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Level anticrossing and related giant optical anisotropy caused by the Stark effect
in a strained (110)quantum well
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The effects of an electric field along the [110]growth axis on the polarization properties of the inter-
band transitions in a (110) quantum well are studied within a multiband effective-mass approximation.
The transfer-matrix method is applied to coupled effective-mass equations in order to obtain the eigenen-

ergies and eigenstates of holes under an electric field within a steplike approximation to the potential.
The calculated results are shown for a Ga„In& As/AI~In& ~As quantum well grown on a (110) InP
substrate in which the Ga„In& „As well layer is strained due to a lattice mismatch to the substrate,
while the lattice constant of the A1„In& ~As barrier layer is matched to that of the substrate. In the ab-

sence of an electric field, the first hole level (v1) in a quantum well having a Ga content of x =0.58 and a
well width of 80 A is proved to have a light-hole character, while the second level (v2) has a heavy-hole

character, due to the effect of tensile strain. The calculated result of the electric-field dependence of the
hole energy levels for this quantum well shows an anticrossing behavior between the v1 and v2 levels.
The optical matrix element of the dipole transition between the first electron state (c1) and the v1 or v2

state shows an anomalous behavior in the electric-field dependence, related to the anticrossing: For
linear polarization along the [110]growth axis, the optical matrix element for the c1-vl transition sud-

denly decreases with increasing field, while that for the c1-v2 transition rises in the anticrossing region,
representing character changes from light- to heavy-hole-like and vice versa; for polarization parallel to
the (110) quantum well, the in-plane optical anisotropy is extremely enhanced to as much as 100%%uo near
the anticrossing.

I. INTRODUCTION

Until recently, studies on the optical properties of III-
V semiconductor quantum wells (QW's} have been mainly
restricted to those on (001)-oriented structures. ' As a
matter of course, studies concerning the effects of exter-
nal fields on QW's have also been restricted to those on
(001)-oriented structures. ' Among the efFects of external
fields, the effect of an electric field is the most important
from the viewpoint of practical applications. The effect
of an electric field perpendicular to the QW plane is
called the quantum-confined Stark effect (QCSE}. De-
vices based on this effect, such as light modulators, are
being intensively studied using (001) QW's.

On the contrary, there are fewer studies concerning the
QCSE on difFerently oriented QW's. Some studies con-
cerning the QCSE on (111)QW's have been published, '

and it has been demonstrated that the shift rate due to
the QCSE is larger in a (ill) QW than in a (001} QW
having the same structure. Regarding (110) QW's, since
high-quality QW's have been grown on (110) substrates
quite recently, only one study has so far been per-
formed regarding the QCSE on (110) QW's. However,
the electric-field effect on a (110) QW is quite interesting
from both practical and physical viewpoints, as follows.

In a (001) or (111) QW, a hole state at the Brillouin-
zone center can be written only with one of the eigen-
states of the angular momentum, which corresponds to
an eigenvalue of the angular momentum along the
growth axis of J,=+—', or +—,', due to the high symmetry
of those QW's. s The hole state can be classified as either

a heavy- or light-hole state according to whether it has an
angular momentum of J,=+—,

' or k —,'. When an external

field, such as a uniaxial stress, is applied along the growth
axis of those QW's, the energy levels of the hole states are
shifted while their angular momenta remain unchanged.
(This is because the on-axis field does not change the axi-
al symmetry regarding the z axis. } Since the shift rates
are difFerent for the hole levels, depending on whether
they belong to the heavy- or light-hole state, the energy
difference between levels changes with the external field.
In some cases, a heavy-hole level and a light-hole level do
cross, as shown in Ref. 10 for the on-axis stress, since the
two levels belong to different irreducible representations
of the point group for the QW system.

On the other hand, if the symmetry of the system (in-

cluding the experimental configuration for applying the
field) is so low that a heavy-hole state and a light-hole
state belong to the same irreducible representation, the
two hole levels cannot cross each other and show an an-
ticrossing instead. Very recently, such anticrossings be-
tween hole levels in QW's or superlattices under low-

symmetry configurations have attracted attention. '

These anticrossing behaviors are attracting interest be-
cause it has been found that they are accompanied by
anomalous changes in the polarization property.

In the case of high-symmetry QW's, such as (001) or
(111)QW's, applying an external field along an axis other
than the growth axis (an off-axis field) makes the symme-

try of the QW system low, enabling anticrossing to be ob-
served. Actually, the anticrossing between hole levels has
been shown both theoretically and experimentally for
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(001) QW's when a stress or magnetic field is applied
along an axis other than the [001] growth axis. '

Among such studies on (001) QW's, Pollak and Qiang'
as well as Peyla et al. ' reported an anomalous behavior
in the polarization property near the anticrossing.
Ueno' explained the anomalous polarization property of
a naturally ordered Ga In& „As superlattice grown on a
(001) InP substrate as being the result of anticrossing be-
tween hole levels. This system can also be categorized as
an off-axis configuration system, since the Ga„In& „As
superlattice is naturally ordered along [111],while the
stress due to the lattice mismatch is in the (001) plane.

In QW's oriented other than (001) and (111),not only
off-axis fields, but also on-axis fields induce anticrossing
to exist, since the symmetry of such QW's is originally
low. Some published papers ' ' have dealt with the
effects on the on-axis external fields on QW's grown along
the low-symmetry axis. The systems described in these
papers are a (110) GaAs/Al„Ga, „As QW under a [110]
uniaxial stress, ' a (311) GaAs/Al„Gai „As single
heterojunction under a [311] magnetic field, ' ' and a
(110)Ga„In, „P As, QW under a [110]electric field.

