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A hydrodynamic description of the collective excitations of an inhomogeneous electronic system is
developed on the basis of the Thomas—Fermi-Dirac-von Weizsicker approximation to the equilibrium
ground state. This approximation allows one to define realistic equilibrium densities which are then
used to obtain a consistent description of the dynamical behavior. An application to a parabolically
confined electron gas is presented and the magnetoplasmon modes are obtained from a solution of the
linearized hydrodynamic equations. The wave-vector dispersion of the modes is determined, as well as
the detailed dependence on the orientation of the applied magnetic field. The power absorption in the
long-wavelength limit is also calculated to illustrate the center-of-mass mode excitations probed by

transmission experiments.

I. INTRODUCTION

A hydrodynamic description of electron dynamics in
matter goes back to the early work of Bloch! and has
since been applied to a wide range of problems.?”*
Within this approach, the many-electron system is
represented as a charged fluid whose dynamics is de-
scribed in terms of a density and velocity field. Its main
appeal is its relative simplicity. Although the approach is
usually introduced heuristically, with no presumption of
theoretical rigor, it can be viewed as an approximate ex-
tension® of density-functional theory® to the dynamic re-
gime. Considering the complexity of treating dynamics
with formal many-body techniques,”® it is clearly of con-
siderable interest to develop methods which are easier to
implement and, at the same time, trustworthy in their
qualitative predictions.

The application to homogeneous systems is straightfor-
ward and in the case of an electron gas yields the expect-
ed collective plasmon excitation. This mode is sustained
by electron-electron interactions which are accounted for
in terms of a self-consistent polarization field generated
by the density fluctuation. The internal properties of the
electron gas are also important in that they distinguish,
for example, between degenerate and nondegenerate sys-
tems. Some of this information can be included by means
of a stress tensor, usually approximated as an isotropic
pressure which, in the case of plasmons, leads to a wave-
vector dispersion of the plasmon frequency. Although
the collective aspects are well represented, the hydro-
dynamic approach has the one limitation of failing to
represent the internal degrees of freedom which manifest
themselves as single-particle excitations. However, this
limitation is not severe, and some of these effects can be
included by introducing a phenomenological damping or
relaxation rate which has the effect of giving the collec-
tive mode a finite lifetime.

Of more interest, however, are applications to inhomo-
geneous systems.*® Hydrodynamic theory has been used
extensively in the study of the electromagnetic response
of metal surfaces, both in the linear' 2 and nonlinear
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regimes.!>'* In the crudest approximation, the metal is
represented as a homogeneous material bounded by a sur-
face plane at which the properties of the metal change
discontinuously from the interior of the metal to the exte-
rior vacuum region. This approximation is reasonable
when the response of the material is represented by a lo-
cal, frequency-dependent dielectric function, but it leads
to difficulties when attempts are made to include the non-
locality of the response behavior via hydrodynamics.
Since the hydrodynamic equations are partial differential
equations, their solution depends on specifying a set of
boundary conditions at the surface of the metal. Apart
from the usual electromagnetic boundary conditions, ad-
ditional boundary conditions (ABC’s) are needed and are
usually specified by considering the flux of conserved
quantities (mass, momentum, and energy) at the surface.*
These ABC’s are not generally compatible, so that the
particular choice made is to some extent arbitrary. The
fact that physical predictions are sensitive to the bound-
ary conditions!? has led to justified concerns about the
usefulness of the hydrodynamic model in providing a
realistic description of surface dynamics.

Attempts to improve upon the results by using more
realistic equilibrium surface densities, in particular densi-
ties which vary continuously from the interior of the met-
al into the vacuum region, have also met with limited suc-
cess.!2 For example, continuous surface densities lead to
a proliferation of surface multipole modes which do not
bear an obvious correspondence to experimental observa-
tion. Similar unphysical behavior is found in studies of
collective modes in modulated two-dimensional electron
gases.15 In the limit of strong modulation, the two-
dimensional gas segregates into an array of one-
dimensional wires which are separated by regions of
near-zero density. It is found'® that the plasmon modes
in this limit are associated with density fluctuations
which appear to be localized in the low-density regions,
reminiscent of the spurious surface multipole modes at a
metallic surface. The more sophisticated calculations
based on the random-phase approximation (RPA) do not
support this kind of behavior.'® One is left with the im-
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pression that the application of hydrodynamic theory to
inhomogeneous systems is at best subject to considerable
uncertainty.

In this paper we wish to demonstrate that the hydro-
dynamic theory for inhomogeneous systems can be sal-
vaged when suitably generalized to properly account for
mechanical equilibrium. Failure to do so introduces
spurious forces which corrupt the dynamical analysis.
The important point is that an inhomogeneous system is
the ground state of a collection of electrons in some
external confining potential, and in principle must be
determined by a quantum-mechanical electronic struc-
ture calculation. Density-functional theory at the level of
the local-density approximation is the most commonly
used method for establishing these properties. However
if Kohn-Sham theory,!” a wave mechanical approach, is
adopted, response calculations must be performed at the
level of time-dependent density-functional theory'®!’
which necessitates the calculation of electronic response
functions.?%!%2! It is precisely this aspect that a hydro-
dynamic approach attempts to avoid. This objective can
be realized by using an energy functional, such as
Thomas?®?—Fermi®>—von Weizsacker?* (TFW), which is
exclusively a functional of the density.?> Although less
accurate than the full quantum-mechanical calculation,
this approximation has the virtue of incorporating the
effects of the quantum-mechanical kinetic energy, and
leads to ground-state densities which are smooth and
continuous. This latter property is especially advanta-
geous since it allows one to dispense with ABC’s.

As an application of our generalized hydrodynamic
theory, we investigate the collective modes in a paraboli-
cally confined electron gas. This situation is very similar
to that of a thin metallic film in which the electrons are
confined by a slab of positive charge. However, in the
parabolically confined system, achieved experimentally in
semiconductor heterostructures,’®?’ the external poten-
tial is purely parabolic for all positions in the confining
direction. Recently, this system has been investigated in
considerable detail by Dempsey and Halperin?® (hereafter
referred to as DH) using a hydrodynamic theory based on
a modified form of the Thomas-Fermi (TF) approxima-
tion. Instead of using the true nonlinear TF pressure,
they introduce a linearized approximation whereby the
pressure is of the form p «<(n —n_.). The parameter n,
dictates the form of the equilibrium density profile, and
for the most part they choose a value which leads to a
constant density slab. Although other values of n, admit
physically more realistic charge distributions, DH cau-
tion that the associated collective excitations need not be
more reliable. Here we show that when TF is extended to
include the von Weizsidcker correction to the kinetic en-
ergy, realistic equilibrium densities can be generated, and
that the oscillations about equilibrium are not subject to
the pathologies previously encountered when continuous
densities were used either with!? or without!> the TF
pressure.

