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The energetics and band structures of the elemental semiconductor Si in two fourfold-coordinated
clathrate structures have been studied. For the Si(34) and Si(46) structures we predict indirect band
gaps near 1.9 eV, or 0.7 eV wider than that of Si in the well-known sp® diamond structure. We find
that the energy differences between the clathrate structures and the diamond structure are about
0.07 eV, which is nearly three times smaller than those for more compact high-pressure structures
of Si. The calculations are done using an ab initio tight-binding-like molecular-dynamics method,
and further checked by the fully self-consistent plane-wave method. The possible origin of the small
energy differences between Si in the clathrate and diamond structures is discussed in terms of strain
energy. We compare the results for Si with those for similar structures involving carbon.

INTRODUCTION

The semiconductor Si is the most important semicon-
ductor material for electronic devices. However, the rel-
atively small and indirect band gap makes it unsuitable
for many possible applications. Altering the band gap
can be achieved by either changing the constituents or
changing the geometry. The constituents can be changed,
for instance, by alloying Si with another semiconductor.
Sij—.Ge, alloys have been made, but unfortunately the
band gap shrinks compared to that of pure Si. Alloys of
Si with C have been prepared,’? but so far only a very
small concentration of C has been incorporated. The
band-gap properties have not yet been measured, and
theories disagree3* as to whether the band gap will in-
crease or decrease.

The other route to band gap engineering has been to
alter the geometry. This can be accomplished in an ar-
tificial manner, such as in superlattices, dots, or porous
forms, or “naturally” by altering the actual crystal struc-
ture of the material. The band gap has recently been
altered dramatically by making Si in “porous” form.%:®
Here Si is reacted with an HF acid solution, which etches
the Si into long narrow columns. The material can then
be designed to emit visible light of different colors at
room temperature. The band gap has surely been in-
creased, but the origin of this increase is not yet fully
understood. It has been suggested to be a confinement
effect,” as in a superlattice, due to the narrow width
of the columns, but other mechanisms have also been
suggested.® Changing the geometry of the material thus
seems to be a promising method for altering the Si band
gap. The application of pressure unfortunately does not
widen the band gap, since more compact structures, such
as that of 3-Sn, are metallic for Si. On the other hand,
applying “negative pressure” to produce a more open
structure has not yet been studied thoroughly. In fact,
the open porous Si structures had been known for nearly
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40 years® before they were reinvestigated to determine
their optical properties.

One method of producing open structures is to incor-
porate large numbers of impurity atoms, around which
the Si atoms nucleate. One particular class of structures
that grow according to this mechanism are the clathrate
hydrate structures such as Cl, in solid H0.1%712 In the
hydrates the gas molecule hollows out a space for itself,
and the HyO molecules solidify in a tetrahedral frame-
work around this hollow. Thus, these structures are rel-
atively open. Si compounds with the clathrate struc-
ture were characterized in 1965. In the Si clathrates,
metal impurity atoms, such as Na or K, stabilize the
structure, just as the guest molecules do in the hydrate
structures.!3716 Both stoichiometric phases NaSig and
nonstoichiometric phases Na,Si (0 < z < 0.08) are
formed. Recently these compounds have been checked for
superconductivity, but with negative results.!” Clathrate
structures involving Ge with K impurities have also been
prepared. It has been found that very low concentra-
tions of metal atoms can be achieved, and with specific
material processing, it should be possible that the metal
atoms can be entirely removed.

Recently, Nesper, Vogel, and Blochl'® have reported
theoretical studies of pure carbon in clathrate (and other
zeolite) structures. Their local density approximation
calculations have shown these structures to be very low in
energy — substantially lower in energy than the fullerene
molecule Cgp, and lower in energy than polybenzene,
a low-energy, threefold-coordinated, sp?-bonded, three-
dimensional hypothetical network.?

It is the purpose of this paper to examine the ener-
getics and band structures of the elemental semiconduc-
tor Si in two clathrate structures. We also make some
comparisons of the results for Si with results for similar
structures involving carbon. Unlike the case for Si, no
carbon clathrate structure, to our knowledge, has ever
been observed experimentally. Our goal is to determine
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the relative stability of these structures in comparison
with those of the ground state diamond structure, and
to investigate the band-gap properties of these open sys-
tems. In the present work we estimate that the Si band
gap of these open structures is indirect but widened by
more than 0.7 eV compared to the diamond lattice—a
result comparable to that found in porous Si.