In the case of an electric field, the on-axis configuration
is essentially important, since exciton effects can be seen
even under a rather high electric field, as long as the field
is along the growth axis. This situation is quite different
from the case of applying an in-plane electric field. When
the electric field is parallel to the QW plane, excitons are
easily dissociated by a low electric field. On the other
hand, excitons survive under a rather high electric field
along the growth axis, owing to the confinement by the
QW potential. Thus, it is much more important to study
the efFect of an electric field along the growth axis of a
low-symmetry QW than to study the effect of an in-plane
electric field on a high-symmetry QW.

Moreover, if the ground level (the first level) of holes
shows an anticrossing upon applying an electric field, it
would be very important from the viewpoint of device ap-
plications, since drastic changes in the optical constants
are expected at the absorption edge. However, such a sit-
uation cannot occur for a QW whose lattice constant is
matched to the substrate. In such an unstrained QW, the
ground level is heavy-hole-like. The redshift of the
heavy-hole level caused by an electric field is larger than
that of the light-hole level. Therefore, the difference be-
tween the first heavy-hole level and the first light-hole
level increases upon applying an electric field. Thus, the
two levels never come close.

On the other hand, a light-hole-like level can be the
hole ground state in a QW if the QW is subjected to an
in-plane tensile stress due to a lattice mismatch to the
substrate. ' In such a strained QW, the ground level of
holes is expected to show a slower shift upon applying an
electric field than the second hole state which has the
heavy-hole character. Therefore, an anticrossing be-
tween the first and second hole level is expected upon ap-
plying an electric field. Then, one can expect drastic
changes in the optical constraints at the absorption edge.

In this paper we consider the effect of an electric field
along the growth axis on the polarization property of a
(110)QW subjected to tensile strain. In Sec. II, we briefiy

describe a theoretical model for calculating the energy
levels and optical matrix elements within a multiband
efFective-mass approximation. An eScient analytical
method for solving the coupled effective-mass equation
has been developed by applying a transfer-matrix
method. Details of the calculation method are described
in Appendix B. In Sec. III, the calculated results of the
energy levels and optical matrix elements are shown for
an example of a Ga„Ini „As/Al In& ~As QW structure
grown on a (110) InP substrate. We first show that the
first hole level (vl ) in the QW has the light-hole charac-
ter when the Ga content x in Ga„Ini „As is suSciently
large to induce a large tensile strain in the well layer. We
then show that the vl level in such a strained QW shows
an anticrossing with the second hole level (v2) upon ap-
plying an electric field along the growth axis. Finally,
anomalous behaviors of the optical matrix elements for
the c1-v1 and the c1-v2 transitions are demonstrated.

II. THEORETICAL MODEL

A. Hole eigenstates

In a previous study, ' we presented an analytical
method for obtaining the eigenenergies of holes in a (110)
QW under a uniaxial stress along the growth axis, while
taking valence-band mixing into account. In the pres-
ence of an electric field, however, it becomes much more
difBcult to obtain the eigenenergies and eigenstates of
holes than in the presence of a uniaxial stress or a mag-
netic field.

In order to obtain the eigenenergies of holes in a low-
symmetry QW, such as a (110) QW, within a multiband
effective-mass approximation, we must solve a set of cou-
pled effective-mass equations, since valence-band mixing
exists even at the Brillouin-zone center. If the potential
term in the coupled effective-mass equations is constant
in the well and the barrier layer, respectively, an analyti-
cal form of the exact solution for the equations can be ob-
tained for each layer. ' ' ' ' Since a uniaxial stress or a
magnetic field leaves the potential term being constant in
each layer, the coupled effective-mass equations have ex-
act analytical solutions, even in the presence of these
fields. ' ' ' ' On the other hand, an electric field makes
the potential term be position dependent. For a single
effective-mass equation, an analytical form of the exact
solution is still possible even under an inclined potential
due to an electric field, using the Airy functions. How-
ever, exact analytical solutions are no longer possible for
coupled effective-mass equations in the presence of an
electric field, and only approximate solutions can be ob-
tained.

One method to obtain an approximate solution for the
hole states in a QW under an electric field is to divide a
layer into a number of thin sections and to replace the
potential with a steplike potential. Since the replaced po-
tential is constant in each section, the coupled effective-
mass equations have an analytical form of solution in
each section. The problem is then reduced to determin-
ing the coefficients in the analytical form so that the
boundary conditions at every boundary between the sec-
tions are satisfied.
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where f3/3(z) and f, /3(z) are envelope functions, while
9

+ 3/3 (z ) and u +,/3 (z ) are the periodic parts of the Bloch
functions, which can be written as u +3/2(z) =

~

—', , +—', ) and

u+ i/2(z) =
~

—'„+—,
' ). Here,

~ J,J, ) represents the eigen-

state of the angular momentum. The energy levels for
4'„+' and 4', ' are degenerate.

