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A generalized mathematical description of thermally stimulated luminescence (TL) and thermally
stimulated conductivity (TSC) is presented in terms of a formulation that replaces the quasiequi-
librium (QE) and kinetic-order approximations by two new functions Q(T) and P(T), respectively.
These functions are related and can be described in terms of the physically meaningful processes
of charge trapping, release, and recombination. With the Q(T) and P(T) functions and their rela-
tions to the reaction rates, we show that slow-retrapping (first-order) processes will be dominant in
systems for which QE is satisfied, and that QE and non-first-order kinetics are incompatible. We
develop general expressions for TL and TSC in terms of the Q(T) and P(T) functions and arrive at
analytical solutions to the rate equations for the first-order case without the QE approximation and
without the presence of Q(T) in the final equations. These general first-order equations are then
parametrized and compared to curve shapes generated both from the Randall-Wilkins expressions
and from numerical solutions to the rate equations. We show that the general first-order equations
reproduce the numerical solutions over a wider range of parameter cases than do the Randall-Wilkins
equations. In addition, we suggest a simple method for the extraction of activation energies from
experimental TL and TSC peaks, independent of the QE approximation.

I. INTRODUCTION

Thermally stimulated luminescence (or thermolumi-
nescence, TL) and thermally stimulated conductivity
(TSC) have long been used as methods for determining
the characteristic parameters of deep, localized states in
semiconductors and insulators. The methods involve the
establishing of a nonequilibrium, metastable concentra-
tion of trapped charges at deep states within the band
gap of the material (usually by illuminating the specimen
with ionizing radiation of energy greater than the band
gap). Heating of the sample then results in the ther-
mally stimulated release of the trapped charges which
subsequently recombine. If the recombination is radia-
tive, a transient luminescence signal results (known as
a TL "glow peak" or "glow curve"); furthermore, if the
transitions involve passage through the delocalized bands
a transient conductivity signal is recorded (TSC). The
TL and TSC peaks so generated may be used to de-
termine the energy depth of the trap &om which the
charge was stimulated, along with information concern-
ing other factors such as capture cross sections and rela-
tive concentrations.

The usual methods of analysis for TL and TSC curves
proceed using the descriptions of these processes devised
during the 1940s by Randall and Wilkins and Garlick
and Gibson. 4 The model described by these authors con-
sists of a single electron-trapping level and a single hole-
trapping level. During excitation electrons and holes be-
come trapped, after which thermal stimulation causes the
release of the trapped electrons into the conduction band,
giving a TSC signal. Recombination with the trapped
holes follows, with the subsequent production of TL. The

concept of &ee holes recombining with trapped electrons
is equally acceptable. Later analysis introduced a third,
thermally disconnected (electron) level, s s but the basic
approach remained unaltered. The fundamental chal-
lenge has been to use the adopted model to describe the
theoretical curve shape for TL and/or TSC, and from this
to extract information regarding the trapping parameters
(trap depth, capture cross section, etc.), to which end
a wide range of analytical methods has been suggested.
The usual procedure is to write a set of differential rate
equations to describe the Bow of charge between the traps
and recombination centers during thermal stimulation.
Due to their nonlinear coupling, however, these equa-
tions become intractable and analytical solutions are not
possible even for the simplest of systems. As a result, ad-
ditional simplifying relationships have to be introduced;
these include the "kinetic-order" (Ko) assumption re-
garding the relative rates of recombination and retrap-
ping, and the "quasiequilibrium" (QE) approximation
regarding the rate at which &ee charge accumulates in
the delocalized bands versus the rate of recombination.
It is this last approximation which results in the decou-
pling of the rate equations. The resulting expressions
for the TL and TSC peaks are then used as the basis
for several families of analytical procedures, which may
be conveniently listed as initial rise techniques, 4 heating
rate methods, peak shape methods, ' and peak 6tting
methods. ~0

