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Self-consistent calculation of the plasma modes in a layered electron gas
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A model for a layered electron system is developed in which the electrons are treated completely
quantum mechanically. In this model the ionic cores are replaced by parallel sheets of uniform positive
charge. These charged sheets provide the neutralizing charge and the external potential which con5nes
the interacting electrons in the local-density-functional calculation of the ground-state system. The plas-

ma excitations of this model are obtained in a self-consistent calculation using the time-dependent local-
density approximation.

I. IXrRODU(vrON II. LAYERIUM MODEL AND TDLDA

Models for layered electron systems have been widely
exploited in order to describe the electronic response of
semiconductor superlattices, ' and more recently they
have been employed for the cuprate superconductors.
The fundamental model for the layered electron gas has
the electrons confined in parallel layers with their motion
parallel to these layers unrestricted. The electrons in
this model are described by a wave function

e„(r)=e l ~~i/r (z)/0'
z

where ki and rl are two-dimensional vectors lying in the

xy plane parallel to the layers. The z-dependent function
describes the electron's properties in the periodic struc-
ture perpendicular to the layers.

The usual practice is to introduce an envelope function
which confines the electrons in the 1th layer located at

The model we use for the layered electron gas consists
of parallel sheets (xy plane) of uniform positive charge,
n„which represent the layers formed by the ionic cores
of the material. These sheets are uniformly spaced so
that they form an infinite periodic structure with a period
d in the z direction. We treat a neutral system, and the
ground-state density of the interacting electrons in the
external potential provided by the sheets of positive
charge is computed using density-functional formalism.
This model has just two-parameters —the distance be-
tween the sheets, and the surface charge density on the
sheets.

The Kohn-Sham procedure is used to obtain the self-
consistent, noninteracting, single-particle wave functions
for the ground-state system. They satisfy Schrodinger's
equation with an effective potential

,U(snr)=U(r)+ dr', + [ne„,(n)],, n(r') d
r —r' dn

gk (z) =g(z —ld),

where d is the layer spacing. The form of this function is
then chosen [most often as ~g(z —Id)~ =5(z —Id)], and
the response of the layered system computed using a hy-
drodynamic or random-phase approximation. '

The calculation reported here is for a model where the
electrons are treated quantum mechanically. Its intro-
duction is motivated by the success of the jellium model
in describing the dynamic electronic response in the bulk
and at the surface of alkali metals and in alkali-metal
clusters. The jellium model consists of a rigid uniform
positive background which confines the interacting elec-
trons and provides the charge neutrality. This model is
characterized by a single parameter —the positive charge
density —so the computations utilizing this model are
easily analyzed. Our layer model is described in Sec. II,
which also contains an outline of the time-dependent
local-density approximation (TDLDA) which is em-
ployed in the computation of the electronic response of
the model.

and the self-consistent density is given by

n(r)= y ~e„(r)~ = y ~yk (z)~2/n .
k(occup) k(occup)

The external potential U(r) is provided by the sheets of
uniform positive charge, so that it is only a function of z.
Hence, for —d /2 &z & d /2 we have

U,tt(n;z) U,tt(n;0—) = n, — dz'(z —z')n(z')
0

+ [ne„,(n)],d
dn

and ,U(an;z)= ,U(sn; —z). A local-density aPProxima-
tion is used for the exchange-correlation energy e„,(n).

The self-consistent-field potential for the TDLDA (Ref.
8) is given by

UscF(I co) U~e(r;co)+ fdr', e p(r';co)
r —r'

+p(r;co) 2 [ne„,(n)],
dn
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where u~«(r;co) is the perturbing potential. The induced
electron-density response is determined by

p(r;co) =fdr'y(r, r', co}uscF(r', co}, (2)

where the random-phase approximation fox the general-
ized susceptibility is

y(r, r', co) = g 4„'(r)%„(r)%f(r')%„(r') .f(k) —f(k')

k k' k k'

Here the energy is

ll
Ak

Ek = +Ek
2m

and f(k) is the zero-temperature Fermi distribution func-
tion. The Fermi energy Ef is obtained by equating the

electronic density to the positive charge density:

d/2
n, =f dz n(r') .—d/2

Fourier transforming with respect to rll, we obtain

us( F(z y qii

/co�

)

2me, —
qll Iz —z'I=u~«(z, q II, co )+ dz'e " p(z', qII, co)

d+p(z, qii;~), [ne„,(n)] .
de

Introducing a Bloch ansatz for the z dependence of Usc„
and p [i.e., p (z)=e 'p (z) where pq (z+dl)=pq (z)],
we obtain

iq z d/2 d'
u (z, qii, co)=vu, «(q„qii, co}e ' + dz's (z —z';qii)p (z', qii, co)+p (z, qii, co) [ne„,(n)],

z —d/2 z dll
(3)

where

2qre cq, M —
q

II
I
&~+ Id—

I

22qre ja e +ae —e
qll

' (4)

with —d ~ bz & d and cz = [1—exp( —qii+iq, )d ]
The Fourier transform of the expression for p(r, co)