An outline of our paper follows. In Sec. II we describe
the equilibrium properties as provided by the TFW ap-
proximation with the additional inclusion of a local ex-
change energy [Thomas-Fermi-Dirac—von Weizsacker
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(TFDW)]. The hydrodynamic equations wused to
represent the dynamics of the electron fluid are intro-
duced, and the internal forces arising from the TFDW
approximation are defined. As an application, in Sec. III
we consider a parabolically confined electron gas. A
solution of the linearized problem is developed which
makes use of a particularly convenient basis of functions
defined by the TFDW equilibrium state. The magneto-
plasmon waves in this geometry are studied for various
orientations of an externally applied magnetic field, and
as a function of the propagation wave vector. We also
show that the frequency of the center-of-mass mode com-
plies with the generalization of Kohn’s theorem.? In Sec.
IV we derive expressions for the power absorption, which
is typically measured in infrared transmission experi-
ments and show, in the case of parabolic confinement,
that only the center-of-mass modes are excited. Finally,
in Sec. V we present our concluding remarks.

II. EQUILIBRIUM AND HYDRODYNAMIC
EQUATIONS

We define the equilibrium electronic properties in
terms of the following energy functional:

2
E[n]=[dr|C;n¥n)+C, V:(‘r‘)’] —C,n(r)*

, n(r)n(r)
+1 [dr [dr %,‘I—+ [dro(on(r), )

where n(r) is the electronic density. The first two terms
are the Thomas-Fermi and von Weizsacker kinetic-
energy functionals, respectively, with coefficients

C, =201, c2=%“’ : @)
where we use atomic units (e2/e=m*=#=1)
throughout. The parameter A, has the value 1 in the
original von Weizsicker formulation,?* but a value closer
to 0.25 provides a better representation of a Kohn-Sham
calculation.’® 32 The third term is the Dirac (or local)
exchange energy®?® with coefficient
1/3

) (3)

the fourth term is the classical electrostatic self-energy,
and the final term is the interaction of the electrons with
whatever external potential is present. This energy func-
tional could be augmented with an additional correlation
energy,’? but this plays a relatively minor role and we
have chosen to neglect it for simplicity.

The ground-state properties are obtained by finding the
variational minimum of Eq. (1) subject to the constraint
that the total number of electrons is fixed. Introducing
the Lagrange parameter u, the equilibrium density is
determined by the Euler equation

BEln] = @
sn(r) " 0,

which leads to
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2

Vn(r) +§C1n2/3(r)

n(r)

2

—4C,n A0 + ¢(1) Fv (D) —p=0. (5

Here, ¢(r) is the electrostatic potential arising from the
electronic density n(r) and is the solution of Poisson’s
equation:

V24(r)=—4mn(r) . (6)

The Lagrange multiplier p is the chemical potential of
the many-electron system, and is chosen to ensure that
the total number of electrons is some specified value N.

It is convenient to introduce a wave function according
to the definition n(r)=4*(r). In terms of this variable,
the Euler equation takes the form of a Schrédinger-like
equation

Ay
—Tvz¢(r)+veﬁ(r)¢(r)=y¢(r) , @)

where the effective potential is defined by

Veg(1)=3C 1 9*3(r) = 4C, 2 (r) + $(1) vy (1) . (8)

It should be noted that in contrast to the usual Kohn-
Sham (KS) effective potential, the potential defined here
has an additional kinetic-energy contribution coming
from the TF term. The parameter A, ! plays the role of a
mass, which is not to be confused with the actual effective
mass m* of the electrons. The smaller the value of A,
the heavier is the quantum particle and the closer is the
solution to the semiclassical Thomas-Fermi-Dirac (TFD)
result. Equation (7) is a nonlinear equation in the wave
function which must be solved self-consistently. In doing
s0, we must impose the normalization

[dry¥n)=N . )

The required solution to Eq. (7) is of course the ground-
state wave function, and the ground-state energy is then
the chemical potential.

The equilibrium condition given by the Euler equation
can also be interpreted as the balance of all classical
forces acting on each fluid element, namely,

S8E[n]

For) ==V | )

(10)

o

This observation leads naturally to the definition of the
force in dynamic situations as

Ay V2(r,2)
Ueﬂ'(l',t) 2 ‘l,[l(l',t)

where the time-dependent wave function is again defined
by n(r,t)=yXr,t). v includes the internal TF pressure
and Coulomb-derived potentials, while the last term con-
tributes what can be called the von Weizsicker force.

The dynamics of (r,?) of course is not prescribed by a
time-dependent Schrédinger equation, but is assumed to
be determined by a set of hydrodynamic equations
governing the evolution of the density. These we take to
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be the continuity equation
M v (nv)=0 (12)
ot
and the momentum equation
m*n §1+v-Vv =nF—enYXB , (13)
ot c

where F includes the internal forces from Eq. (11) togeth-
er with any additional externally imposed forces. We
also include separately a magnetic force which is due to a
uniform external magnetic field. The equilibrium situa-
tion has v=0, and Eq. (13) reduces to Eq. (10). Assuming
small deviations from equilibrium, we linearize the equa-
tions to obtain

adn
—+V- =0 14
3 +V-(ngv) (14)
and
dav v
m*nog=n08F—en0? XB, (15)

where the fluctuating force is given by

A Ay Vi,
8F=—V |8vg— = VP +—
eff 2¢0 2 IIJ%
Here, 1, is the ground-state wave function and v g is the
variation of Eq. (8). The density fluctuation is related to
81 by 6n =24),69.
We seek harmonic solutions of the form vxe™

Equation (15) can then be solved easily for v regardless of
the explicit form of 8F. We find

—io(0?—w?)m*v=0*F+iwd, X SF—&,(&,-8F) ,

(17)

oy | . (16)

iot

where we have introduced the cyclotron frequency vector
&,=eB/m*c. If 8F simply corresponded to a local elec-
tric field, Eq. (17) would define a local, frequency-
dependent conductivity tensor. A local relationship be-
tween the current and the driving forces is a general
feature of the hydrodynamic description, whereas the
nonlocality enters through the connection between the
forces and the density fluctuation.

Equations (14)-(16) are generally applicable, but to
proceed with the solution of the dynamics, we must first
specify the nature of the physical system.

III. PARABOLIC WELLS

We specialize to the case in which the electronic sys-
tem is translationally invariant in the x and y directions,
and confined by a harmonic potential V(z)= %kz2 in the z
direction. Because of its relative simplicity, this particu-
lar geometry is ideally suited to illustrating the general
approach. In addition, a comparison can be made with
results that have already appeared?® using cruder approx-
imations.

Before discussing the ground-state solution of Eq. (7),
we first note that the purely classical approximation in
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which only electrostatic interactions are included
(C,=C,=C,=0) corresponds to a bounded, constant
density slab of electrons. This density profile is also ob-
tained in the modified Thomas-Fermi (MTF) approxima-
tion of DH. The three-dimensional electron density 7y,
is determined by the potential curvature according to the
condition w; =k /m*, where w, is the three-dimensional
plasma frequency w,=(4mn;pe’/m*e)!’2. We have in
mind an application to parabolic wells in GaAs for which
m*=0.067m, and the background dielectric constant is
€=13.0. For this situation the effective Bohr radius is
aj =103 A, and the effective Rydberg of energy is
Ry*=e?/2ea$ =5.4 meV. The width W of the uniform
slab is determined by W =n,, /n;p, where n,p is the 2D
areal density.