The accuracy of each of these methods at determining
the trapping parameters has been examined by numer-
ically solving the rate equations, without any simplify-
ing assumptions, and in this way producing a simulated
TSC or TL peak. One then uses the above techniques to
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determine, from the simulated curves, the various trap-
ping parameters, which are then compared to the input
values. The results of such exercises have, in general,
been pessimistic. The most comprehensive examination
of this type was undertaken by Kelly et al. who con-
cluded that the approximations used to derive the simple
solutions were valid for only a part of the range of phys-
ically reasonable parameters. The exact solutions to the
rate equations led to a wider range of peak shapes, po-
sitions, and magnitudes than could be described by the
simplified solutions. They also noted that the exact solu-
tions could sometimes be adequately described by more
than one set of parameters using the simplified solutions.
These deliberations led Kelly et al. to the conclusion
that analyses of TL and TSC peaks using simplifying
assumptions are unlikely to lead to unambiguous solu-
tions in the absence of extensive additional information.
In particular, these authors questioned the validity of the
QE approximation. Thus the validity of using TL and/or
TSC to arrive at estimates of the trapping parameters is
potentially undermined by uncertainty regarding the QE
approximation in particular, and the simplified descrip-
tions in general.

The purpose of this paper is to present a more general-
ized description of TL and TSC phenomena which does
not rely on the QE approximation. The analysis to be
presented follows &om an approach to TL and TSC ki-
netics introduced by Lewandowski and McKeever in an
earlier paper. i In this proposal, the QE and KO ap-
proximations are replaced by two physically meaningful
functions, namely, the Q(T) and P(T) functions, respec-
tively. These functions are related and can be described
in terms of the meaningful processes of charge trapping,
release, and recombination. The abandonment of the QE
approximation yields a generalized equation for TL (and
one for TSC) which is capable of describing a wide range
of cases. With this new equation we are able to gain
greater insight into the validity of the QE approximation
than was available hitherto and, furthermore, we are able
to make some general statements regarding the validity
of the various simplified equations to describe TL and
TSC. Finally, the analysis allows us to suggest a simple
experimental method for the extraction of the trap depth
values from experimental TL and TSC peaks, indepen-
dent of the QE approximation.

II. THE MODEL

The analysis to be presented must begin with a choice
of a model for the production of TL and TSC. Following
our earlier paper we employ the model shown in Fig. 1,
which is closely related to that described by Dussel and
Bube and by Saunders. The model consists of a set of
shallow electron traps (ST) which are thermally unstable
over the "active" temperature range. The active temper-
ature range denoted &om To to Ty is defined as that over
which charge is thermally released &om the active traps
(AT). The active traps are characterized by a thermal
trap depth E = E —E, a concentration N of traps, of
which n(T) are filled with electrons, and a capture cross

n (T)
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FIG. 1. Energy level diagram oj: the model under consid-
eration. The model consists of a distribution of shallow lev-
els (ST's), the active level (AT) at energy E, a distribu-
tion of deep thermally disconnected electron traps (DHT's)
from energies E~ to Eg, and a distribution of thermally dis-
connected hole traps (DHT's) from energies E„to Ey [from
Lewandowski and McKeever (Ref. 12)].

Ea
H = G(E)dE,

EF

and

FF
M = G(E)dE,

where G(E) is the density of states function. The deep
hole traps are characterized by an effective capture cross
section for electrons R(T) and a concentration of full hole
traps h(T). The average recombination cross section,
R(T), is given by,

R(T) = —) M;r;(T),

where the sum is over levels with energy less than EF and
greater than E . M,. is the concentration of hole traps
of defect type i and r, (T) is the capture cross section
for electrons of a hole trap of defect type i. We further

section for electrons S(T). In addition, the model con-
tains a concentration H of deep, thermally disconnected
electron traps (DET). Thermally disconnected is taken
to mean that electrons localized at these traps are ther-
mally stable over the active temperature range. The final
category of traps are a set of thermally disconnected hole
traps (DHT) existing in concentration M. These are also
thermally disconnected in the sense that E, —E is less
than E„—E„sothat little or no simultaneous hole release
occurs over the active temperature range. The Fermi en-

ergy EF is located schematically near midgap. H and M
are given by,



49 ANALYTICAL DESCRIPTION OF THERMALLY STIMULATED. . . 8031

define n, (T) to be the concentration of free electrons in
the conduction band (E & E,) and Ii (T) to be the con-
centration of free holes in the valence band (E & E„).