By setting the "envelope vector" to be a column vector
defined by f(z) = '[f3/2 (z),f i/z(z) ], where the presuper-
script t indicates the transpose of a matrix, the effective-
mass equations for the hole state in a (110) QW structure
can be written as

fi dI'„+H,+ U f (z) =sf (z)
2m 0 dz

(j=1, . . . , n) (2a)

for the well layer, where the index j denotes the jth sec-
tion of the well layer which is divided into n sections.
For the barrier layers, the effective-mass equations can be
written as

dI s +H, + UJ fj(z)=(e —V)f/(z),
2m 0 dz

(2b)

with j =0 and n +1 for the left and right barrier layers,
respectively. In each of Eqs. (2a} and (2b), the terins in

)t

eFL

DISTANCE

FIG. 1. Quantum-well potential under an electric field and its
approximation by a steplike potential.

Using the steplike approximation, we deal with a single
QW under an electric field, which is grown pseu-
domorphically on a (110)-oriented substrate. The epitaxi-
al layers are assumed to be strained due to lattice
mismatches to the substrate. We take the axes so as to be
x (([110],y [[[001],and z()[110]. The thickness of the well
layer is set to be L„and the barrier height is set to be V.
We set z =0 at the left heterojunction. The electric field
along the growth axis z is assumed to be applied only to
the well layer. The well layer is equally divided into n

sections, and the potential profile of the QW under an
electric field is approximated by a steplike potential, as i1-

lustrated in Fig. 1. The energy is taken so that the hole
energy is positive.

The hole state at the Brillouin-zone center of a (110)-
oriented QW can be written as a linear combination be-
tween two bases as'

'P'*'(z) =f3/2(z)" +3/2(z)+f i/3(z)" v i/2(z)

f~(zj }=f1+i(zj),
I .f'(z )=I +if,'+i(z. ),

(3)

where zj=jM=j (Lln), I =I „ for j=1, . . . , n, and
I =1"z for j =O, n+1. For a bound state, the following
conditions at infinity must be satisfied:

fo(z) =0 (for z —+ —0o ),
f„+,(z)=0 (for z~+ Do ) .

(Sa)

(5b)

The solutions of effective-mass Eqs. (2a) and (2b) with the
boundary conditions defined by Eqs. (3)—(5) give the
eigenenergies and eigenstates of holes.

In order to solve a single effective-mass equation with a
steplike potential, the transfer-matrix method has been
proven to be very useful. ' The transfer-matrix
method has also been applied to coupled effective-mass
equations by Ram-Mohan, Yoo, and Aggarwal, as well
as Valadares, ' in order to obtain the dispersion curves of
holes in a single square-well potential in the absence of an
electric field. In the present study, the transfer-matrix
method is combined with the analytical method
developed in our previous study, ' in order to obtain the
analytical solution for the coupled effective-mass equa-
tions under an electric field within a steplike approxima-
tion. The method is described in Appendix B.

B. Electron eigenstates and optical matrix
elements

The electron state of the conduction band at the zone
center of the QW is doubly degenerated, and is written as
'PP'(z)=f, (z)u,'*'(z), where f, (z) is an envelope func-
tion, while u,' '(z) is the periodic part of the Bloch func-
tion, which can be written as u,'*'(z)= g, +—,

' ). The en-

velope function f, (z) satisfies an effective-mass equation
with a steplike QW potential. The single effective-mass
equation for electrons can be solved using an ordinary
transfer-matrix method.

The optical matrix elements for interband transitions
can be calculated using the eigenstates of electrons and
holes. We first consider an optical matrix element for cir-
cularly polarized light propagating along the z axis. We
consider a transition from a conduction-band state which
consists of only the

~ —,', —,
' ) component. Since the circular-

ly polarized light has an angular-momentum component
of J,=+1, the

~ —,', —,
' ) state couples with the

~

—'„—', ) and

~

—'„——,
' ) components of the hole states through circularly

polarized light, but does not couple with either the

the square brackets on the left-hand side represent the to-
tal Hamiltonian, as a whole. The first term is the
kinetic-energy term represented by the Luttinger-Kohn
Hamiltonian, the middle term H& is the strain-energy
term represented by the Bir-Pikus Hamiltonian, and the
last term U. is the potential-energy term. The explicit
forms of the t.uttinger-Kohn and Bir-Pikus Hamiltonians
at the zone center in the (110) QW as well as the form of
the steplike potential U are given in Appendix A. At
each boundary of sections, the following current-
conserving conditions must be satisfied:
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I
3, ——', ) or I

3, —,
' ) components, according to the conser-

vation rule for angular momentum. Using the theory of
the rotation group, the nonzero elements of the optical
matrix elements between the eigenstates of the angular
momentum for circular polarization are written as

1 P
6

(6)

1
Mrh~ = ~ Ic)/2~6

(7)

where I,3/2 and I,& /2 are the overlap integrals between
the envelope functions, defined as

+ oo

I,3/2= f, (z)f3/2(z)dz ,
(8)

Ic1!2 e Z 1/2 Z Z

The squared optical matrix elements for the in-plane
linear polarization can be calculated from those for circu-
lar polarization as

2
1 1

I M. I'= IMlhc Mrhc I Ic3/2 Ic 1/2r c ~2 c

2
1 1

IMy I'= IMlhc+Mrhc I Ic3/2+ Icl/2v2 ' ~6

(9)

For 7r polarization, the selection and intensity rules yield
the expression for the nonzero element as

(10)

Therefore, the squared optical matrix elements for linear
polarization along the growth axis can be calculated as

IMI =—II IP
It is obvious from Eq. (9) that IM„I or IM I

becomes
zero when I,3/2 becolnes equal to (1/&3)I„/2 or—(1/3/3)I„/2, respectively. In those cases, the transi-
tion becomes forbidden for x or y polarization and is al-
lowed only for the y or x component of the in-plane po-
larization component of light. This occurs whenever two
hole states exchange their characters between IJ, I