The discontinuous density profile of the classical or
MTF approximations is eliminated when the fully non-
linear TF or TFD approximations are used. The equilib-
rium density then goes to zero at a definite finite distance
from the center of the slab.>*> When the von Weizsicker
kinetic energy is included, the density is further modified
and now exhibits an asymptotic decay to zero which is
governed by both the TF screening length and the A, pa-
rameter. In our calculations, except when specified oth-
erwise, we use A, =0.25, which was previously found to
give a reasonable description of jellium surface densities
and other physical properties.’?> The solution of Eq. (7)
can be obtained straightforwardly by iteration, and equi-
librium density profiles are shown in Fig. 1 for a few typi-
cal cases. In Fig. 2(a) we also show the effect of changing
A, from 0.25 to 1.0; as expected, the decay length of the
density at the edge of the slab increases with increasing
A,. Similarly, in Fig. 2(b) we show the effect of eliminat-
ing the exchange interaction with A, =0.25. The density
exhibits a more pronounced overshoot when exchange is
included, indicating the importance of the Dirac ex-
change energy. Comparison with KS calculations**
shows that the TFDW densities are qualitatively similar
although they are somewhat smoother and exhibit less os-
cillatory structure. This difference is partly due to the
fact that the KS densities are composed of a superposi-
tion of several subband states which have an increasing
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FIG. 1. Equilibrium density profiles for a parabolic potential
with w,=0.5 Ry*. The curves with increasing width corre-
spond to n,5=0.05, 0.1, and 0.15(a§ ) 2, respectively.
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FIG. 2. (a) Equilibrium profiles for n,p=0.1(ag)~? with
A, =0.25 (solid line) and A, =1.0 (dashed line). (b) As in (a),

but for A, =0.25 with (solid line) and without (dashed line) ex-
change.

-20

number of nodes with increasing energy. The TFDW
wave function, on the other hand, is nodeless. Further-
more, in order to acquire the flat-topped behavior for the
wider wells, the ground-state eigenvalue must lie very
close to the bottom of the self-consistent potential. An
example of this is shown in Fig. 3.

We now obtain wavelike solutions to Egs. (14)—(17) for
the geometry illustrated in Fig. 4. The propagation vec-
tor q is taken to be in the x direction, while the applied
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FIG. 3. Self-consistent potential for n,5=0.1(ag)”* and
A,=0.25, including exchange (solid line). Also shown as
dashed lines are the lowest three TFDW wave functions [see Eq.
(23)]. The horizontal lines denote the corresponding eigenval-
ues with the ground-state eigenvalue set to zero.
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FIG. 4. Geometry and coordinate system for the parabolic
well with confinement in the z direction. The wave vector q is
chosen to lie along the x axis, and the magnetic-field orientation
is specified by the angles 6 and ¢.

magnetic field has an arbitrary orientation. All fluctuat-
ing variables are assumed proportional to e (% ~%") with
amplitudes that are functions of z. For example, the fluc-
tuating part of the wave function is

SY=u(z)eil®x~ot) (18)

In this situation, the continuity equation takes the form
, . d _
—iwdn +m0q-v+E(novz)—0 , (19)

where, from now on, we display only the z-dependent am-
plitudes, and the fluctuating force is

F——zqf——f’z‘, (20)
with
=8+ (R + 11, q°
[=8v I/}0( sAwqu . 21)
Here, we have defined the Hamiltonian operator
Ay d?
ﬁ:—Tw:i—z'*‘Ueﬂ- M, (22)

which defines the ground-state wave function. This is a
Hermitian operator with orthonormal eigenfunctions
defined by

ho,=pe; . 3)

The lowest-energy eigenfunction is proportional to
and, by construction, has a zero eigenvalue. As we shall
see, this basis is ideally suited to obtaining a solution of
the hydrodynamic equations. A few of the excited states
are illustrated in Fig. 3.

Substituting Eq. (17) for the velocity into the continui-
ty equation, and using the form of 8F in Eq. (20), we find
thz:t the density fluctuation satisfies the equation (with
m*=1)

X w?—w?)én

=[0’q®—(&,-q)?Inof +iany—— df +ia* —(nof)
(o?—2 )4 |, af
(@ m“)dz {no iz (24)
where
alq,0)=a,(q,0)+ia,(q,»)
=0,(qd,)—i0Z-(qXa,) . (25)

The expression for f in Eq. (21) shows that Eq. (24) con-
tains derivatives of the density up to fourth order. In ad-
dition, 8v.¢ includes the induced electric potential so that
Eq. (24) is actually an integrodifferential equation for &n.
By making use of Poisson’s equation, the density fluctua-
tion can be eliminated in favor of the potential fluctua-
tions, but at the cost of generating a sixth-order
differential equation. This equation is exceedingly com-
plex, with coefficients which are involved functions of
no(z) and its derivatives. A direct numerical solution is
therefore prohibitive.

Fortunately, a fairly simple and straightforward pro-
cedure is available whereby one solves for the fluctuating
part of the wave function u, related to &n by én =2¢u.
This function is expanded in the form

u=3 @, 26)

where @, are the basis functions in Eq. (23). Substituting
this expression in Eq. (24), dividing by 24, and project-
ing out the ith component using the orthonormality of
the basis functions, we obtain

1 _, 2
a)z(wz—mf)c,-=5 wzqz—(wt'q)2+—:—'(w2—w§z) I

In arriving at this result we have integrated by parts all

terms involving a derivative of f in order to generate the
three integrals

L= [dzgof , 28)
de;
L=[d— s, 29)
and
d
fdz Qi— % (30)

Equation (27) is ﬁnally reduced to a matrix problem by
substituting the expression for f into these integrals, and
again using the expansion of u. For example,

= fdz P =23 [Mij(q)"'(ﬂi'*'%)\qu)aij Ie;
J
= Eﬂij(q)cj . (31
J

The M;; matrix has three contributions: (i) the TF kinet-
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ic term Equation (27) can then be expressed as
ME=2c, [dz o989, , (32)  wHe?—?)I M 'S,
J
(ii) the exchange term 2u;
=1 0*q*—(@3,-q)*+ —ﬁ—(wz—wé) fi
Y=—31c, [dz py3" (33) j -
M;=—3C, | dz ;" ; ,
o e —io 3 Ayfjta 38,1 40
j j
and (iii) the Hartree or Coulomb term
41 , where
M,g’(q>=7fdzfdz @iz )(2)
Xe 9277 g (2" )2’ (34) fdz—¢1 @1)
The first two terms are g independent, in contrast to the
Hartree term which is proportional to a form factor typi- and
cal of screening problems in two-dimensional electron
lm/;o
gases. f dz ¢, ¢ . (42)

The other two integrals can be evaluated similarly and
lead to analogous matrices which, however, have a less
symmetrical form. We will not display these here explic-
itly but simply write

I,= 3 N;(q)c, (35)
J
and
I;=3 0,(q)c; (36)
J
Equation (27) can now be written as
22 oy L a0 a5,
o (0" —o)c;== |09 —(d,q) + — (0 —oZ,)
2 Ay
—1a12 )e; +a220,1 q); . (37

This equation determines the eigenfrequencies and corre-
sponding eigenvectors of the collective modes for the
most general situation we shall address. Before doing so,
however, it is useful to reexpress Eq. (37) in an alternate
form which facilitates a general discussion of the mode
eigenvalue problem.

