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Persistent current in isolated mesoscopic rings
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The persistent current in isolated mesoscopic rings is studied using the continuum and tight-binding
models of independent electrons. The calculation is performed with disorder and also at finite tempera-
ture. In the absence of disorder and at zero temperature agreement is obtained with earlier results by
Loss and Goldbart in that there is half-quantum flux periodicity for a large and odd number of electrons,
but full-quantum periodicity for any even number of electrons in the ring. Strong disorder converts the
period into full-quantum periodicity. Finite temperature reduces the magnitude of the current, but
preserves the quantum flux periodicity at zero temperature. However, the sign of the current may
change as disorder or temperature is increased. A generalization of the parity effect, previously dis-
cussed by Leggett, Loss, and Kusmartsev is described for the case where there are electrons with spin,

influenced by finite temperature and disorder.

I. INTRODUCTION

Since the early work by Byers and Yang,! Kohn,’
Bloch,> Gunther and Imry,4 Kulik,? Biittiker and co-
workers,®” and Refs. 8—12, it has been realized that spin-
less electrons do not lead to the same current as electrons
with spin, due to Fermi statistics. In reality the results
that were originally obtained, presumably for any number
of electrons, apply only to the cases of even number of
electrons; or to the case of a single electron. It was real-
ized that there are four separate cases to be analyzed, in
which the number N of electrons on the ring can take the
values N =4n, 4n-+1, 4n+2, and 4n +3, where
n=0,1,2,3,... . This situation was discussed by
Kusmartsev'? and calculations of the current are found in
Loss and Goldbart.!* Based on this information, a more
modern treatment of the current in rings requires adding
disorder or using finite temperature. In particular it was
realized by Loss and Goldbart'* that in an ordered ring
with a large enough odd number of electrons, the per-
sistent current shows almost perfect half-quantum flux
periodicity rather than the full-quantum flux periodicity
of spinless electrons. This result follows simply from the
Fermi statistics for electrons with spin.

The behavior of rings can be studied either for isolated
rings or for rings with leads. In the first case the number
of electrons must be a constant, while in the second case
electrons may be lost or gained through the leads. In the
first case the chemical potential is a function of flux, cal-
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culated with ¥, f(E,,)=N where the sum is over ener-
gy levels and spins. Since the energy levels depend on
flux, so does the chemical potential. In the case of a ring
with leads, the chemical potential is imposed from the
outside, and must be considered a constant. Electrons
are then lost or gained through the leads, as with the in-
crease of the flux the appropriate levels cross the fixed
chemical potential. Therefore, the kind of averaging that
is required depends on the physical condition of the rings,
whether they are isolated or not. This work deals with
isolated rings, without inelastic scattering.

Investigation of the influence of the spin degrees of
freedom on the Aharanov-Bohm effect is also especially
important if spin-orbit interaction is taken into account.'
This creates extra quasi-half-quantum flux-periodicity
effects. It is well known that such interaction plays a ma-
jor role in semiconductors, when electrons or holes in-
teract with a magnetic field. Instead of paramagnetic res-
onance, we have the so-called combined resonance (Rash-
ba effect). The orbital moments or orbital currents on the
ring, which change in the magnetic field, may also cause
spin-flip processes,!® via the spin-orbit interaction. How-
ever, we do not carry out such spin-orbit calculations
here, and neglect Zeeman splitting, which is a very small
effect for the fields of interest.

II. METHODS OF CALCULATION

We consider a system of N noninteracting electrons of
mass m on a one-dimensional ring of length L, threaded
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by a magnetic flux ¢. The Hamiltonian of the system is
given as

1 d #” X d
H ) ifi ax e - m z xa f
(1)
where x, is the coordinate of the ath electron of spin o

along the ring, starting from some origin f =® /P, &, is
the quantum flux & /e, and @ is the total magnetic flux
through the ring. Using the wave function

¢(x)= Aeikxei(x/L)Zﬂf ,

and the boundary condition coming from the uniqueness
of the wave function, ¥(x)=1(x +L), one obtains the
single-particle energy levels,
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where n =0,+1,£2, ... .