=—',
dominant and

IJ, I

=
—,
' dominant, accompanied by an an-

ticrossing of the energy levels, since II„/2/I, 3/2I varies

where cr and 0.+ represent left- and right-hand-side cir-
cular polarization, respectively, and P is the dipole-
moment matrix element between orbital "s" and "p"
states, i e., P =(sip„lx )

=(sly�ly�

) =(sip, lz). Note
here that P is the same for both the well and the barrier
layers, since

I J,J, ) are assumed to be the same for the
well and barrier layers within the ordinary efFective-mass
framework. Using the above relations, the optical ma-
trix elements of interband transitions for left- and right-
handed circularly polarized light can be written as

1
M]hc ~ Ic3/2&2

drastically from a much smaller value to a much larger
value than unity, or vice versa, in the anticrossing region.

III. RESULTS OF CALCULATIONS

In this section we present the calculated results of the
hole energy levels and the optical matrix elements in a
(110) Ga, In, „As/Al In, As single QW having a well

width of 80 A. The Al content y in the Al In& As bar-
rier layer is chosen to be 0.476, so that the lattice
constant of the layer is matched to that of the InP
substrate (5.8687 A). The electron effective mass

m, for Alp 476Inp 524As is taken to be 0.074m p,
while m, for Ga In, „As is taken to be
[0.0665x+0.024(1 —x)—0.011943x(1—x)]mQ, so that
m, for G~ 47Inp 53As becomes 0.041mp. The band-gap
energy E for Al 476InQ 524As is taken to be 1.511 eV,
while Eg for Ga„In& „As is taken to be
(0.4105+0.6337x +0.475x ) eV. The valence-band
discontinuity at the (110) heterointerface between
Ga„In, „As and AIQ4761nQ524As is assumed to be the
same as that at the (001) interface between GaQ 47InQ 53As
and AIQ 476InQ 524As, i.e., 0.196 eV. The validity of the
assumption that the valence-band discontinuity is in-
dependent of the Ga content is consistent with a theoreti-
cal study on band offsets by Anderson and Jones, in
which the valence-band discontinuity between
Ga„In, „As and InP was calculated to be only slightly
dependent on the Ga content. The other parameters used
in the calculation are obtained by a linear interpolation
between the values for binary semiconductors. The ma-
terial parameters for A1As, GaAs, and InAs used in the
calculation are listed in Table I. All of the values given
in Table I are taken from Ref. 36, except for the Lut-
tinger parameters for GaAs, which are taken from a re-
cent work by Gershoni et al.

A. Zero electric field

Figure 2 shows the energy levels of the lowest two
states of the hole subbands with even parity at the zone
center in the (110) Ga„In, „As/A1Q 476II1Q 524As QW as
functions of the Ga content x in the well layer. In Fig. 2,
the energies are measured with respect to the valence-
band top of bulk Ga„In, „As under the same tensile
strain as in the well layer; the hole energy is taken to be
positive. Note that the valence-band top of bulk
Ga„In

&
„As subjected to tensile strain is the light-hole

band edge and has the
I J, I

=
—,
' dominant character. ' In

unstrained bulk Ga„In
& „As, the heavy- and light-hole

band edges are degenerated. The strain lifts the degen-
eracy, and the distance between the heavy- and light-hole
band edges increases with increasing strain. In Fig. 2, the
heavy-hole band edge of strained bulk Ga„In, „As,
which has the IJ, I

=
32 dominant character, is also plotted

by a dash-dotted line.
In a (110) QW, the hole states can be classiSed into the

heavy-hole-like or light-hole-like state in the absence of a
strain, since the mixing between the bulk heavy-hole
Bloch state and light-hole Bloch state is still small. '

Since the confinement energies are larger for the light-
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TABLE I. Material constants used in the calculations.

ao y3

Lattice constant Luttinger parameters
(A)

Deformation potentials
(e&)

Stiffness constants
(10" dyn/cm )

C12 C44 D

AlAs
GaAs
InAs

5.660
5.653 25
6.058 3

3.45 0.68
6.79 1.924

19.67 8.37

1.29
2.782
9.29

12.09 5.47 6.03 6.70
8.329 4.526 3.959 5.8

2.57
2.7

3.94
3.11

0
100

0.5

r, = 80k

80

S 601~

1.0

/
/

/
// ~

/
/ ~

/
v2

/ /
/ /
/

/ ~

r /

hole states than for the heavy-hole states, the first heavy-
hole (HH1) state is the ground state of holes. Thus, the
first hole level (vl) starts from HH1, while the second
hole level (v2) starts from the first light-hole (LH1) level
in the absence of a strain. With increasing Ga content,
therefore, the v1 level shifts almost parallel to the heavy-
hole band edge of Ga„In&,As, while the energy of the
v2 level remains almost unchanged with respect to the
valence-band top of strained Ga„In& As as long as the
strain is small. Therefore, the energy difference between
the v1 and v2 levels decreases with increasing Ga con-
tent. In the vicinity of a Ga content of 0.565, the two lev-
els come quite close and repel each other. Thus, the v1
and v2 levels show an anticrossing, as can be seen in Fig.
2.

In the anticrossing region, the two levels exchange
their character with each other; after the anticrossing,
the v1 state has a light-hole character, while the v2 level

has a heavy-hole character. That is, the strain effect
overcomes the confinement efect in the high-strain re-
gion beyond the anticrossing.