Rather than focusing on the density fluctuation &n, or
equivalently 8y, we consider the potential fluctuations
¥of. This function has the expansion

Yof = 2fi¢i ) (38)
and from Eq. (31) we see that
fi= E iCj - (39)
J
S’E

E[n]=E[ny)+ [drpudn()+1 [dr [dr

dn(r)én(r') |n

A;; is an antisymmetric matrix (4 T=—4), while S;; i i
symmetric (ST=S). As a result, the right-hand side of

Eq. (40) defines a Hermitian matrix:

H;=— |0’¢*— (&,

—ia 4;+a,S; (43)

We also note that M is a real symmetric matrix, as is its
inverse, M 1

We now establish that Eq. (40) admits solutions with
real eigenmode frequencies. To prove this important re-
sult, we first consider the generalized eigenvalue problem

Hy=AM"'v . (44)

The matrix H and the eigenvalue A are implicitly func-
tions of the frequency, which we take to be a real parame-
ter. If 7™ and 7™ are eigenvectors of Eq. (44) with ei-

genvalues A, and A,, respectively, then we can readily
show using the Hermitian property of H and M ~ ! that

(7\'* )\. )Ev(n)tM~l (m) =0 .

ij

(45)

Setting n =m in this equatlon, we see that the eigenvalue
A,, is real if the sum 3,,v{™*M,; 'v/™ is nonzero.

We next establish an 1mportant property of the matrix
M. This matrix is in fact closely related to the energy
functional in Eq. (1). Let us consider a trial density
n(r)=ny(r)+8n(r), where ny(r) is the equilibrium solu-
tion of Eq. (4). Substituting this trial density into Eq. (1)
and expanding in 8n(r) leads to

Sn(r)dn(r')+ (46)
0
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The term linear in &n(r) vanishes for a number-
conserving fluctuation. Expanding the density fluctua-
tion as

dn(r)=23 3 c;(qle'MPyy(z)¢,(z) 47)
q i
and substituting the result into Eq. (46), we find
E[n]=E[ng]+ A3 3 c*(q@M;(q)c;(q)+ -+, (48)
q i

where M is the matrix defined in Eq. 31), and 4 is the
area of the slab. In this context, it is apparent that M is
just the inverse of the static density response function of
the electronic system. Since E[n] achieves an absolute
minimum at n =ng, the sum in Eq. (48) must be positive
for an arbitrary fluctuation. Thus the matrix M is posi-
tive definite and has positive eigenvalues only. This
proves that the sum in Eq. (45) with n =m is nonzero,
and that the eigenvalues A,, are indeed real. Finally, for
distinct eigenvalues, the eigenvectors of Eq. (44) satisfy
the orthogonality relation

S oMM oi™=0. (49)
ij

Returning to Eq. (40), we expand f as zna,,t_)’("’ and
make use of the orthogonality relation Eq. (49). We then
find that the mode eigenfrequencies satisfy the equation

o ?—w?)=A, (o) . (50)

The real solutions of Eq. (50), corresponding to real
values of A, (), are the admissible mode frequencies.

We now establish the dependence of the mode frequen-
cies on the direction of the magnetic field relative to the
propagation wave vector. Since the states ¢; of the para-
bolic well have well-defined parity, the matrix M has
finite elements between states with the same parity, while
the matrices S and 4 have finite elements between states
of opposite parity. Grouping the states according to
their parity, Eq. (44) can be displayed with the block
structure

Dl azs_ialA Ul
a2S+la1A D2 32
Moo | (7
=}L 0 M{l _,2 N (51)

where U, denotes the even-parity components and v, the
odd-parity components. The diagonal matrices D, and
D, are invariant under the reversal of any magnetic-field
component (note that q=gX), whereas either
A=W 0,9 OF Q)= —ww,,q Will change sign. Taking
the complex conjugate of Eq. (51) is equivalent to the re-
placement o, — — @, Or ®,— —®. in the matrix on
the right-hand side of Eq. (51). Since A is real, we see
that the modes for these reversed field components have
the same frequency as for the original field orientation,
but the corresponding eigenvectors are complex conju-
gated. On the other hand, Eq. (51) can also be displayed
as

_a2S+la1A D2

(52)

Thus the eigenvalue at —w,, is the same as at w,,, while
the two eigenvectors are related by the operation shown
in Eq. (52). These conclusions depend crucially on the as-
sumed symmetry of the equilibrium state. If the system
is not invariant with respect to a reflection in the x-y
plane, the modes will not possess the symmetries with
respect to the direction of the magnetic field derived here.

Having established these general properties, we now
consider various special cases of the magnetic-field and
wave-vector dependences.

A. B=0,q=0
In this case we have a =0, and Eq. (37) reduces to

) .
Ayo'e= 3 iMye;
i

(53)
with M;;=M;(0). Since u,=0, we see that the eigenvec-
tor with ¢, 50 is associated with the mode ®=0. All oth-
er modes with nonzero frequencies have a vanishing
ground-state wave-function amplitude. The significance
of the =0 mode is revealed when we do the finite-g
analysis which shows that it corresponds to the ¢ =0 2D
plasmon. The remaining modes in the ¢ =0 limit can be
obtained by deleting the first row and first column of the
matrix in Eq. (53), and considering only the coupling be-
tween terms with i0. The ¢—0 limit of Eq. (34) can
then be taken with the result (i, j70)

Mlqg—0)=—4r [dz [ dz'p,(2)9z)lz—2']
X @, (2" Wolz') . (54)

This integral is most easily evaluated by solving Poisson’s
equation to obtain the electric potential for the charge
density 24(z)@;(z) and then calculating the interaction
with the charge density ¥4(z)@;(z). The remaining con-
tributions Mé( and M,f are readily obtained by quadra-
ture and the eigenvalue problem is then solved using stan-
dard techniques.’’” We note that the structure of the
coefficient matrix in Eq. (53) is D(M + D), where D is the
diagonal matrix of energy eigenvalues, ;. This matrix is
not symmetric; however, applying the transformation
D72 to the vector ¢ leads to a coefficient matrix
D'?MD'?+D? which is symmetric and positive
definite. As a result, its eigenvalues are positive and the
mode eigenfrequencies are necessarily real.

Since the modes of the parabolic well for B=0 have a
well-defined parity, we can restrict the expansion of u to
either even- or odd-parity states. The lowest odd-parity
mode corresponds to the rigid oscillation of the equilibri-
um charge density about the center of the well. This can
be demonstrated by returning to Eq. (24) with q=0 and
o, =0, namely,
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aZ
= (nodF,) (55)

where OF, is the change in the force acting on the fluid as
a result of the density fluctuation. For a rigid displace-
ment of the charge density, n(z,t)=ny[z—n(¢)] and
dn(z,t)=—ny(z)n(z). Also,

8F,(z,t)=F,(nolz—n(t)])=F™(ny[z—n(t)])—kz
=—knl(t),

where we have used the fact that Fi"[n,(z)]—kz=0 in
equilibrium. Here, F;f‘“ is the internal force exclusive of
the force arising from the external confining potential.
Equation (55) thus reduces to

bdi
dt?

which _shows that the mode has the frequency
wo=V'k/m* of the bare harmonic potential. This rigid
oscillation of the center of mass is a general feature of
parabolic confinement and shows that the generalized
Kohn’s theorem?’ is satisfied by the TFDW hydrodynam-
ics. It is important to realize, however, that this result
only follows if the dynamics is consistent with the true
equilibrium charge density of the system. Choosing an
arbitrary density profile ny(z) will not generate the
correct dynamical behavior regardless of how “reason-
able” the density appears to be. On the other hand, the
results need not be unphysical since one can always view
the chosen ny(z) as corresponding to some different
external potential. Thus in more complicated situations,
the strategy of calculating the dynamics for a guessed
equilibrium density might well be useful.