Specifically, we examine two clathrate systems, Si(34)
and Si(46). In each of these systems, the Si atoms are
bonded to four other Si atoms in a distorted tetrahedral
arrangement. Both structures are cubic; the Si(34) struc-
ture is face-centered cubic (fcc) and the Si(46) structure
is simple cubic (sc). It has been found experimentally
that the Si bond length is near 2.37 A, which is slightly
expanded compared to 2.35 A for Si in the diamond struc-
ture. These bond lengths are found not to be sensitive
to the concentration of metal atoms.

These structures are the simplest of a family of struc-
tures that are derived from packing pentagonal dodeca-
hedra and other three-valent polyhedra having hexagonal
and 12 pentagonal faces. In the packings, three polyhe-
dra meet at an edge and four meet at a vertex so that
the vertices and faces define a four-connected net. The
structure that we call Si(46) occurs in clathrate hydrates
such as chlorine hydrate and is known as the type I hy-
drate structure. It is also the Si net in an impure natu-
rally occuring form of SiO; known as melanophlogite, net
symbol MEP.?! The structure that we call Si(34) is also
a common clathrate hydrate structure known as type II.
It is the Si net in the synthetic silica zeolite ZSM-39, net
symbol MTN.2!

The Si(46) lattice is a sc lattice with a lattice constant
near 10 A and is shown in Fig. 1. At each sc lattice
point, a Sizg icosahedral molecule is placed with another
Sizp rotated 90° with respect to the first, placed at the
body center of the cube. The Sizo unit is a pentagonal
dodecahedron having 12 pentagonal faces. These Sigg
units are similar to the C,g icosahedral fullerene. Each Si
atom in the pentagonal dodecahedron is bonded to three
other atoms within the same dodecaliedron. The fourth
bond is one of two types. The first type of bond forms
along the eight (111) directions. These bonds connect one
Size unit with another. These bonds make eight of the
20 atoms of the Sizo dodecahedron fourfold coordinated,
leaving 12 atoms on the dodecahedron threefold coordi-
nated. This structure is already interesting, and a very

FIG. 1. The stereoscopic drawing of the Si(46) clathrate
structure viewed down [100].
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FIG. 2. The stereoscopic drawing of the Si(34) clathrate
structure viewed down [100].

similar structure (with the pentagonal dodecahedron at
the body center not rotated with respect to the first) has
been studied as a solid of Cyq fullerene.2? To make the
solid fully fourfold coordinated, a second type of bond
is formed by adding twelve atoms to “interstitial” sites
that surround the Sizo ball. These 12 additional atoms
form bonds which connect to atoms on four different Sizg
balls. Only six of these 12 additional atoms are unique to
the unit cell. The addition of these atoms generates, per
dodecahedron, three Sips4 tetrakaidecahedra (14-hedra),
which fill the space not occupied by the dodecahedra.
These polyhedra contain two hexagons and twelve pen-
tagons and are similar to the Cz4 fullerene molecule. The
structure is labeled MEP in the zeolite atlas.?! The 14-
hedra (six per unit cell) share opposite hexagonal faces
with other 14-hedra to form nonintersecting rods along
(100) and the dodecahedra (two per unit cell) are in the
interstices of the packing. There are 46 Si atoms per
primitive cubic cell and the average ring size is 5.094
atoms per ring.

Si(34) is derived from a packing of dodecahedra and
hexakaidecahedra (16-hedra) in the ratio 2:1 and the av-
erage ring size is 5.064 (the smallest of any such known
structure). The dodecahedra (sixteen per unit cell) form
intersecting face-sharing rods along (110) and the 16-
hedra (eight per unit cell) are in the interstices of the
packing. There are 4x34=136 Si atoms per face-centered
cubic unit cell (which has the same symmetry as dia-
mond).

The high proportion of five-membered rings (ideal an-
gle 108°) makes the structures energetically competitve
with diamond (angle 109.5°). It is not possible to
make a structure with only five-membered rings. A
stereographic?? figure of Si(46) is shown in Fig. 1, and
of Si(34) in Fig. 2.

THEORETICAL METHODS

In this section we discuss briefly the computational
techniques employed in this work to obtain the ground
state total energies, band structures and atomic geome-
tries. The method is fast and particularly suitable for
fairly large systems.