[Eq. (2)], can be expressed as

pq (z) = — g g f(k)[Pk „(z)Pk +q „(z;co+)
1

kll k

+g k „(z)P k +q „(z;co )],

This function and its derivative satisfy the usual periodic
ik d

boundary conditions; i.e., Pk „(d/2)=e ' P„„(—d/2).
Notice that we only need to compute (()k „ for the occu-z"
pied bands, while obtaining y directly would involve
summing over all of the bands. "

The z-dependent portion of the noninteracting wave
function is given in the reduced-zone scheme by the

ik z
Bloch wave function gk „(z)=e '

uk „(z), where n is thez" z"
band index. Since u, tr(z} is symmetric in z, we have used

gk „(z)=g'
k „(z)=Pk „(—z) to obtain Eq. (5), and our

normalization is

d/2f dzgk „(z)g„, ,(z)=N5„„, dz uk „(z)uk „(z)kn kn'
z z —d/2 z" z"

=Nd5„„,5„„.zz

where n is the band index, and the dependence on qii and
m has been suppressed. The quantities co+ are extracted
from the denominator in y:

k n +[
II II+qll ]

Here Pk +q (z;co) is given by
z z

Taking

iq z
u «(z, qii', co}=Rue

and replacing p and u by Ap and A,u, from Eq. (3)

we obtain

k, k +q
Pk +q „(z;co)=

f„.„,(z)

Eki, W
k n'

X f dz'g„', ,(z')gk „

vq (z)=e ' + f dz'[sq (z —z') e' sq (——z')]pq (z')

d
+pq (z) 2 [ne„,(n)]

dn

X(z')uq (z')
z

and satisfies the modi6ed Sternheimer equation'

d +v,e(z) —co Pk +q „(z;co)=gk „(z)uq (z) .
2m dz'

after setting

d/2 —1

1 —f dz sq (
—z)p(z)

d/2 z

The generalized polarizability of the model is
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lg Z

cc (q~~', co)— f dz e '
p (z) 14

d/2 i—q z
dz e '

p (z) .
d A,o

—d/2 z
(7)

The collective excitations of the system have eigenfre-
quencies for which the undamped response of the system
is finite even though the perturbing field vanishes, A,O~O.
Our renormalization of the coupling parameter, A, , per-
mits us to obtain a finite response even in the neighbor-
hood of these excitation frequencies, where the iteration
procedure which we use to solve the coupled integral
equations for pq would not converge for an unrenormal-

z

ized set of equations. Here the divergence of the response
is provided by vanishing of the denominator in the ex-
pression for )I,; the real frequencies where

f d/2
dzs ( —z;q~~)p& (z, q~~,

'co)=1 . (8)

and

sinhq~~d

q
~~

coshq) d —cosq, d

Considering only a single band with

lg„o(z)l =d5(z —dl) and no self-consistent potential,

we have
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2m f (k~~) f(k~)+q[[)

fl 0 k lk[[ l lk[~

+qual

+2mw jA'

is the generalized susceptibility of a two-dimensional elec-
tron gas. Thus Eq. (8) reduces to the dispersion relation
for the collective excitations of the layered electron mod-
el used by Das Sarma and Quinn. '

III. RESULTS
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The calculation of the electronic response of this model
proceeds by first obtaining the self-consistent, ground-
state electron density and corresponding single-particle,
noninteracting wave functions. Using these wave func-
tion, Eqs. (5) and (6) are iterated to obtain the self-
consistent induced density response p~ (z, q~~, co), and the

z

polarizability is computed using Eq. (7). In order to al-
leviate the numerical difficulties associated with the
singularities in the denominator of g, we have affixed a
small imaginary part to co (Im co=0.01 a.u.).'

The computed plasmon dispersion curves for a layer
spacing of 12 a.u. and a positive charge density of 0.0625
a.u. (one electron per 4X4 a.u. area) are displayed in Fig.
1(a). The curves are labeled by their value of q, d.
The q, d =0 curve is just the bulk-plasmon curve for jelli-
um with a bulk charge density n =n, /d, and
co~=(4ne nim)'~ is the corresponding bulk-plasmon
frequency.