The above result for the center-of-mass mode can also
be demonstrated directly using Eq. (53). By truncating
the expansion of u at v terms, Eq. (53) generates v dis-
tinct eigenvalues. The accuracy of the eigenvalues and
the corresponding eigenvectors will increase with increas-
ing v. For example, we find that the center-of-mass mode
frequency rapidly converges to the correct value w,. We
can also demonstrate this convergence by plotting the
amplitude of the center-of-mass mode for the sequence
v=3, 5, and 7 in Fig. 5; on the scale of Fig. 5, the ampli-
tude with 11 terms in the expansion is virtually indistin-
guishable from ny(z). Since the amplitude of the density
fluctuation is localized near the edges of the slab, more
terms are required in the expansion as the width of the
slab increases. In the MTF limit, the equilibrium density
is constant between z=— W /2 and W /2, and zero other-
wise. The corresponding center-of-mass density fluctua-
tion therefore consists of & functions at the edges of the
slab. Our result in TFDW is qualitatively similar, but the
8 functions are broadened into a smooth and continuous
distribution. This behavior is of course physically more
realistic, and demonstrates that TFDW is a useful ap-
proximation to the true quantum-mechanical response.

m k (56)

In Fig. 6 we illustrate a few of the higher modes which

are all converged with respect to the number of basis
functions. These modes are again qualitatively similar to
the results of DH in the MTF limit. They consist of sur-
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FIG. 5. Illustration of the convergence of the center-of-mass
mode density at =0, with the number of basis functions used
in the expansion. The dash-dotted line is for v=3, the dashed
line is for v=35, and the solid line is for v=7. In this and subse-
quent figures, the well parameters are those of Fig. 3.

face charge fluctuations together with charge fluctuations
in the interior of the slab corresponding to bulk-plasmon
standing waves. Due to the numerical nature of the equi-
librium calculations, we cannot give analytic expressions
for the mode frequencies, ,,.

B. B#0,q=0

In this case, Eq. (37) reduces to the simple form

X ®—w?) _ _
w—a—)—z_——wg—ci— ?/J'iMijcj . (57)

Since the M,-j matrix does not mix states with different

parity, the modes again have well-defined even or odd
parity. Furthermore, all the effects of the magnetic field
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FIG. 6. Normalized density fluctuations for higher-lying
modes at q=0. (a) The first excited even-parity mode, (b) first
excited odd-parity mode, and (c) second excited even-parity
mode.

—-20
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are included in the frequency-dependent factor on the
left-hand side of Eq. (57). Since Eq. (57) has the same
form as Eq. (53), this factor is equal to one of the eigen-
values wf, of the zero-field case. As a result, the mode
frequencies at finite field are given by

0 (B)=Ho?+02) iV (02 + 0l P —d0} ol . (58)

This expression has exactly the same form as found previ-
ously in the MTF approximation and differs only in the
values of the zero-field eigenvalues w? which appear.
Later in Figs. 9 and 10 we show the g dependence of the
modes for various magnetic fields. The limiting frequen-
cies for ¢ —0 are given in all cases by Eq. (58), as shown
in Fig. 10(g).

Each of the two w,.(B) modes has the same eigenvec-
tor and therefore the same density fluctuation. However
the two modes are distinguished by the associated veloci-
ty field. From Egs. (17) and (20), we find the ratios

v iw
Ux wCZ
and
2 __ 2
_Uz_ = 9_“_0)__ (60)
Uy Dex Oz

Here we assume that B lies in the x-z plane and makes an
angle 6 with respect to the z axis. Substituting the mode
frequencies w, . into these expressions determines the rel-
ative amplitudes of the velocity components. For exam-
ple, for 6—0, v, /v, tends to zero for both the n + modes
with w, <., and for the n — modes with o, >®,. This
set of modes has the limiting frequency w,. and therefore
corresponds to cyclotron motion in the x-y plane. The z
dependence of the velocity components in this limit is ar-
bitrary. The remaining modes have the limiting frequen-
cies o, as 8—0, and only have a finite z component of
the velocity field. These modes are just the normal oscil-
lations considered in Sec. IIT A, and are not affected by
the magnetic field since the motion of the electrons
occurs along the field direction.

In the opposite limit of 6—m/2, the n — mode fre-
quencies tend to zero while the n + mode frequencies
tend to V w?+w?. For the n — modes only the x com-
ponent of the velocity field is finite; that is, along the field
direction in the plane of the slab. The mode frequencies
are zero since there is no restoring force in the x direc-
tion, and the motion is a pure translation. The n+
modes, on the other hand, correspond to motion in the
y-z plane and are bulk magnetoplasmon standing waves.
Interestingly, these waves have the same z-dependent
density fluctuations as in the B—0 limit, in spite of the
fact that the magnetic field gives rise to a cyclotron type
of motion. These results are analogous to those found in
the MTF limit.

C. B=0, g#0
In this case, Eq. (37) reduces to the form
A 0= z.u‘i(q)ﬂij(q)cj s (61)
j
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FIG. 7. Comparison of the q=0 density fluctuations of the
2D plasmon (solid) and center-of-mass mode (dash). The two
mode densities cannot be distinguished on the right-hand side of
the figure.

where p;(g)=p;+1L,q% This equation is also of the
same form as Eq. (53), and the same procedure is used to
obtain the mode frequencies. To see the behavior in the
g —0 limit, we note that

wol@)Mo(g)=2mA n,nq +0(g?), (62)

while 114(q)M;(q) is of order g% As a result, the i=0
equation in Eq. (61) reduces, to lowest order in g, to

}\.w(L)ZC0=27T}\wn2Dqu+O(q2) ) (63)

which shows that the frequency of the lowest mode is just
the 2D plasmon

0ip=2mn,nq . (64)

Restoring the physical parameters, wip=2men,nq/
m*e.

