetry by the confining potential.

THE MODEL
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(co, =e8/mc) and the strength of the confining potential
with respect to the Coulomb potential (Ry =e /2sav ). In
typical semiconductor nanostructures, y and p are typi-
cally between 0 and 1.

In the absence of an impurity, Eq. (2) describes a super-
position of free motion in the x direction and a harmonic
motion with energy spacing p in the y direction.

In the absence of the parabolic confinement, Eq. (2) de-
scribes the 2D hydrogen atom in the magnetic field. Its
energy spectrum and eigenstates have been studied by a
number of authors. Because there are two conserved
quantities, energy E and angular momentum L„ the
Hamiltonian of the 2D hydrogen atom in a magnetic field
is fully integrable, and hence exactly soluble. The wave
functions and energies can be obtained by a variety of

well-defined methods. The confinement, on the other
hand, destroys the circular symmetry, and angular
momentum L, is no longer an integral of motion. This
lack of a conserved quantity, coupled with a highly non-
linear form of the total confining potential, leads to
chaotic dynamics in the classical problem.

It is a standard procedure to remove the divergence of
the Coulomb potential by a transformation from rec-
tangular coordinates (x,y) into parabolic coordinates
(u, v), or alternatively, from cylindrical coordinates (p, 4)
into parabolic cylindrical coordinates (p„P}:

[x=—,'(u —v };y=uv] or [p= —,'p;4=2/] . (3)

The regularized Schrodinger equation in parabolic
coordinates (u, v) can now be written as

Pu PU u +v + u +v 1 2 u +v
2 2

+
2 2 '+4' 2

r

1 u+v+ p2
4 2

u v f(u, v)=2f(u, v) . (4)

Equation (4) can be interpreted as either a generalized ei-
genvalue problem for energy E or, given energy E, an ei-
genvalue problem for the charge of the hole. The left-
hand side describes a Hamiltonian Q of a pair of coupled
nonlinear harmonic oscillators with energy ( E) playin—g
the role of a force constant. The classical motion corre-
sponds to orbits on a constant-charge (Q=2) surface.
For zero magnetic field (y=0), Eq. (4) reduces to the
Schrodinger equation appropriate for a 3D hydrogen
atom in a magnetic field in the zero angular-momentum
channel. ' '

The regularized Hamiltonian Q can be written in para-
bolic cylindrical coordinates (p, P) as

1 2 1Q= —p + p — E+~ p2 " 2p ~ 2 2 2

2
3

+—,'[yz+P sin (2P}] (5)

Classical equations of motion describe the evolution of
canonical variables (P,p&) and (p,p„) in efFective tiine r
related to the real time t via dr=dt/p on a surface of
constant charge Q =2:

3
p 2

P&= — sin(4$), P= i +y, p=p„,

p„=+ 4— p&+p E—y p&

3 1/2

—
—,'[y +P sin (2P)]

For zero magnetic field (y =0), the simplest periodic or-
bits correspond to P=n(m/4} (n=0,.1,2, . . . }, /=0,
p& =0, p& =0. The n =0 orbit Io corresponds to motion
along the direction of the wire while n =1 orbit I& corre-
sponds to the direction perpendicular to the wire. It is
easy to see from equations of motion that the n = 1 orbit

at the classical ionization threshold E =0 corresponds to
the oscillatory motion of the electron with frequency co

proportional to p, co=ap, i.e., the frequency of the free-
particle motion in the y direction. The effect of impurity
is present in the proportionality constant a. This is an
equivalent of the Garton-Tomkins frequency" in the 3D
hydrogen atom, and we expect that both classical orbits
will lead to the modulation of the photoabsorption spec-
trum. A full analysis of the classical motion and the
effect of the magnetic field will be given elsewhere. '

It is illuminating to examine the negative energy spec-
trum (E &0) in the zero magnetic field case (y=0). Let
us define E=—co and rescale our coordinates and mo-
menta as u-+u&co p„~p„/Mro. This allows us to
rewrite Eq. (4}as

2 2 i 2 2 2 2 2" +—,'(u2+v2)+ —,'p (u +v')u2v' f(u, v)

=2ef (u, v}, (7)

where p=p/co and e = I/co are scaled coupling constant
and eigenvalues. Because of scaling, Eq. (7) does not de-
pend on energy and confinement separately, but only
through a single-scaled variable. The application of the
magnetic field in a wire destroys the scaling property.
Equation (7) describes a pair of coupled nonlinear har-
monic oscillators and has been studied by a number of au-
thors. '

In an analogy to previous works, ' ' we expand all
operators in the basis of harmonic-oscillator states, i.e., in
terms of a pair of harmonic oscillator lowering (raising)
operators (d, b}

u =(b+b++d++d}/2,
v =(b b++d d}/—2i, —

v =Ho/2 (b+d+d+b) l2—
—[(b d) +(b+ —d+)2]/4—,
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'=Ho/'2+(b+d+d+b) ~2

+ [(b d—) +(b+ —d+)il /4,
L =d+d —b+b

u +U =Ho+(bd+b+d+2
t

p„+p, =H() (b—d +b+d+ ),

where Ho=d+d +b+b+1 and the p y
e angu ar mon1entum are L =0,+2 +4

Expanding the wave fun
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a Poisson distribution while finite-confinement spectra
(with or without the magnetic field) appear to follow
%'igner distribution, a characteristic feature of quantum
systems with underlying chaotic classical dynamics.

Finally we turn to the effect of confinement on the FIR
spectrum. The FIR spectrum in our truncated oscillator
basis is shown in Fig. 4. Figure 4(a) shows the reference
spectrum of the 2D atom independent of the polarization
of radiation for (P=O, y=O}, while Fig. 4(b) shows the
x-polarized spectrum of the wire (P=1, y=0}, and Fig.
4(c) shows the y-polarized spectrum of the wire (p= 1,
y =0}. The spectra of the wire are shifted toward higher
energies due to confinement, with the shift for the y po-
larization being larger. This is understandable since it
probes the strongly confined motion in the direction per-
pendicular to the wire. As expected, spectra at higher en-
ergy look quite ordered, with equally spaced peaks due to
underlaying chaotic dynamics. The details of the spec-

1.0
dE/&cIE&

FIG. 3. Distributions P(dE) (unnormalized) of normalized
energy spacings dE/(dE) of lowest energy levels for (a) 2D
(P=0, y=0), (b) wire (P= 1, y=0), and (c) wire in a magnetic
field (P= 1,y = 1).
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FIG. 4. {a) The reference spectrum of the 2D atom indepen-

dent of the polarization of radiation for (p=0, y=0), (b) x-
polarized spectrum of the wire (p= 1, y =0), and (c) y-polarized
spectrum of the wire (P= 1, y =0).

trum are, however, still sensitive to the size of the basis,
and more extensive numerical work is required.

In summary, we investigated the problem of a Coulom-
bic impurity in the center of a parabolic wire in a mag-
netic field as a model of donors and excitons in quantum
wires. %e have shown that the effect of confinement
leads to a complex problem with underlying chaotic clas-
sical dynamics. The effects of chaos are manifest in the
spectrum of energy levels and in the FIR spectrum. The
chaotic regime is also very important in low-energy trans-
port through wires with impurities and in excitonic
recombination in quantum wires.
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