The character exchange between the vl and v2 states is
more clearly seen by examining the optical matrix ele-
ments for linear polarization along the growth axis, since
only the

I J, l

=
—,
' component contributes to IM, I, as de-

scribed by Eq. (11). Figure 3 shows the squared optical
matrix elements for z polarization IM(»o) I

for transi-
tions between the first conduction-band state c1 and the
vl (or v2) state at the zone center, as functions of the Ga
content x. In the figure the squared matrix elements in
the QW are normalized by that for the bulk Ga„ln&, As,
IMb I

=
—,'P . It can be clearly seen in Fig. 3 that the vl

and v2 subbands exchange their character regarding I J, I

with each other when the Ga content passes through
x =0.565.

Figures 4(a) and 4(b) show the squared optical matrix
elements for in-plane polarization IM(&&o) I

and IM(oo&) I,
respectively, for the cl-v1 and cl-v2 transitions at the
zone center, as functions of the Ga content x. Figure 5
shows the degree of in-plane optical anisotropy

~;.p&...=(IM(T„)I' —IM(oo)) I')&(IM(T„)I'+ M(oo)) I'),

for those transitions as a function of the Ga content x.

0.5 1.0

w 40

1.5 .

20

0.5 0.55 0.6 0.65

0.5 c1

Ga content x
0.5 0.55 0.6 0.65

FIG. 2. Energy levels of the lowest two even states (v1 and
v2) of holes at the zone center in a Ga„In& As/A10 476Ino»4As

0
single-QW structure having a well width of 80 A grown on a
(110) InP substrate as functions of the Ga content x in the
Ga„In, „As well layer. The energies are measured with respect
to the light-hole band edge of bulk Ga„In& As under the same
strain as in the well layer. The heavy-hole band edge of bulk
Ga„In& „As under the same strain is also plotted by a dash-
dotted line.

Qa content x
FIG. 3. Squared optical matrix elements of the c1-v1 (solid

line) and the c1-v2 (dashed line) transitions at the zone center in

a Ga„ln, „As/AIO$761n05$4As single-QW structure having a
well width of 80 A grown on a (110) InP substrate for linear po-
larization along the [110] growth axis as functions of the Ga
content x in the Ga„In& As well layer. The values are normal-
ized by the bulk value for Ga In& As.
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0' (.)
0.5 1.0

1.5
c1-

The optical matrix elements for x and y polarization
show a more complicated behavior than ~M, ~

. Especial-

ly, ~M»o ~
for the c 1-vl transition and ~M(oo, ) ~

for the

c1-v2 transition vanish at some adequate contents. As a
result, the polarization degree P;„~I,„,becomes 100% at
the critical contents. This point has already been dis-
cussed in our previous paper. The small difference in
the calculated results between the present and previous
paper is due to a difference between the finite and infinite
barrier height in the models.

Kato, Yu, and Goto studied the intensity of exciton
peaks in the absorption spectra of CuBr„C1& „as a func-
tion of the Br content x. Two absorption peaks, which
are called ZI z and Z3, were observed in each spectrum
of CuBr„C1, „ in Ref. 38, and the energies of the two ex-
citon peaks showed an anticrossing when they were plot-
ted as a function of the Br content x. Near to the an-
ticrossing, the intensity of the Z3 exciton peak was ob-
served to completely vanish. The cause of the anticross-
ing in the case of CuBr„C1, „ is different from that in the
case under consideration in this paper: The anticrossing
observed in Ref. 38 is due to exciton-state mixing caused
by exchange interaction. Furthermore, the overall inten-
sity of the exciton vanishes in the optically isotropic
CuBr„C1& „crystal, while the intensity vanishes only for

a
a

IV

A4

0
1

0.5 .

-0.5

cubi

(4)
0.5 1.0

/\
/

I
I
I

/ ci-n
/

0.5 0.55 0.6

Ga content x
0.65

FIG. 5. Degree of in-plane optical anisotropy,

P;, ~„„,=((M(-„0)) —
~M(00, )) )/(M~»0) ~ +(M(00, )) ), for the

c1-vl (solid line) and c1-v2 (dashed line) transitions at the zone
center in a Ga„in, ,As/A10476ino, z4As single-QW structure

having a well width of 80 A grown on a (110) InP substrate as a
function of the Ga content x in the Ga„In& „As well layer.

B. EfFect of electric Beld

one of the polarization directions in a (110)
Ga„In, „As/Al In, As QW. In spite of these
differences between the two cases, there is a similarity in
the two phenomena regarding the point that the intensity
vanishes with relevance to an anticrossing in either case.
The conduction-band state has a total angular momen-
tum of J=

—,
' in both cases. The selection and intensity

rules for the transition from the state with J=
—,
' play an

important role in both cases.
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0.5 1.0

1.5 c1-

c1-v2 I
0.5

I
I

g

0
0.5 0.55 0.6 0.65

Ga content x
FIG. 4. As in Fig. 3, but for linear polarizations in the (110)

QW plane: (a) [110]polarization, (b) [001]polarization.

As discussed in the previous subsection, the ground
state of holes in a (110) Ga„In, „As/Alo 4761no, z4As QW
having a well width of 80 A is proven to have the light-
hole character when x is larger than 0.57. In such a QW,
the first hole level is expected to show a faster shift than
the second hole level due to the quantum-confined Stark
effect when an electric field is applied. Around an ade-
quate magnitude of the electric field, the v1 and v2 levels
may show an anticrossing behavior. If so, drastic and
anomalous changes in the optical matrix elements are ex-
pected for the related transitions, as discussed in Sec.
II B. In the following, we examine hole energy levels as
well as the optical matrix elements in such a QW as a
function of the electric field.

