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Electronic properties of anisotropic quantum dots in a magnetic field
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We have studied the electronic properties of anisotropic quantum dots in a magnetic field. The evolu-

tion of single-electron energy levels as a function of magnetic field and the corresponding chemical po-
tentials are investigated for various cases of anisotropy. We have also analyzed the e8'ect of interelectron
interaction on the isotropic as vrell as ariisotropic quantum dots by calculating the energy spectra and

the pair-correlation function of a two-electron system.

I. Ili.r.RODUtmrON

Artificial atoms' created in semiconductor hetero-
structures are mesoscopic systems whose electronic prop-
erties are very much of current interest. These few-
electron nanostructures have been probed recently by a
variety of techniques, viz. , optical spectroscopy on dot ar-
rays, capacitance spectroscopy on a single dot, and
magnetotransport measurements. The most unique
feature of these experiments is that they all provide infor-
tnation about the energy spectra (and other related quan-
tities) for which reliable theories can be formulated. '
One such case is the spin transitions studied in Refs. 2
and 9, and its possible detection as reported in Ref. 7.
Although most of the work on these systems is for circu-
lar dots, there have been some recent experimental stud-
ies on elliptical dots. ' Also, the confinement potential of
the dots studied by McEuen et al. was found to be an-
isotropic. In this paper, we have reported results for the
electron states of anisotropic quantum dots. We have
studied the evolution of the energy levels (single- as well
as two-electron systems) with increasing magnetic field
and anisotropy. The selection rules for the dipole transi-
tions are also calculated. We then calculate the chemical
potential based on a simple approximation. This quantity
has been measured recently in a single quantum dot.
Anisotropy in a quantum dot has been treated earlier as a
perturbation" to the isotropic parabolic quantum dot,
which is not expected to be correct for large anisotropy.
However, one can derive, as demonstrated below, analyti-
cal results for the single-electron system. Finally, we
have included a model interelectron interaction, which
results in a considerable simplification of the problem.
The numerical results are found to be qualitatively reli-
able when compared with the Coulomb interaction re-
sults.

The paper is organized as follows: In Sec. II, the
analytical results for a single electron in an anisotropic
quantum dot are derived. The method of calculating the
chemical potential is also discussed there. The analysis of
the two-electron system is presented in Sec. III. A sum-
mary of the work is available in Sec. IV.

II. SINGLE-ELECTRON SYSTEM

Let us consider a lone electron in a lateral anisotropic
parabolic confinement potential in the presence of a

where the confinement potential is

V„„t(x,y) =—,
' m, (to„x~+to2y2) . (2)

We choose the symmetric gauge vector potential
A= —,'8( —y, x,0) and make the following transforma-
tions:

X2
x =g)cos+ p2sln+,

X2
p =$2cos+ p (sin+,

X]
p„=p,cosy+ q2siny,

x
X]

p =p2cosy+ q&sing .
x

These are consistent with the commutation relations

[p, , q ]=—i%5; and [q, ,q ]=0 if y&y2=y . Then the
Hamiltonian

[p„+Q,x +p +Q2y +m, co, (yp„—xp )],1

2me

Q1,2™e(cox,y+ 4toc) ~

co, =e8/m, c,
is diagonal if

= —[—,'(Q, +Q )]'i

(4)

tan2y=m, co, [2(Q, +Qz)]'~ /(Q, —Q2) .

Defining

Q =[(Q Q) +2m co—(Q +Q )]'

the Hamiltonian is rewritten as

quantizing perpendicular magnetic field. The Hamiltoni-
an is

'2

ff= p
——A + V„„t(x,y),1 e

2m
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Jy=
2me

with

0 +30 +0
~2 p2 I

( 3Q2+ Q2+ Q2 )
2(Q +Q )

30 +0 —Q
~2 — p2 I (Q2+ 3Q2 Q2 )2 2(Q2+Q2) ' 2 4 I 2 3

The energy eigenvalues are then obtained as

E„„=(n„+,' )ficoI—+(n + ,' )ficoz—, (7)

N

E(N)= g 8;+ ,'N U, —

where coi=aiPI/m, and coz=azP2/I, . The energy (7)
has the following limiting behavior; at zero magnetic
field, the system behaves like a couple of harmonic oscil-
lators in the x and y directions. For a large magnetic
field (co, » co„,co„), we get E„=( n„+ ,' )fico„ —i.e.,

x

Landau levels form as in the case of isotropic
parabolic confinement. ' When co„=co,i.e., the confine-
ment is isotropic parabolic, n„=n +—,

'
~
I

~

—
—,
' I and

n~ =n+ —,
I

~l ~+ —,'I, where n and 1 are the principal and az-
imuthal quantum numbers, respectively. Also, when
co„=m, the energy levels are very similar to that of the
isotropic case except that the (2n +

~

l
~

+ 1 }-fold degenera-
cies at B =0 are lifted" as a result of breaking of the cir-
cular symmetry. A similar situation also arises when the
circular symmetry is broken by Coulomb coupling be-
tween two neighboring dots. '