Since these levels are periodic in flux, with period ®,,
the early presumption was that current, magnetization,
and other properties necessarily be periodic functions
with period ®,. While this is true, one cannot exclude
the possibility of periodicities with smaller period due to
other reasons, for example, electron-electron interaction.

For more than one electron there may be a redistribu-
tion of electrons in the energy levels, to gain the lowest
ground-state energy, when there are degenerate level
crossings. For example, one can place two electrons in
the state n =0. If there is a total of three electrons, the
third electron, for f ~0, can be placed in either the n =1
state or the n =—1 state, depending on whether f is
infinitesimally negative or positive. These rearrange-
ments, when permitted by Fermi statistics, lead to
discontinuous jumps in the current, with changes of sign.
Repeating the analysis for the cases
N =4n,4n +1,4n +2,4n +3 leads to the results given in
Ref. 14.

For odd numbers of electrons it is seen that there is an
approximate half-quantum flux periodicity, which howev-
er improves as the number of electrons increases. For
even number of electrons there is full-quantum flux
periodicity. These two cases taken along reproduce the
original results obtained for spinless electrons.

The total current from all occupied levels at T =0 is
given by I =3 I,, where the sum is over occupied levels
of spin states. Note that the main contribution to the
sum is always from an electron located in the uppermost
level. If T50 it is first necessary to calculate the chemi-
cal potential at each flux value, as described in the Intro-
duction. Thereafter the T+O0 result can be found from

I E O'f(E’l(I)

where I,, are the different current contributions and
Sf(E,;) is the Fermi function, which is determined after
the chemical potential is calculated. The sum over states
is taken until there is a negligible remaining contribution.
For the excited states there is greater freedom of redistri-

buting electrons among levels. Since higher levels con-
tribute to opposite signs of the current one can ask
whether there are possible changes of sign. The periodi-
city of the chemical potential, which is that of one flux
quantum, also influences the results.

Disorder is introduced in the tight-binding formulation
in the form of the usual Anderson-type model, for single-
site energies along the rings, with hopping parameter ¢.
Thus there is disorder taken from uniform distribution of
energies in [—W/2,W/2]. Flux is introduced in the
usual way by multiplying the hopping parameters by a
phase factor e’ for anticlockwise motion or by e ~*¢ for
clockwise motion along the ring, where ¢ =(27/N)f.

Current can be calculated either from the slope of the
eigenvalues as a function of flux, in the usual way; or
from (see Refs. 17,18).

Im de Im (C‘(m)cr(t'i)la nn—l)
—%’i—el (C2,Co_yote™™%) , 3)

where a =L /N is the lattice constant.

This expression is actually independent of site number
n. The C{™ are the normalized eigenvectors of the diag-
onalized Hermman matrix representing the Hamiltonian
for the mth state and nth site and spin o.

Both methods are equivalent, but the slope method is
more commonly used, since eigenvalues are determined
more accurately. For the zero-temperature calculation,
at each separate flux the energy levels must be filled with
a fixed number of electrons, starting from the bottom, ac-
cording to Fermi statistics, to get the total current from
the individual currents of the separate levels. This pro-
cedure guarantees that the ground state is always
achieved, with readjustments in the level filling at degen-
eracies described earlier, thus avoiding a common mis-
take.

It has been shown that the half-quantum flux period
arises by averaging over many rings in situations in
which there is only single-quantum flux periodicity for
single rings. Montambaux and co-workers!>?° average
over an ensemble of rings having different numbers of
electrons to get the half-quantum flux period. We also
find that this is a good method to obtain half-flux-
quantum periodicity. Averaging over the four separate
cases N =4n,4n +1,4n +2,4n +3 is one way to accom-
plish this periodicity, even without disorder. The most
realistic way to average is, however, to keep the number
of electrons constant. For strong disorder the sign of the
current is sample dependent and cannot be predicted for
a single ring, but will have a period of just one flux quan-
tum. The emergence of the half flux quantum on averag-
ing is due to the random phase (N >>AN, where AN is
the width of the distribution.)

III. RESULTS AND DISCUSSION

For both disorder and finite temperature one finds that
regions near f =0 and f =1 have degenerate level cross-
ings. The latter are very sensitive to various physical



8128

effects. In these regions, instead of sudden jumps, the
current will become a continuous function of flux, pass-
ing through zero, as soon as there is finite disorder or
temperature.