We calculated the hole energy levels and the optical
matrix elements in a (110) Ga„In, „As/Alo4761no ~24As

single QW having a well width of 80 A as functions of
the electric field. The Ga content x in the Ga, InI, As
we11 layer was chosen to be 0.58, so that the vl state has
the light-hole character. In the calculation, the well layer
is divided into 8 or 16 segments, so that each segment has
a width of 10 or 5 A, respectively. Then the potential is
approximated by a steplike potential.

Figure 6 shows the energy levels of the v1 and v2 states
as functions of the electric field F. In Fig. 6, the energies
are measured with respect to the valence-band edge of
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FIG. 6. Energy levels of the lowest two states (v1 and v2) of

holes at the zone center in a Gao»Ino 42As/Alo 476Ino»4As
0

single-QW structure having a well width of 80 A grown on a
(110) InP substrate as functions of the electric field along the
[110] growth axis. The energies are measured with respect to
the valence-band edge of bulk Gao»Ino42As under the same
strain as in the wel1 layer. For the v2 state, the results obtained
in the eight-segment approximation are represented by a dotted
line, while those obtained Ia the 16-segment approximation by a
dashed line.

strained bulk Ga0 58In& 42As, as in Fig. 2. In order to see
the accuracy of the steplike approximation, the results
obtained by dividing the well into 16 segments are corn-
pared with those obtained by dividing it into eight seg-
ments. For the v2 level, the former is represented by a
dashed line, while the latter by a dotted line, in Fig. 6.
Though the difFerence between them increases with the
electric field, it is only 1 meV at 240 kV/cm. For the vl
level, the two results are so close to be undistinguishable
in Fig. 6. Thus, the rapid convergence of the steplike ap-
proximation is proven for the multiband case, as well as
for the one-band case as has been shown in Ref. 30.

In the absence of an electric field, the v1 state has the
light-hole character while the v2 state has the heavy-hole
character. Since the redshift due to the QCSE is larger
for the heavier confinement mass, the v2 level shows a
faster shift than the v1 level in the small electric-field
range. [This situation is similar to the case of the Stark
shifts in a (001) Gaosslno4sAs/Alo 391nos, As multiple
QW calculated by Fritz er al. ] Thus, the energy
difference between the v1 and v2 levels decreases with in-
creasing electric field. In the vicinity of an electric field
of 100 kV/cm, the two levels come quite close and repel
each other. Thus, the vl and v2 levels show an anticross-
ing at about F =100 kV/cm, as can be seen in Fig. 6.

Figure 7 shows ~M(iio) ~
for the c 1-vl and c 1-v2 tran-

sitions as functions of the electric field. (The calculated
results with the eight-segment approximation and those
with the 16-segment approximation were almost undistin-
guishable also for the matrix elements. ) In the figure, the
sum of the two squared matrix elements is also plotted by
a dash-dotted line. The total of the squared matrix ele-

65

15
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FIG. 7. Squared optical matrix elements of the c1-vl (solid

line) and the c1-v2 (dashed line) transitions at the zone center in

a Gao „Ino 4&As/Alp4761no, z4As single-QW structure having a

well width of 80 A grown on a (110}InP substrate for hnear po-
larization along the [110]growth axis as functions of the electric
field along [110]. The sum of the two squared optical matrix
elements is also plotted by dash-dotted line. The values are nor-

malized by the bulk value for Gao»Ino 4&As.

ments shows a moderate quadratic decrease, representing
a decrease in the overlap between the electron wave func-
tion and the average of the two hole wave functions. The
quadratic manner is similar to the intensity decrease
often observed for the QCSE in ordinary (001) and (111)
QW's. ' However, individual squared matrix elements
show more drastic changes: ~M(iio) ~

for the cl-vl tran-
sition suddenly decreases in the 70—130 kV/cm range,
while that for the c1-v2 transition raises up in that range,
and then gradually decreases. These drastic changes in
the optical matrix elements represent character changes
between

~ J, ~

=
—,
' dominant and

~ J, ~

=
—,
' dominant.

Figures 8(a) and 8(b) show squared optical matrix ele-
ments for the in-plane polarization ~M(Tio) ~

and

~M(ooi)~, respectively, for the cl-vl and cl-v2 transi-
tions as functions of the electric field. Figure 9 shows the
degree of in-plane anisotropy PI& pl,„, for the c1-~1 and
c1-v2 transitions as a function of the electric field. The
behaviors of the anisotropy degrees shown in Fig. 9 when
the electric field is increased are just similar to those in

Fig. 5 when the Ga content x is decreased from x =0.58.
As the electric field is increased, the anisotropy degrees
for the c1-v1 and c1-v2 transitions increase, reach a max-
imum of 100%, and then decrease. The maximum is
reached at about F=90 kV/cm for the c 1-vl transition,
while F=105 kV/cm for the c1-v2 transition. It has
thus been shown that a complete linear polarization of
100%%uo can be seen in the in-plane polarization of a (110)
QW when an electric field is applied along the growth
axis, while the complete linear polarization has been
shown when an external [110]uniaxial stress is applied in
our previous paper. '

In order to observe the above-mentioned field e8'ect ex-
perimentally, one may need a very high-quality sample.
The drastic changes in optical matrix elements occur
where the two valence-band levels are closest together en-

ergetically, and the separation is only a few meV at that
time. Therefore, samples with exciton linewidths less
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strange phenomenon. The absorption current due to the
excitonic transition associated with the v1 level was
enhanced with increasing applied voltage for [001] polar-
ized light, while it was not for [1 10] polarized light. We
cannot find any explanation for this phenomenon within
the framework of the present study.