Even though the frequency as given by Eq. (63) in the
long-wavelength limit is independent of the coefficients
with i50, the density fluctuation is still an admixture of

2.0 —/_—%
{ 1.0 .:__—_/
3
0.5 -
0.0 —+r—r—r——T—T—
0.0 0.5 1.0
q/kr

FIG. 8. The dispersion of the mode frequencies with wave
vector g at B=0. The lowest mode is the 2D plasmon which
merges with the center-of-mass mode at higher wave vectors as
these two modes evolve, respectively, into the symmetric and
antisymmetric surface plasmons of the slab.
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several even-parity states. To determine the mode eigen-
vector in the ¢ —0 limit, we set ®=0 and solve Eq. (61)
with ¢, assigned an arbitrary value. The resulting density
fluctuation is plotted in Fig. 7 together with the density
fluctuation for the n =1 mode. The figure shows that the
n =0 density fluctuation is proportional to ny(z) at each
edge of the slab. In other words, the » =0 mode consti-
tutes a local expansion or contraction of the slab width
which is periodically modulated in the direction of the
propagation wave vector, corresponding to the flow of
electrons parallel to the plane of the slab.

Figure 8 shows the dispersion of the modes up to a
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maximum value of the wave vector equal to the 3D Fermi
wave vector. The 2D plasmon has a ¢'/? dispersion and
at higher wave vectors, merges with the n =1 center-of-
mass mode. By this point, the » =0 and 1 modes have
become the symmetric and antisymmetric surface-
plasmon modes of the slab and are degenerate since the
density fluctuations on opposite sides of the slab are
essentially uncoupled. Unlike the MTF limit in_which
the modes asymptotically approach w;p/V'2, the
surface-plasmon modes have a positive g dispersion for
which the von Weizsacker correction is mainly responsi-
ble. However, the form of Eq. (61) does not permit a sim-
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S o T ey S 1o :/ 1o
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FIG. 9. Wave-vector dependence of the magnetoplasmon modes for o, /w,=0.5 for various orientations of the magnetic field. (a)
6=90", $=90% (b) 6=90°, $=45°; (c) 6=90°, $=0"; (d) 6=45°, $=90"; (e) 0=45°, $=45"; (f) 6=45°, $=0"; and (g) 6=0".
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ple attribution of the wave-vector dispersion to one par-
ticular source, and in the case of the higher modes, both
the TF pressure and the von Weizsidcker correction are
having an important effect.

D. B#0, g0

Finally we return to the general dependence of the
modes on q and B as determined by the solution of Eq.
(37). Qualitatively, our results are very similar to those
obtained by DH,?® who give a thorough discussion of the
magnetoplasmon excitations in parabolic wells. Here we
will elaborate only on some of the features which differ
from their results. In Figs. 9(a)-9(g) and 10(a)-10(g) we
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show the mode dispersions for a sampling of magnetic-
field directions and magnitudes. The parameters used in
these figures were chosen to correspond closely to those
of DH in order to facilitate a direct comparison.

One of the main differences between the two sets of cal-
culations concerns the dispersion of the n =0 and 1 sur-
face modes, which are generally distinguished in Figs. 9
and 10 by their separation from the bulk bands. For
o, <, the surface modes appear between the upper and
lower bulk bands which emanate from the frequencies
defined by Eq. (58), while for o, > w, there is a more com-
plicated overlap and mixing of the surface and bulk
modes. In the MTF approximation, the surface modes
are somewhat easier to identify since their frequencies ap-
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FIG. 10. Asin Fig. 9, but for o, /w,=1.5.
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proach a constant value for large wave vectors. In
TFDW, however, the modes exhibit a positive dispersion
and approach the bulk modes at large wave vectors, as
previously seen in the B=0 case. An unambiguous
identification of the modes of course requires an examina-
tion of the mode density fluctuations which we will
display for a few cases.

As seen in Figs. 9(c), 9(f), and 9(g), the two surface
modes merge at large wave vectors when there is no in-
plane component of the magnetic field which is perpen-
dicular to the wave vector g. For these orientations the
quantity a, defined in Eq. (25) is zero. As soon as a, ac-
quires a finite value as in Figs. 9(a), 9(b), 9(d), and 9(e),
the two surface modes remain separated at large wave
vectors. In Fig. 11 we examine the character of the two
surface modes for the particular case of Fig. 9(a) at a few
values of gq. The density fluctuation for these modes is
asymmetric with respect to the midpoint of the slab, as
are all the modes when @0. The lower surface mode is
seen to be localized at the lower edge of the slab (see Fig.
4) for all values of the wave vector between 0.1k, and k
with a width that increases with increasing q. For small
g, the upper surface mode takes on the character of the
center-of-mass mode, as discussed in Sec. IIIB and
shown in Fig. 11(a). However, for larger g, the density
fluctuation is localized at the upper edge of the slab and
becomes broader with increasing g.

At first sight these surface modes might seem unusual
but they have a straightforward interpretation. A bound-
ed three-dimensional electron gas in the presence of a
magnetic field parallel to the surface supports two edge
magnetoplasmons, as discussed for example by Fetter.
These modes are localized at the surface and have the
peculiar property that for a given wave vector and
magnetic-field orientation, the mode frequencies have op-
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FIG. 11. Mode-density fluctuations for the surface magneto-
plasmons corresponding to the conditions in Fig. 9(a). The solid
line is the low-frequency mode labeled wg, in Fig. 9(a), and the
dashed lined is the w,; mode. The values of the wave vectors
are (a) ¢ =0.1kg, (b) g =0.5kr, and (c) g =k¢.
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posite signs and correspond to waves traveling in oppo-
site directions. These modes will of course also be
present in a slab when the modes on opposite sides of the
slab are decoupled, as they are when the slab is
sufficiently thick or when the wave vector is sufficiently
large. In our analysis, we extract only the positive roots
representing waves traveling in the direction of q. For
the geometry being considered, the @, mode in Fig. 9(a)
has a positive frequency and is the mode localized on the
upper edge as displayed in Fig. 11. The other surface
mode localized at this surface has a negative frequency,
but on the opposite side of the slab the direction of the
magnetic field is reversed relative to the plane defined by
q and the surface normal, and for this configuration the
lower mode has a positive frequency (wg). Thus for a
given q and B, the two modes which propagate in the
same direction are localized on opposite sides of the slab.
This identification is also consistent with the fact that the
decay length of the density fluctuation is smaller for the
low-frequency mode than it is for the high-frequency
mode,*® as is clearly evident in Fig. 11.

Another feature of interest in Fig. 9(a) is the dispersion
of the lower band of bulk modes which, in the MTF ap-
proximation, are all undispersed with zero frequency.
The additional dispersion observed here is a consequence
of the diffuseness of the surface electron density which in
turn is due to the von Weizsicker correction to the kinet-
ic energy. In fact, a plot of the density fluctuation in Fig.
12 reveals that the uppermost mode in the lower bulk
band is also a surface mode. The small-scale oscillations
seen in these figures are not real, as was checked by re-
peating the calculation for several dimensions of the ma-
trix problem, and are due to the finite number of basis
functions used in the calculation. At small wave vectors,
this mode has the character of what can be called a sur-
face dipole mode as opposed to the surface monopole dis-
cussed above. At larger wave vectors, the dipole charac-
ter of this mode diminishes and it looks more like the
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FIG. 12. As in Fig. 11, but for the w,_ (solid) and w,,
(dashed) modes.
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lower surface mode in Fig. 11. Despite the similarity of
the density fluctuations for these two modes, they have
different frequencies and therefore distinct velocity distri-
butions. The appearance of an additional surface mode
can be likened to the onset of a bound state in a
quantum-mechanical scattering calculation in which the
strength of an attractive scattering potential is systemati-
cally increased. In the present context, the diffuseness of
the surface has made it possible for a continuum bulk
mode to be localized at the surface. All other modes
displayed in Fig. 9(a) are bulk modes which have a
significant density fluctuation throughout the slab. An
example of such a mode is also shown in Fig. 12.