We have noted earlier that for a small odd number of
electrons the current is only a quasi-half-periodic func-
tion of flux, with a slightly asymmetric shape. For five
electrons the current vanishes at f =0.2 instead of
f =0.25, for example.

When the ring is disordered, the current changes to a
full-quantum flux periodicity ®, as shown in Fig. 1. For
a small number of odd electrons the phase of the &,
period has a definite sign, to accommodate the direction
of the largest current that one obtains in the ordered
case. For a larger odd number of electrons one cannot
predict a priori the phase of the cycle. Note that the
quasi-half-quantum flux period has disappeared when dis-
order is added, for individual rings. This behavior is
similar to that found in simulations on rings with or
without leads,' ~!? with independent electrons.

Let us note that on a single ring, at fixed value of flux,
the direction of the current changes upon adding one
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FIG. 1. Persistent current for (a) ordered and (b) disordered
rings with five electrons and 40 sites. In the ordered case, the
current vanishes at f=0.20 rather than f=0.25. For the
disordered case, a parameter W =0.4¢ was used, with the An-
derson model. Note the change in sign of the current for some
values of flux. With disorder the quasi-half-quantum-flux
period has disappeared.
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electron. The uppermost level plays the main role in
determining the direction and sign of the current. There-
fore one expects that processes which move an electron
from one level to another can change the sign of the
current. Such situations may arise with finite tempera-
ture, or disorder. For finite temperature there will be an
activation energy AE ~ T for the process. The upper lev-
el has less occupation, but if the difference of current for
a single electron transferred is large enough, there will be
changes of sign. Similarly, it is clear that disorder may
play a similar role, where one has fluctuations in the
internal potential instead of temperature fluctuations.
The finite-temperature results are shown in Figs. 2(a)
and 2(b), both as a function of flux f (for a fixed tempera-
ture) and as a function of Bt for a particular value of f.
The results show how the current changes, but the shape
is preserved, and how there is a change of sign as the
temperature is increased. This change of sign occurs
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FIG. 2. (a) Current at a fixed finite temperature (Bt =30) as a
function of flux, for an isolated ring of 41 electrons and 40 sites.
The current is zero at degenerate level-crossing points f =0 and

=1. Additionally, the periodicity of § flux quantum for the
zero-temperature ordered chain is maintained. (b) Current as a
function of temperature (Bt variable) for a fixed value of flux
(f=0.23). A change of sign is seen at high temperature, in the
region in which the current is small. The change in sign is due
to excitation to higher levels, which carry current of the oppo-
site sign. Additional structure due to the discreteness of levels
is also seen, which is smoothed out at higher temperature.



49 PERSISTENT CURRENT IN ISOLATED MESOSCOPIC RINGS 8129

when the current is already rather small. Also, we
neglect inelastic events in the calculation. However, this
change of sign may perhaps be subject to experimental
observation; detailed temperature studies for isolated in-
dividual rings are still lacking. In the limit of low tem-
perature, Fig. 2(b) shows a fine step structure. We believe
that this structure reflects the discreteness of the energy
levels for these small systems. The structure disappears
at higher temperatures.

Let us now see how we can reconcile some of the re-
sults with experiment. Recent experiments®! have detect-
ed only the full-quantum period in the case of individual
rings.

The easiest way to understand this is either

(a) that only individual independent single electrons
(i.e., the one-electron case) contribute to the result; or

(b) that the individual rings are sufficiently disordered
to show only the full-quantum periodicity.

Averaging over the four cases indicated immediately
gives the ®,/2 period. This interpretation is then natural
for the experimental results concerning many rings.?? It
is interesting to note also that in the ordered limit the
cases with even numbers of electrons carry a greater
current than cases with odd numbers of electrons. Where
the original problem had been to explain ®,/2 periodici-
ty, it seems that now there are too many ways to get it.
The problem now seems to be why the @, period is seen
in individual rings.

Recently it has been argued that correlations, being im-
portant, cannot be ignored. Note that for the spinless
fermions the correlations do not destroy the parity effect,
as was shown by Kusmartsev,”»?* with the aid of the
Bethe ansatz for the limit of strong interactions. This
was generalized by Leggett?> and proved by Loss?® with
the aid of the bosonisation method for arbitrary coupling.