Citrin and Chang calculated the optical matrix ele-
ments in a coupled wire array as a function of an electric
field applied perpendicularly to the quantum wire. They
found that drastic changes in the optical matrix elements
emerge when the related hole level in the quantum wire
shows an anticrossing with another hole level. This an-
ticrossing is due to a lowered symmetry due to a two-
dimensional confinement by the quantum-wire structure.
On the other hand, we have shown in this paper that the
anticrossing-related drastic changes in the optical matrix
elements can be observed even when the confinement is
one-dimensional if the symmetry of the QW is low.

The electropleochroism effect described in this paper
can be regarded as being a giant Kerr effect in a QW: a
quantum-well Kerr effect. At the same time, it can be re-
garded as being one of special examples of a field-induced
anomalous pleochroism which is widely observed in semi-
conductor structures under external fields with low-

symmetry configurations, including both on- and off-axis
cases.

FIG. 8. As in Fig. 7, but for linear polarizations in the (110)
QW plane: (a) for [110]polarization, (b) for [001]polarization.

0.5 .
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FIG. 9. Degree of in-plane optical anisotropy,
I';. p&...=(IMg„) I' —IM(mg) I') &(l~(-„,) I'+ l~(mi) I'), fo«he
c1-vl (solid line) and c1-v2 (dashed line) transitions at the zone
center in a Gao, sino 4zAs/Aio 4761no zz4As single-QW structure
having a well width of 80 A grown on a (110) InP substrate as a
function of the electric field along the [110]growth axis.

than 2 meV are preferable. Since such narrow linewidths
have been realized for (001) and (111) quantum wells,
the author believes that the narrow linewidth will be real-
ized also for (110)quantum wells.

Oe et al. experimentally studied the QCSE of
Ga„ln& „As„P& QW's grown on (110) InP substrates,
using photocurrent spectroscopy. The well layers in the
QW structures studied there were compressively strained,
however. In such compressively strained QW's, the ener-

gy difference between the v1 and v2 levels increases upon
applying an electric field. Therefore, the phenomena re-
lated to the anticrossing of hole levels cannot be observed
in their QW's. Instead, Oe et al. observed another

1

IV. CONCLUSIONS

An ei5cient analytical method was developed for solv-

ing coupled efFective-mass equations with a steplike po-
tential by extending a transfer-matrix method for a single
efFective-mass equation. This newly developed method
was applied to the calculation of energy levels, wave
functions, and optical matrix elements at the zone center
of a lattice-mismatched (110}QW under an electric field
along the [110]growth axis. The calculated results of the
electric-field dependence of the energy levels clearly
showed an anticrossing between the first two hole sub-
bands. Furthermore, it has been shown that the hole-
level anticrossing is accompanied by drastic changes in
the optical matrix elements. For linear polarization
along the [110] growth axis, the optical matrix element
for the c1-vl transition suddenly decreases upon increas-
ing the field, while that for the c1-v2 transition rises up in
the anticrossing region, representing character changes
from light- to heavy-hole-like and vice versa. For polar-
ization parallel to the (110}quantum well, in-plane opti-
cal anisotropy is extremely enhanced to be as much as
100% near the anticrossing.

Thus, an anomaly in the in-plane optical anisotropy re-
lated to the hole-level anticrossing has been demonstrated
in the present study for anticrossing induced by an elec-
tric field, while it had been demonstrated for the an-
ticrossing induced by a uniaxial stress in our previous
study. ' We will also demonstrate the anomaly for the an-
ticrossing induced by the magnetic field in our coming
study.
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APPENDIX A: EXPLICIT FORM
OF THE HAMILTONIAN

The expression of the Luttinger-Kohn Hamiltonian in
coordinates with z parallel to [110]can easily be obtained
from the expression in ordinary coordinates with z~~ [001]
by a conventional coordinate transformation. ' In
coordinates with z~~[110], the 4X4 matrix form of the
Luttinger-Kohn Hamiltonian becomes block-diagonal at
the Brillouin-zone center of a (110)-oriented QW, where
k =k„=0. The 2X2 block of the Luttinger-Kohn Ham-
iltonian Hx for the basis set of [ u 3/3 u ) /3 ] or

/2] can be written as follows:"

fi d0 = — r
2mo dz

APPENDIX B: AN ANALYTICAL METHOD FOR
SOLVING COUPLED EFFECTIVE-MASS EQUATIONS

%'ITH A STEPLIKE POTENTIAL UTILIZING
THE TRANSFER MATRIX

In this Appendix, we present an effective analytical
method for solving coupled effective-mass equations with
steplike potential terms. First, coupled effective-mass
equations are transformed to a set of uncoupled
effective-mass equations. Next, the transformed equa-
tions with boundary conditions are solved utilizing the
transfer matrix. Finally, a secular equation for determin-
ing the eigenenergies is presented.