The dispersion curves shown in Figs. 9(b) and 9(c) are
very similar to those presented by DH. One difference is
that the lower band of bulk modes has an accumulation
line which is displaced away from the g axis. Although
we have not been able to establish this analytically, we
find that the lowest mode tends to a finite frequency at
finite g as the dimension of the eigenmode problem is in-
creased. For the geometry of Fig. 9(c), a=0 and, as a
consequence, the modes have well-defined parity. In Fig.
13 we show the two surface modes in this geometry and
the highest frequency bulk mode in the lower band. We
see that the character of the latter has changed
significantly with the rotation of the magnetic field in the
plane of the slab from a direction perpendicular to q, to
one that is parallel, by which point it is clearly a bulk
mode [cf. Fig. 12(a)].

Starting with B||q and tilting the magnetic field out of
the plane toward the surface normal, the dispersion of the
modes varies progressively as shown in Figs. 9(c), 9(f),
9(g), 10(c), 10(f), and 10(g). At either end of this range,
a=0 and the density fluctuations have a well-defined par-
ity. However, at intermediate orientations of the magnet-
ic field, as in Figs. 9(f) and 10(f), @, =0 but a,70 and the
modes do not have a definite parity. In fact, as can be
seen from the structure of Eq. (51), the density fluctua-
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FIG. 13. Mode-density fluctuations corresponding to the
conditions in Fig. 9(c) at the wave vector ¢=0.1kz. (a) w4
mode, (b) ®,+ mode, and (c) @, mode.
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tion for these orientations is complex valued, with the
two parity components being 90° out of phase.

For o, <y, two surface modes lie in the gap between
the lower and upper bulk bands, as shown in Figs. 9(c),
9(f), and 9(g). At small g, the lower surface mode is the
2D magnetoplasmon, and the upper mode is still essen-
tially the center-of-mass mode. As g increases, these two
modes merge as the density fluctuations on either side of
the slab become uncoupled and the modes take on the
character of surface magnetoplasmons for a three-
dimensional half-space. In the Faraday geometry of Fig.
9(g), the 2D magnetoplasmon starts from w. at ¢ =0,
while the center-of-mass mode starts at o,. Figures 10(c),
10(f), and 10(g) show that the situation for w,>w, is
more complex. For the simpler Faraday geometry, the
cyclotron frequency lies in the midst of the bulk-plasmon
frequencies, and a gap between the upper and lower bulk
bands does not persist to g =0. As a result, the surface
modes are strongly mixed with the bulk modes. This is
particularly evident in Fig. 10(f), where the lower surface
mode appears to be running through the lower bulk band
near ¢ =0. This line is a sequence of sharp anticrossings
which are not resolved for the mesh of ¢ points used in
this figure, and is actually very similar to the second set
of anticrossings clearly visible at larger wave vectors.
The double set of anticrossings in Fig. 10(f) differs from
the MTF approximation, in which only a single set of an-
ticrossings is observed.

As a final point, we emphasize that all modes obtained
in Figs. 9 and 10 were obtained using a finite basis in the
solution of Eq. (37), and that additional modes appear as
more terms in the expansion are retained. This trunca-
tion may lead to apparent differences between the modes
obtained here and by DH. For example, in Fig. 10(g), the
use of a larger basis set will lead to an accumulation line
at the cyclotron frequency, parallel to the ¢ axis, and not
to the downward sloping line seen in the figure. Howev-
er, the important differences between the two sets of cal-
culations which we have identified so far are independent
of the number of terms used in the basis set expansion.
Most of the differences can be traced to the diffuseness of
the equilibrium surface density which arises beyond the
MTF approximation; that is, for the fully nonlinear
TFDW theory.

IV. POWER ABSORPTION

Having discussed the modes which occur under vari-
ous conditions, we now address the question of what is
observed in an experimental measurement.’® 4 We
study the situation in which radiation is incident normal-
ly on the confining well. In this configuration, the quanti-
ty measured is usually the transmitted intensity which is
a direct measure of the power absorbed by the electron
gas. The instantaneous power absorption is given by

P(t)= [drj(r,1)-E*1) (65)

where j(r,t) is the current induced by the external elec-
tromagnetic field which we take to be spatially uniform
over the extent of the sample and polarized in the x direc-
tion: E*(z)=1E,(e ~'“'+e'®")X. Making use of the fact
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that the induced current only depends on the z coordi-
nate, the time-averaged power absorption per unit area is

§=%E0 Re [dz],(z) . (66)
Using j (z)= —eny(z)v,(z), the power absorption can

be expressed in terms of the velocity field, which we now
assume is governed by the equation

m*n0%=—~m*n0yv+n08F—eno%XB . (67)

Here y is a phenomenological relaxation rate which ac-
counts for both momentum nonconserving scattering
processes and internal energy relaxation associated with
single-particle excitations. In addition to the force
defined in Eq. (16), 8F also contains a term, —eE®™
which accounts for the coupling of the electron gas to the
external field. Because of the relaxation rate, the frequen-
cy o appearing in Eq. (17) is now replaced by a=w+iy.
Using Eq. (17) and the ¢ =0 limit of Egs. (19) and (20),
the power absorption can finally be expressed as

0B, Tio,o.,)

oo,

ol

=—1leE,Re fdz z8n(z)

_mpeEy g

* ~2_ 2
2m* o°—w,

(68)

This result shows that the interesting part of the power
absorption is given by the induced dipole moment of the
electron slab.

In the Voigt geometry B=B¥, Eq. (68) reduces to

P [a70)
7=—%eE0Re —E)—cfdzzﬁn(z)

npe’Ey
am* 0Py
For w.—0, the first term vanishes, leaving only the

Drude absorption given by the second term. In the case
of the Faraday geometry with B=BZ, Eq. (68) reduces to

(69)

Y + Y
(0—0,)*+7? (0+o/)+7?

(70)

In this geometry, the external field does not induce a den-
sity fluctuation, and the absorption occurs only at the cy-
clotron resonance. Finally, we present the result for the
somewhat artificial case in which the system is subjected
to a uniform external field which is polarized in the z
direction; that is, normally to the plane of the slab. We
find

P

A

We now consider the evaluation of Eq. (68) for the gen-
eral magnetic-field orientation. Because of the external
driving field, the expansion coefficients of the induced
density c; no longer satisfy the homogeneous equation

given in Eq. (57). Instead, we have the inhomogeneous
equation

=leE,Re [iwfdz zSn(z)J . (71)
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_ 0wd(&°—?)
Z#iMijCj—)‘w 22 G
J o D,
W, —iw, 0,
=—2A, “—!#Pio . (72)
D" —w,
where
dé,
p,-0=fdz ¢'—d7 . (73)

We have here scaled the inhomogeneous term to allow
the power absorption to be written in the convenient
form

F n2D82E0 a)(&')(ocy-*-ia)cxa)cz)
A o m R i
2m " — o, i
7]
- 5 | (74)
2@’ —w?)
with
do= [ dz 4,24, . (75)

d, is the dipole matrix element coupling the ground state
to higher excited states.