The selection rules for the transition to higher energy
levels can be calculated from the dipole transition matrix
elements' and are as follows: polarization along the x
or y axis, (i) bn„=O, b, n~ =+1, (ii} hn„=+1, b,n~=O.
There are just two modes as in the case of isotropic para-
bolic confinement. ' The only major difference here is
that at B =0, the two modes split, hE =Pi(co„—co„). This
mode splitting has indeed been observed experimental-

10

Following the recent measurements ' of the electro-
chemical potential of a quantum dot, we have also calcu-
lated this quantity in the constant-interaction (CI) model.
In this model, one estimates the total energy in a simple
approximation, which is common in the studies of the
Coulomb blockade. ' In this approximation, the
Coulomb interaction is taken into account via the macro-
scopic electrostatic energy and the total energy is written

7, 11

what follows, we have presented the chemica1 potentia1
for various values of the anisotropy of the dot and the
electron number in the range %=1—30. In our ca1cula-
tions of p„we have included the Zeeman energy, with
the g factor to be 0 44 and the effective mass
m =0.067m„appropriate for GaAs. For the interac-
tion energy, we have used U =0.6 meV as in Ref. 7.

Figure 1(a) shows field dependence of the single-
electron energy levels for a quantum dot with ~ =1.0
meV and ~ =1.1 meV. For this choice of co„and co,
the deviation from the circular dot is minimal and there-
fore, as expected, the energy levels are very similar to
those of the circular dot' except at the origin where, as
discussed above, the degeneracies are lifted. Qualitatively
similar results were obtained by perturbation calcula-
tions. " As the number of level crossings remains un-
changed, the results for the chemical potential [Fig. 1(b)]
are not very different from those of the isotropic case.

The energies and chemical potentials for co„=1 meV
and ~~ =5.0 and 10.0 meV are plotted in Figs. 2 and 3,
respectively. It is clearly seen that, as co is increased, the
level crossings are shifted to higher energies and the os-
cillations in chemical potentials are suppressed at lower
energies. For example, when co =5, the oscillations are
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where 4,. (i = 1,2, 3, ... ) are the single-electron energy lev-

els, and U is the interelectron interaction. The chemical
potential is then

p,,(N) =E(N) E(N —1)=(N ,' —)U+E~, ——

where Ez is the energy of the Xth electron. We should
point out that the experiment by Ashoori et al. indicat-
ed that the CI model is a reasonable approximation to
calculate the chemical potential of the quantum dot. In

l0 I I I I I I I I I I I I I I I I I I I

0 1 2

FIG. 1. (a) Energy levels of an anisotropic quantum dot as a
function of the magnetic 6eld (fico, in meV) for co„=1.0 meV
and co~ =1.1 meV. The lines are dragon in ascending order of
(n„,n~), as indicated. (b) The chemical potential (in the CI ap-
proximation) for the energy levels of (a).
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8. Eftect of amisotropy

The deviation from the circular symmetry is described
by the potential

—1 ls(5co )2r 2+ 1 ~(5co )2R 2 (13)

where R is the CM coordinate, M=2m*, and p= —,'m'.
The CM motion may be exactly solved in Sec. II. As dis-
cussed above, the effect of anisotropy at low field is to re-
move the degeneracy in E at m, =0. A perturbation
correction to the energy is good for a weak anisotropy at
low co, and is also good for much larger 5co at higher
fields, since the first-order correction decreases as
(5co) /[coo+ —,'co, ]' with co, . The first-order shift in en-

I

x, but in the case of strong confinement and moderately
strong field, the present results are again a good approxi-
mation.

ergy is

E,",)'„i=[2n+ ~m(l)I+ I] 0 4

(2) ~ ~an'I'Ol ~

o,r—
n', 1'= 1,1+2 n'I' E01

(14)

where

Consequently, low-lying states are shifted less than the
higher ones. The effect of the anisotropy is similar to
that of the noninteracting case, and in this case increases
the field at which the ground-state angular momentum
changes.

It should be pointed out that the degeneracy at zero
fields, as discussed in Sec. II, is not removed in first order.
Therefore, we compute the second-order shift to the ener-
gy which lifts the degeneracy

a i,oi=E(l')

m(l)+m(l') m(l') —m(l)

l' — lr[n'+ m(l')+1]r[m(l)+1]I —1
2

fi 2 5co
(5co)

e
(15)

and

1, 1=1'
E(1')= . —,', l=l'+2

0 otherwise .

(16)

For higher fields, the second-order correction is negligi-
ble and the first-order energy shift is quite accurate.
Hence, the main effect of the higher-order corrections is
to split the degeneracy at co, =0. The shifting of the level
crossings to higher fields is also obtained in first order.

IV. SUMMARY

We have investigated the electronic energy levels of an
anisotropic quantum dot in a magnetic field. The single-
electron system has been solved analytically. We have
derived the selection rules for dipole transitions. We
have also studied the chemical potentials in these sys-

tems, which can be measured experimentally. The level
crossings are found to be shifted to higher energies and
the oscillations in chemical potentials are seen to be
suppressed at the low-lying energy levels. Our choice of a
model interaction potential simplified the two-electron
problem considerably. The results are found to be quali-
tatively reliable. We also analyze the anisotropic system
with interacting electrons via perturbation theory.
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