1. Decoupling of effective-mass equations
and the general form of solutions

Coupled effective-mass Eqs. (2a} and (2b) can be decou-
pled as follows. First, we rewrite Eqs. (2a) and (2b) as

Above, the 2 X2 matrix I is defined as

ya yc
I =y iI+

yc ya

with

6
2 J J Jf (z)= D f(z—), .

(A2) where

2mp
1 „'(EI H, —

U, ) (j—=1, . . . , n ),J g2

(81)

(82a)

ya 2y2+ 2y3 ~

r, =( 3/'2)(r3 1'2, -
(A3a)

(A3b)

2Ptl p
D, = I jj'(eI H, —Uj ——V) (j =O, n+1) . (82b)

where y&, y2, and y3 are Luttinger parameters, and I is
the 2 X 2 unit matrix.

The expression of the Sir-Pikus strain-energy Hamil-
tonian in coordinates with z~~[110] is obtained in a simi-
lar manner as in the above. In this coordinate system,
4X4 matrix form of the Bir-Pikus Hamiltonian for a
strained layer grown on a (110)-oriented substrate also
has the block diagonal form. The 2X2 block of the Bir-
Pikus Hamiltonian can be written as'

Tq D) T —K. ,

where E is a diagonal matrix written as

kj'(+ )

0

(83)

(84)

Let the matrix T~ be the transformation matrix which di-
agonalizes D such that

with

cr =Dz(3e)) he), g
=—( ,'D„+ ,'D„' )he, ——

1 2(C)) +2C)2)
(D„' D„)b,e, b, e—= e)),

2 3 ll 12 44

(A4)

(A5}

(85)

Then, the derivative equations for g become uncoupled,

6f

dz 3 gj(+) j(+)gj + (86a}

%e define the transformed envelope vector g as a
column vector transformed from f by T. ':

gj(+)(z)
g, (z)= T 'f, (z)=

gj( —) z

~here D&, D„, and D„' are deformation potentials, and
the C's are stiffness constants. The in-plane strain

E)) EE&& is 'defined as e'))
=(a 0

—a o" ) /a g', where
a p

' and a p" are the lattice constants of materials
comprising the epitaxial layer and the substrate, respec-
tively.

The potential term U is represented by a steplike po-
tential:

d2
)(z)= —k ( )g ( )(z) .

cfz
(86b)

The general form of the solutions for Eqs. (86a) and
(86b) can be written as

gj(z) =exp(iK z)a. +exp. ( iKjz )b. ,— (87)

where a. and b. are constant column vectors. For a
J

bound state,

1 n
U =eE j————hz (j =0, . . . , n+1)

2 2
(A6) iEp =Ep = Kp(+ )

0 1 =0
Kp(
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and

iK„+)=K„+)=
+n+1(+ }

. +i=o
&n+i( —}

(B8b)

Q.(z )=M Q.(z, ) .

By inserting Eq. (B17) into Eq. (B14),we obtain

R,Q i, (z )=M,Q,(z, ),

(B17)

(B18)

must be satisfied for go(z) and g„+,(z), respectively,
where the sc's are positive real numbers.

The transformed current-conserving conditions are
written as Q„(z„ i)=S„|. S,Q, (zo), (B19)

where we have set Rj Tj Tj +] By repeating the appli-
cation of Eq. (B18),we obtain

hagi J J+~gi+~ i
I' T g'(z ) =I' , T ,g' ,(z ) .

(B9a}

(B9b)

where S =R 'Mi. By setting Q=M„S„
gether with using Eq. (B17}for j=n, we obtain

Q„(z„)=QQi(zo)

. S to-

(B20)

2. Transfer-matrix normalism

In order to solve Eqs. (B6a) and (B6b) under boundary
conditions (B9a) and (B9b), we set

gj(z)
QJ(z) = (B10)

gj z
Q„+|(z„)= WQO(zo),

where

(B21)

as the relation of the values of Q(z} at both ends of the
well. This expression is useful for an infinitely-high-
barrier model. For a useful expression in a finite-barrier-
height model, we obtain

The general form of QJ (z) can be written as

QJ(z) =Gi(z)AJ,

where

(B1 1)

WAa
W=R '~R (B22)

and

aj

bj
(B12)

3. Solution for bound states

For a bound state, using the conditions of Eqs. (B8a)
and (B8b) for go(z) and g„+&(z), Eq. (B21) is written ex-

plicitly as

exp(iK z ) exp( iK~z )—
iKJexp(iK z) —iK exp( iK z)—Q (z)= (B13)

exp( K„+,L )—b„+,
K„+,exp( ——K„+,L )1„+,

WAA WAB

WBA WBB

ap

Kpap

The matrix formulation of the current-conserving condi-
tion can be written as

r)QJ(zj. )= rj „Q,„(zj), Removal ofb„+| from Eq. (B23) yields

(B23)

Tj 0

0 1JT

The transfer matrix is defined as

(B15)

[K»+)( W~~ + W~sKO )+ ( W~~ + W~sKO) ]ao 0 ~ (B24)

In order that Eq. (B24) has a nontrivial solution, the cor-
responding secular equation,

M, =ej(z1 )e, (z, ,
)-'

cos(K hz)
—KJsin(K. M )

K. 'sin(K M)
cos(K M) (B16)

The transfer matrix M. relates the values of Q (z) at the
both ends of the jth section as

det~ Wax+ WaaKO+K +&Waw+K +i WaaKO~ =0

(B25)

must be satisfied. Secular equation (B25) determines the
eigenenergies. Then, Eq. (B24) determines the coeKcients
in the wave function of a bound state together with the
normalization condition.
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