We use an approximate tight-binding-like molecular
dynamics method,?® which is based on density functional
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theory within the local density approximation (LDA) and
the pseudopotential approximation.To find the ground
state total energy we utilize the simplified procedure in-
troduced by Harris.2* Here the energy functional is ex-
pressed in terms of some reference density (in our case
the sum of neutral-atom spherical atomic densities) and
first order changes in the output densities are included.
The usual self-consistent iteration cycle is avoided.2®

The single particle eigenstate problem is solved within
a tight-binding-like formalism. A set of pseudoatomic or-
bitals (PAO’s) is generated by solving the atomic problem
within the pseudopotential approximation. We require
that the single particle Hamiltonian matrix elements have
a short range. This is achieved by imposing the boundary
condition that the pseudoatomic orbitals vanish at a pre-
determined cutoff radius r.. The linear combination of
the s and p PAO’s then forms a minimal set of basis func-
tions, and the secular equation is solved. Although the
method is entirely ab initio, the choice of r. is somewhat
important. The value of r. should be well past the peak
of the atomic wave function, but not so far that large
number of neighbors overlap. The contraction of the or-
bital is more than a computational convenience, but sim-
ulates the contraction of the atomic charge density which
has been shown to occur in solid state systems.?6:27 We
have found from previous work?3:28730 that r.=5 Bohr
is a good choice for Si. For C, we have chosen r. = 4.1
Bohr so that the energy difference between the atomic
levels of Si and C of the contracted atoms is the same as
that of the free (r. — co) atoms.

We use the norm-conserving pseudopotentials of Ham-
man, Schluter, and Chiang®' and the Ceperly-Alder
form3? of the exchange-correlation potential as param-
eterized by Perdew and Zunger.3® The computational ef-
ficiency of this scheme enables us to use a fully converged
set of k points for the integration over the Brillouin zone.
The forces on each atom are calculated via the general-
ization of the Hellmann-Feynman theorem.34:3%:23 Molec-
ular dynamics with a fictitious damping force is used to
determine the lowest energy atomic configuration.

Because of the approximations used in this technique,
we have also performed a small number of fully self-
consistent plane-wave calculations. In the latter cal-
culations, we use soft pseudopotentials of the Kerker-
Martins-Troullier type.3®:37 Plane-wave energy cutoffs of
200 and 600 eV are used for Si and C, respectively. For
the integration over the Brillouin zone we use two spe-
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cial k points in the irreducible wedge. Band structures
obtained by this method are free of the limitations of the
minimal local sp® basis.3® The lattice constant used for
the clathrate structure is estimated from the results of
the local orbital calculation.

RESULTS

We have computed the total energies and band struc-
tures for the A(34) and A(46) clathrate structures where
A is either Si or C, and have compared them to Si and C
in their ground state diamond phases.

The results for the total energies for Si are given in Ta-
ble I. The most important result in this table is that the
energy differences between the clathrate structures and
the diamond structure are of order 0.07 eV, which is sur-
prisingly small (equivalent to less than 900 K). For com-
parison, the (-tin phase of Si (the first phase introduced
by the application of high pressure) is approximately 0.27
eV higher in energy than the diamond phase.?®> The vol-
ume per atom of the clathrate phases is increased by
about 17% compared to diamond. The crystallographic
descriptions of the minimum energy configurations are
given in Tables II and III. We have performed a single
plane-wave calculation for the Si(34) structure at the es-
timated minimum energy configuration and find only a
small difference in the total energy between the plane-
wave and local orbital calculations, so we have confidence
in our results.

The results for the total energies for C are given in
Table IV. Here we find larger energy differences between
the clathrate structures and the diamond structure than
were found for Si, but they are still relatively small. We
find that the volume has expanded by 14-18 %, which
is similar to the 17% expansion found for Si. Again we
find that the planewave calculation gives a similar en-
ergy difference for the C(34) structure compared to the
local orbital calculation, indicating that the local orbital
calculations are yielding sensible results. Our energies
are somewhat higher than those found by Nesper, Vo-
gel, and Blochl,'® who find energies relative to diamond
in the 0.07-0.09 eV /atom range. We use a plane-wave
method, and Nesper, Vogel, and Blochl use an augmented
plane-wave method. By any measure, however, there is
agreement that the energies of these structures are in-
deed quite low. For comparison, Cgg is higher in energy

TABLE 1. Energies and geometry of Si clathrates. The volume ratios are those obtained by taking
the ratio of the volumes per atom of the clathrate and diamond (Vo) structures at their minimum
energy. The cubic lattice constant a (the side of a cube edge) for the minimum volume configuration
is also shown, except for the the plane-wave calculation where a full energy minimization was not

done and a was estimated.

Lattice E:o: (eV/atom) V/Vo a (R)

Diamond (local orbital) fce 0.000 1.000 5.49 (5.43 expt)
Si(34) (local orbital) fec 0.055 1.17 14.86
Si(34) (plane wave) fcc 0.080 14.46
Si(46) (local orbital) sc 0.069 1.17 10.35
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TABLE II. The crystallographic description of Si(34).