Since we have made no assumption regarding the shape
of the confining potential, the result in Eq. (74) is in fact
quite general. To solve Eq. (72), we introduce the ortho-
normal eigenvectors defined by

(D'2MD '+ D" =1, 0l5" , (76)

where D is again the diagonal energy matrix (D;; =u,;8;;).
In terms of these eigenvectors, the solution vector of Eq.
(72) is given by

c= 2 anDl/Zw(n) , (77
n

where

DOy, —IW O,

a,= (@™, D~'?F).  (78)

0®(& —w?)— (@' —w?,)
The bracket denotes an inner product of two vectors, and
the vector p has components p,,. With this result, the
sum in Eq. (74) can be expressed as

DDy, ~ IO, D,

2diti =2 ——— -3

o 0d(&’—wl)— (@ —w?,)

<y

(6™, D%d ) (w'™,D~1?p), (79

where the vector d has components d,,.

Equation (79) simplifies in the case of a parabolic well
since d¢,/dz is the n =1 mode amplitude and the inho-
mogeneous vector in Eq. (72) is proportional to D'/2w‘".
As a result, Eq. (77) reduces to a single term and

_ O, — (00, (80)
=" 2 2 2 2\ Pio -
b3 — o) — o{(&d"—of,)
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In other words, the induced density has a spatial amplitude precisely that of the n =1 eigenmode, and is resonant at the
cyclotron-shifted frequencies given by Eq. (58). Substituting Eq. (80) into the expression for the power absorption in

Eq. (74), we obtain

2

202 ~2 2 2
nype°Ej o(D° 0}, + o, 0,;)

[0

P
A 2m*

To simplify Eq. (81) further, we note that
2 didio="7% 82)
i

which, with the identification of d,, and p,; as dipole and
momentum matrix elements, respectively, is essentially a
statement of the Thomas-Reiche-Kuhn (or f) sum
rule.* As a result, Eq. (81) finally yields

(&’ — 0k )—dw?

0@’ —0k)— o’ —o?)

P _ n,pe’E}
A 4m*

(83)

This expression demonstrates that P/ A is resonant only
at the center-of-mass mode frequencies, and not at
®=Zw., as Eq. (81) would seem to suggest. The neces-
sary cancellation of the singularities at ®=tw_, depends
critically on the validity of the f-sum rule. The same re-
sult can also be shown to hold for an arbitrary confining
potential by considering the limit of Eq. (79) as @ — tw,.

The power absorption as given by Eq. (83) can be cal-
culated easily for various orientations of the magnetic
field. The positions of the absorption peaks depend only
on the polar angle 8, but the intensity is also a strong
function of the azimuthal angle ¢ and the magnitude of
the ratio w./wy,. As the magnetic field is tilted away
from the z axis in the x-z plane, the cyclotron peak splits
into two peaks at the frequencies v (B). If o, /wy<1,
most of the oscillator strength remains with w_(B),

AAJ 3.0-
\ R.5-
2.0-

1.5-

power absorption (arbitrary units)

I T T T 0.0|
2 3 4
w/w,
FIG. 14. Power absorption as a function of frequency. The

curves are labeled by the ratio w./w, in the range 0-3. The
orientation of the magnetic field is given by 6=25° and ¢=90".

T T 7
0 1

T (=0 ool — o) — X @ —ok)] 2

> diobio— (81)

2’ —wk)

which shifts down from the cyclotron frequency with in-
creasing 6 and eventually turns into the Drude peak cen-
tered at zero frequency. On the other hand, if o, /05> 1,
the _(B) mode continually builds in intensity as the po-
lar angle approaches 90°, at the expense of the w.(B)
mode. The situation is somewhat different when the
magnetic field is tilted in the y-z plane. The w(B) mode
persists with a finite intensity up to §=90°. At this polar
angle, the Drude peak also has a finite intensity, but its
width is reduced by a factor (1+w?/w?)~!, and it there-
fore becomes less intense with increasing magnetic field.
A subset of this behavior is illustrated in Fig. 14, which
shows the power absorption for a fixed magnetic-field
orientation, but for a range of magnetic-field strengths.
At low-field strengths, the oscillator strength is concen-
trated in the @_ mode, but shifts to the @, mode as the
field is increased until finally at high fields the absorption
follows the cyclotron resonance.

V. CONCLUSIONS

In this paper we have demonstrated the possibility of
developing a realistic hydrodynamic description of the
collective excitations in inhomogeneous systems. Earlier
attempts to achieve this objective have generally met
with limited success because of their failure to properly
account for the equilibrium properties of the system. In
our work we have made use of the Thomas-—
Fermi-Dirac-von Weizsdcker approximation which is
capable of providing realistic ground-state electronic den-
sities. Deviations of the density from the ground-state
distribution lead to internal forces which tend to drive
the density back toward its equilibrium state. It is these
forces, consistently determined from the ground-state dis-
tribution, which must be used in the hydrodynamic
description. The use of an arbitrary density distribution
which is incompatible with the assumed equation of state
can lead to spurious internal forces and unphysical col-
lective behavior. This failing has been encountered in
earlier applications,'>!® but is not an intrinsic limitation
of the hydrodynamic approach.

We have applied the general hydrodynamic theory to
determine the magnetoplasmon excitations of a paraboli-
cally confined electron gas. At long wavelengths (¢ —0),
we have demonstrated that the modes are consistent with
the generalized Kohn theorem?® which stipulates that the
dipole-allowed excitation is simply the center-of-mass
mode with frequency given by Eq. (58) for n =1. This re-
sult is more general than the demonstration provided by
Dempsey and Halperin,?® which is based on the model of
an electron slab with a discontinuous density profile.
Furthermore, we have developed an efficient method for
solving the hydrodynamic equations which makes use of
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a basis set expansion of the induced density. This method
allows one to treat more realistic models of the slab with
little additional computational effort, and we have been
able to determine the mode frequencies as a function of ¢
for various orientations of the applied magnetic field. In
most respects, our results are very similar to those found
by Dempsey and Halperin.?® It is therefore clear that the
overall qualitative features of the dynamics is not strong-
ly influenced by the nature of the density profile, al-
though details of the mode dispersion are certainly
modified. The main reason for the agreement between
the two calculations is that both allow for the center of
mass oscillation of the electron slab within the confining
parabolic potential. In the work of Dempsey and Halpe-
rin this is achieved by a careful treatment of the hydro-
dynamic boundary conditions, while in our work it fol-
lows from a consistent treatment of the equilibrium and
dynamic properties. As emphasized repeatedly, this is an
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essential prerequisite for the satisfaction of the general-
ized Kohn theorem.

The TFDW hydrodynamics we have developed can
also be applied to other physical situations. Of particular
interest are quantum-dot*> and antidot*® arrays which
have recently been investigated experimentally. The col-
lective excitations in these systems exhibit dispersions
with magnetic field which are still not fully understood.
It is hoped that TFDW hydrodynamics will prove useful
in explaining some of this interesting behavior.
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