For the case of electrons with spin, the problem is that
these correlations easily destroy the parity effect and
create the half-quantum period,?”?® or more generally the
fractional ®,/N periodicity for N electrons as shown in
Ref. 29 and confirmed in other studies.’® Recently, we
have found that this fractional Aharonov-Bohm effect
may exist for any coupling in dilute systems.>! Why these
effects are not yet seen in individual rings remains an
open problem. Correlations are just one extra factor to
be considered, but so is the problem of multiple channels
expected for rings of finite cross section.

However, for a ring of noninteracting electrons with
spin, in the presence of just weak disorder, parity effects
may exist for a small number of electrons and have the
characteristics which we describe. This effect is relevant
to the phenomenon of directional changes of the per-
sistent current with temperature. For strong disorder the
direction of the current cannot be predicted and is essen-
tially random and sample dependent for individual rings.
Parity effects are then seemingly inconsequential in this
limit, but the situation is further discussed in detail
below.

IV. DOUBLE-PARITY EFFECT

The essence of the parity effect for spinless interacting
fermions lies in the Fermi statistics.”>~2¢ When the num-

ber of spinless fermions on the ring changes from odd to
even, there is a statistical half flux quantum which shifts
the energy-flux dependence by exactly half of the funda-
mental flux quantum. Therefore, for small values of the
flux and at odd number of spinless fermions, the ring
behaves as a diamagnet. When there is an even number
of particles it behaves as a paramagnet. Kusmartsev ob-
tained this result by exact solution with the aid of the
Bethe ansatz, in a model of interacting spinless fermions
on the ring.?*?* This was also independently discussed
qualitatively by Leggett for the general case (called the
Leggett conjecture)®® and was proved by Loss,?® with the
aid of the bosonisation method in the framework of the
same model,”>?* but for arbitrary coupling. Thus, the
difference between paramagnetic and diamagnetic
responses is related to the statistical flux on the ring.

The parity effect also occurs because the energy posi-
tion of the uppermost filled level has the most impor-
tance. With a new incoming electron, a new level is occu-
pied and the persistent current changes direction. How-
ever at finite temperature and/or with finite disorder
there occurs an intermixing between levels and it seems
that the parity effect disappears. In fact this is not quite
correct; the parity effect does not disappear. The temper-
ature as well as disorder makes the single-flux-periodic
energy-flux dependence smoother. That is, with tempera-
ture or with disorder the persistent current-flux depen-
dence takes a form similar to a ~sin(27f) curve. The
parity effect shows up as a shift of this curve by 7 with a
change in the number of spinless fermions. In other
words, the half-quantum flux shift of the energy-flux
dependence with the change from even to odd or from
odd to even number of spinless fermions does not disap-
pear.

To take a specific example, with finite temperature and
an odd number of fermions on the ring, the persistent
current first decreases from zero and then increases to
zero when the flux changes from zero to | of the funda-
mental flux quantum. For the next ! flux quantum
1 <f <1, the current first increases from zero and then
decreases to zero. On the other hand, for an even num-
ber of fermions on the ring, for the first 1 flux quantum
0<f <1, the current first increases from zero and then
decreases to zero, and for the next 1 flux quantum
1+ <f <1, the persistent current first decreases from zero
and then increases to zero. This is an example of the ap-
pearance of the parity effect for the ring with spinless fer-
mions at nonzero temperature or with the presence of
disorder.

Let us now take the case of electrons with spin. As dis-
cussed above, due to Fermi statistics and due to the inter-
section of four levels at zero flux (for spinless fermions
there was an intersection of two levels) there occur four
cases, associated with numbers of electrons
N =4n —1,4n,4n +1,4n +2, where the behavior of the
persistent current is distinct. The cases with N =4n —1
and N =4n +1 resemble the case of spinless fermions.
For these cases the ground-state energy-flux dependence
is shifted by half a flux quantum. The same situation
occurs for the other two cases of N =4n and 4n +2 elec-
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trons on the ring.