Space group Fd3m, a = 14.864 A. Origin at 3m

Si(1) in 8(a): 1/8,1/8,1/8, etc.
Si(2) in 32(e): z,z,z, etc., z=0.2174
Si(3) in 96(g): z,z,z, etc., £=0.1824, 2=0.3701
Bond length range 2.38-2.41 A

than diamond by about 0.4 eV/atom.'?

The most interesting result comes from an inspection of
the band structure of Si in the clathrate structures. The
band structure of Si in the diamond structure is com-
pared to that of the Si(34) clathrate structure in Fig.
3. These band structures were computed using the local
orbital sp3 basis. For Si in diamond, the valence band
maximum is at k=(000), and the conduction band mini-
mum is along the line from k=(000) to k=2%(100). The
band gap is indirect and equal to 1.7 eV. This is larger
than the experimental band gap of 1.17 eV (0 K). The
overestimate of the band gap is due to the use of a min-
imal sp® basis.3® The band structure of Si(34) has an
indirect gap of 2.4 eV, or an opening of the band gap
of 0.7 eV. This is an enormous increase in the Si band
gap, and makes it comparable to several III-V or II-VI
compound semiconductors. It is also similar in size to
the band gap observed for porous Si. We also find that
the valence band maximum has moved down in energy
substantially compared to the valence band maximum
of Si in the diamond structure. The valence band max-
imum occurs at the Z(111) (L) point in the Brillouin
zone and has an energy of —4.2 eV, while the maximum
is at k=(000) (T") for diamond and is at —3.0 eV. The
conduction band minimum also moves down, but by a
smaller amount than the valence band. The conduction
band minimum for Si(34) is at the k=(000) (I') point in
the Brilloiun zone.

The 0.7 eV opening of the Si band gap is very signifi-
cant and could well have potential applications. To check
the accuracy of our results we have, therefore, repeated
the band structure calculation using a converged plane-
wave basis; the region near the band gap is shown in Fig.
4(b), and the near band-gap local orbital band structure
is shown for comparison in Fig. 4(a). We find using
plane waves that the band gap of the Si(34) clathrate is
1.40 eV; for comparison, the band gap for the diamond
structure is found to be 0.70 eV. Thus from the plane-
wave calculations we find that the band gap for the Si(34)
clathrate has opened up by 0.70 eV compared to Si in the
diamond phase, in agreement with the results for the sp®
calculation. Also in agreement with the local orbital cal-
culation is the fact that the valence band maximum is
at L, and the conduction band minimum is at I'. Note
that the difference in energy between the valence band

TABLE III. The crystallographic description of Si(46).

Space group Pm3n, a = 10.355 A

Si(1) in 6(d): 0,1/4,1/2, etc.
Si(2) in 16(¢): z,z,z, etc., £=0.1837
Si(3) in 24(k): 0,y,z, etc., y=0.1172, 2=0.3077
Bond length range 2.38-2.43 A
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FIG. 3. The band structure of Si computed using local
orbitals in (a) the diamond structure and (b) in the Si(34)
clathrate structure. Both structures are fcc and have the
same shape for the Brillouin zone. The top of the valence
band is near —3.0 eV for diamond, and near —4.2 eV for the
clathrate.
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FIG. 4. The band structure in the near band-gap region
for the Si(34) clathrate structure computed using (a) local
orbitals and (b) plane waves. In each case only the top ten
valence bands (including degeneracy) and the bottom ten con-
duction bands are shown.
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TABLE IV. Energies and geometry of carbon clathrates. The volume ratios are those obtained
by taking the ratio of the volumes per atom of the clathrate and diamond (Vo) structures at
their minimum energy. The cubic lattice constant a (the side of a cube edge) for the minimum
volume configuration is also shown, except for the the plane-wave calculation where a full energy

minimization was not done and a was estimated.

Lattice Eiot (eV/atom) V/Vo a (A)

Diamond (local orbital) fee 0.000 1.000 3.51 (3.57 expt)
C(34) (local orbital) fec 0.113 1.186 9.562
C(34) (planewave) fcc 0.134 9.494
C(46) (local orbital) sc 0.144 1.140 6.68

maximum at L and the valence band edge at I' is only
0.12 eV. Thus, the band gap is indirect, but a direct band
gap exists just 0.12 eV higher in energy. Thus, although
this modification of Si appears not to be suitable as a
light source, we do not want to exclude the possibility of
further band-gap engineering, e.g., via strain, doping, or
superlattices, in order to capitalize on the wide band gap
for optical purposes.