The dispersion curves with q, & 0 have finite intercepts
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Il'FIG. 1. Plasma dispersion co vs parallel wave number q, and
single-particle energy Ek vs perpendicular wave number k, for

the ground-state system. The plasma curves are labeled by their

q, d values, where q, is the perpendicular wave number of the
plasmon. The lowest-lying energy band has Ek =0 for k =0"z 2

and is flat on the scale shown (Ek =0). The Fermi energy is
z

shown by the dotted line labeled Ef. Here d is the layer spac-
ing, n, the surface charge density, and co~ the bulk plasma fre-
quency. (a) One electron per 4X4 a.u. area. (b) Two electrons
per 4X4 a.u. area. (c) Three electrons per 4X4 a.u. area. The
dotted portion of the curve with q, d=m/8 is an extrapolation
from the calculated values.
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for q =0, as was found in the calculations of Yang
et a/. These authors used an envelope function which
allowed the electrons in adjacent layers to overlap, and
their results show all the features depicted in Fig. 1(a) for
our calculation. Earlier calculations using envelope func-
tions which did not overlap found this dispersion to be
acoustical

lim co=q~~[2ne n, d!m(1 —cosq, d)]'
q)~

0
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FIG. 2. Plasma dispersion co vs parallel wave number q~~, and
single-particle energy Ek vs perpendicular wave number k, for

z

the ground-state system. The curves are labeled by their q, d
values. The Fermi energy is shown by the dotted line labeled
Ef. The solid curves represent the plasma dispersions, and the
dotted curves locate the peak of the particle-hole spectra. Here
d is the level spacing, n, is the surface charge density, and m~ is
the bulk plasma frequency.

The energy-band structure of this layered system is
shown in the left part of the figure. The energies are ad-
justed so that the lowest-lying band has Ek p=0 for

z

k, =0. This lowest band is flat on the scale shown in the
figure, and the energy for the electrons in this occupied
band is Egp R

q~~
/2m.

In Fig. 1(b) we see that doubling the surface charge
density results in only minor changes in the scaled plas-
ma excitation spectra and energy bands; i.e., these quanti-
ties scale very well with co . This overall scaling feature
persists when we use a surface charge density correspond-
ing to three electrons per 4 X4 a.u. area, as shown in Fig.
1(c). However, the second band is also occupied for this
charge density, and there are low-lying particle-hole exci-
tations for the electrons in this second band which mix
with the plasma excitations. There is also a narrowing of
the scaled dispersion with respect to q, for large q~~. This
can be understood by noting that the electrons in the
second band can only have A'q~~

~ [2m(Ef Ek, )]', so
z

not all of the electrons contribute to the response for
larger q)(.

The calculated results presented in Fig. i demonstrate
the changes in response which result from varying the
surface charge density. The other parameter in our lay-
erium model is the spacing of the layers. In Fig. 2 we

0.8

FIG. 3. Imaginary part of the polarizability (arbitrary units)
vs co for different values of the parallel wave number. These
curves are all for q, d=m/16, where q, is the perpendicular
wave number. The model parameters are n, =0.0625 a.u. and
d =8.00 a.u. , for which the bulk plasma frequency is

co~ =0.3133 a.u.

present computed results for a layer spacing of 8.00 a.u.
and the same surface charge density shown in Fig. 1(a).
Here the low-lying energy band shows some dispersion,
and the second energy band extends to energies much less
than %co and has a very large dispersion.

The plasma excitation curves for q, &0 again have
finite intercepts for

q~~
=0. However, for small values of

q, the Landau damping due to particle-hole excitations
make it difficult to determine the location of the peak in
the imaginary part of the polarizability, Eq. (7). (The
imaginary part of co which we have introduced into our
calculations gives a width to the excitation response of
our model, and we have used the peak in the imaginary
part of the polarizability to characterize the dispersion of
the plasma excitations. ) The dotted curves in the upper
portion of Fig. 2 locate the peak associated with the
particle-hole spectrum.

In order to illustrate the difficulty in determining these
peaks and to display the behavior of the imaginary part
of the polarizability, we have plotted it versus co for a
number of values of q~~d when q, d =a'/16. In Fig. 3 we
see the low-lying plasmon peak increasing in magnitude
and merging with the particle-hole excitations as

q~~
in-

creases. It is the merging of these peaks which result in
the cutoff of our determination of the dispersion curves
for the plasma excitations (see Fig. 2).

Comparing the calculations presented here with earlier
calculations for layered electron systems, we see that for
low-density systems (n =n, /d ~0.01 a.u. ) in which only
one energy band is occupied, calculations using envelope
functions to treat the electrons provide an adequate
description of the electronic response. ' However, in
higher-density systems where additional energy bands axe
important, there are features which are not present in cal-
culations using the envelope treatment of the electrons.
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