That is, for the single ring with free electrons we have
two parity effects which occur when the number of elec-
trons changes by 2. When the number of electrons
changes from N =4n —1 to N =4n, the shape of the
ground-state energy-flux dependence changes gradually,
becoming a quasi-half-flux-periodic function. The depen-
dence of the persistent current on the flux f(0< f <1)in
this case consists of two nonequivalent half periods. One
is much smaller than the other. This nonequivalence for
the small-amplitude half period which occurs at small
flux arises in the case when three of four intersecting lev-
els are filled by electrons, that is, when N =4n +1. It is
important to note that in all cases here except when all
intersecting levels are filled the paramagnetic response
occurs. For the cases N =4n +2 the response will have
diamagnetic character. The same occurs when the num-
ber of electrons changes from N =4n —1 to N =4n,
where behavior similar to that discussed above occurs,
but with a shift by J flux quantum. The reason for such
behavior is that the addition of the new electron creates
the statistical 1 flux quantum.

To conclude with the case of electrons with spin, the
parity effect also exists, but takes a new form: instead of
two types of ground-state energy-flux dependence for
spinless fermions, which are related to even and odd
numbers of particles, there are four different types of
ground-state energy-flux dependence. However with
finite disorder or finite temperature the discussed parity
effect changes character. With finite temperature the in-
tersecting levels become equally populated. Let us con-
sider each of the four cases independently. When there
are only one or two electrons in the four intersecting lev-
els, then with a slight increase of the temperature all four
levels will be populated and the current will be changed
only in the flux region where these levels are near each
other. The absolute value of that current strongly de-
creases, resulting in a smooth behavior. With the flux in-
crease f, the distance between levels A(f) increases, the
temperature T is switched off, if approximately T <A(f),
and will be switched on only in the flux region of the next
four intersecting levels, where A(f) < T.

Now let us consider the case when there are three elec-
trons in four intersecting levels. In that case, a small-
amplitude half period occurs in the flux dependence of
the persistent current (in the flux region 0 < f <0.2). At
finite temperature all these four levels will be equally pop-
ulated, with vanishing resulting current. As a result the
original single-quantum flux periodicity will appear.
Thus, in fact, the reason why the single-quantum flux
periodicity occurs with finite temperature or with disor-
der is the intersection of levels and the parity effect, origi-
nating in the Fermi statistics.

Let us discuss what kind of parity effect we have at
finite temperature. As we have discussed above, the cases
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with N =4n —1 and N =4n electrons behave similarly to
each other. In both of these cases the response is
paramagnetic. The other two self-similar cases are asso-
ciated with N =4n +1 and 4n +2 electrons on the ring,
but the response in the latter two cases has a diamagnetic
character. The dependence of the persistent current on
the flux for the first group may be obtained from the
second one with a shift of J flux quantum. Thus the pari-
ty effect might be seen by comparing these two different
types of flux-current dependence.

Note, however, that a Hubbard-like interaction may
destroy the parity effect with the creation of the fraction-
al Aharonov-Bohm effect.? 3! As described by Haldane,
fractional statistics or statistical flux may appear with
this interaction.’? In this case the interaction creates the
needed 1 flux quantum to compensate the statistical flux
which occurs due to the parity effect.

V. RECENT EXPERIMENT

Recently, an experiment on a semiconductor single
loop in the GaAs/Ga,_,Al, As system was reported, for
which single-quantum flux periodicity has been detect-
ed.?® After an analysis of the experimental data it was
strongly concluded?' that in current theories the disorder
is not correctly taken into account. Since the loop has
only a few electron channels (estimated as equal to 4), our
theory may be applicable:

(1) The single-quantum flux periodicity is due to disor-
der, as described in the text.

(2) The persistent currents are sample specific. Note
that, as we have shown, the persistent current may
change even in sign, with change of the level of disorder.

To complete a confirmation of our predictions (to ob-
serve the temperature changes of the sign of the per-
sistent current), one needs to measure the persistent
current at distinct values of temperature and of flux.
That such measurements are needed was also concluded
in Ref. 33. It is worth noting that our findings are also
applicable to description of the frequency changes of pho-
nons on the ring in a magnetic field (see Ref. 13) with
temperature.
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