All the calculations of the band gap presented here are
based on the LDA. This theory is well known not to give
accurate band gaps; typically (except for minimal basis
set calculations) they are underestimated. Fortunately,
trends in the band gaps are usually well reproduced, so
we expect that the Si(34) clathrate structure band gap is
significantly higher than the Si diamond structure. With
these caveats in mind, our results can then be used to
estimate the “true” Si(34) clathrate structure band gap
to be 1.87 eV (equal to 1.17 + 0.70).

We have also computed the band structure for C(34)
using sp® orbitals, and find a less dramatic, but opposite,
effect. We find that the diamond band gap is 6.18 eV
while that for C(34) is 5.00 eV, and for C(46) is 5.16 eV.
Corresponding results by Nesper, Vogel, and Blochl!® us-
ing plane waves also show a shrinking of the band gap—
the two structures give a 6% to 23% reduction compared
with diamond.

Next we consider the band structure of the Si(46)
clathrate. This is shown for the near band-gap region in
Fig. 5, and was computed using sp® orbitals. The high-
est occupied state (top of the valence band) is just below
—4.0 eV and the band gap is 2.5 eV, very close to the

’ 8i(46) (local orbital)

N

energy (eV)

o) e T

FIG. 5. The band structure in the near band-gap region for
the Si(46) clathrate structure computed using local orbitals.
The top of the valence band is near —4.1 eV. The band gap
is 2.5 eV.

band gap found for Si(34). We find that both the valence
band maximum and the conduction band minimum have
moved up slightly compared to Si(34), but again they
are much lower than they were in the diamond config-
uration. The valence band maximum is along the I' to
X line, with a secondary maximum along I' to L. The
conduction band minimum is at I'.

It should be noted that the top of the valence band
for these Si clathrate structures shifts down by over 1
eV compared to diamond [compare Figs. 3(a), 3(b), and
5], yet the total energy of these structures is higher than
that of diamond by about 0.07 eV. In an effort to under-
stand the origin of the small energy differences between
Si in the clathrate and diamond structures, we have done
simplified calculations of the total energy based only on
the strain energy using a Keating model.3° In the Keat-
ing model, bond-stretching and bond-bending energies
are included, and these are fit to the elastic constants of
Si in the diamond structure.?® No explicit chemical or
electronic structure effects are included in such a model.
We have completely relaxed the structure and have deter-
mined the total energy versus volume using this model.
In spite of its simplicity, and in spite of the large en-
ergy shift of some of the electronic eigenvalues, the model
using elastic energy alone seems to give a fairly accu-
rate representation of the energy changes found for these
structures. The total energy versus volume using this
model for Si is shown in Fig. 6. The energy differences
between the diamond and clathrate phases as well as min-
imum energy volumes are in good agreement with those
found from electronic structure calculations given in Ta-
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0.80
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Energy/atom (eV)
OO O O OO O o O

1.00 1.20
V/V(diamond)
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FIG. 6. The total energy of diamond (Si(2)) and two
clathrate structures [Si(34) and Si(46)] as a function of re-
duced volume V/Vgjamona computed using a simplified strain
energy Keating model.
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ble I. This calculation suggests that even though the en-
ergy bands shift considerably from those of the diamond
phase, the most important contribution to the total en-
ergy is simply the angle strain on the bonds introduced
by the clathrate structure.

CONCLUSIONS

We have used an approximate ab initio quantum
molecular-dynamics method to investigate the electronic
structure of the Si(34) and Si(46) clathrate solid struc-
tures. We have also determined their stability relative
to the ground state Si diamond structure. We have per-
formed similar calculations for carbon.

The most significant result is that both Si(34) and
Si(46) solids have indirect band gaps significantly wider
(by about 0.7 eV) than the band gap of Si in the dia-
mond structure, which makes the band gap in these ma-
terials comparable to the band gap of porous Si. Carbon
shows the opposite effect—the band gap for carbon in
the clathrate structures is reduced compared to the band

gap in diamond.

We find that the total energy difference between Si in
the clathrate and the diamond structures is surprisingly
small. The Si clathrate phases are about 0.07 eV /atom
above the energy of the ground state Si diamond struc-
ture. The volume increase in the clathrate phase as com-
pared to the diamond phase is about 17%.

In conclusion, our results show that Si in the clathrate
structures has very low energy and a large band gap.
The implications of these results suggest that this mate-
rial should be studied further for possible new electronic
applications.
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