We consider the excitation of the system at a low tem-
perature T ( To by illumination with radiation of energy
greater than the band gap. This is continued until equi-
librium is achieved, whereupon the excitation is removed
and the system is allowed to return to a new equilibrium.
The system is then heated at a linear rate P = dT/dt in
the dark. Initially the trap-emptying process begins as
electrons are excited out of the shallow levels. Over the
active temperature range (To to Ty), however, these lev-

els no longer represent stable trapping centers so that,
as shown in Fig. 1, electrons are excited out of the ac-
tive level into the conduction band and are removed kom
the conduction band by retrapping and recombination.
The deep electron traps remain full over this temperature
range and therefore do not constitute potential trapping
sites.

III. THE THEORY

A. The q(T) and P(T) functions

Following the analysis of Lewandowski and McKeev-
er we write the thermal release probability function per
unit time &om the active level as,

'P(T) = s(T)exp ~—
E)
kTy

' (4)

where s(T) is the frequency factor, E is the trap depth,
T is the absolute temperature, and k is Boltzmann's con-
stant.

The set of coupled differential equations which describe
the traffic of charge between the energy levels during
thermal stimulation can now be written, thus,

El
R,„(T)= n(T)s(T) exp ~—

kT) ' (10)

R„,~ (T) = n, (T) [N —n(T)]S(T)v, (T),

and

R„, (T)= n, (T)/v(T)
= n, (T)v, (T)R(T)h(T).

It should be noted that these reaction rates are defined
to be positive quantities.

The usual procedure to solve the rate equations, Eqs.
(5) and (6), is to introduce the quasiequilibrium approx-
imation, namely, that ]dn, (T)/dt] « [n, (T)/v(T) ~. This
inequality implies that the density of delocalized elec-
trons remains constant over the temperature range of de-
trapping. If one has n, (To) « n(TO) at equilibrium after
excitation, then the QE assumption would mean that,
relative to the trapped charge density, &ee electrons do
not accumulate in the conduction band during the re-
lease of trapped charge. While this may be a reasonable
assumption for the slow-retrapping case, for other cases
such as fast retrapping this ass»mption may break down
altogether. As an alternative to the QE approximation,
Lewandowski and McKeever introduced the function
q(T) such that,

f'n, (T) t dn, (T)
& (T) )

&(T)
= v, (T)R(T)h(T).

With this model the reaction rates for excita-
tion R,„(T),recapture R„,~(T), and recombination
R„, (T) are thus

dn(T) f E i= —n(T)N, (T)S(T)v,(T) exp ~—
dt ' '

g kTp
+n, (T) [N —n(T)]S(T)v, (T),

for all T. From Eq. (6) this becomes

(n, (T) i dn(T)
(14)

dn, (T) dn(T) n, (T)
dt dt 7 (T)

(6)

where h is Planck's constant divided by 2x. The thermal
velocity of electrons in the conduction band v, (T) is given
by,

v, (T) = 3kT

where m' is the electron efFective mass. The recombina-
tion lifetime ~(T) is given by

In these equations, N, (T) is the efFective density of states
in the conduction band, given by

3/2

(7)

where Q(T) = q(T)+1 Note that Q.E means that q(T)
0 or Q(T) —1 for all T. The value of this function is then
a measure of the degree to which the system remains in
quasiequilibrinm over the course of trap emptying. At
this stage we may also define the kinetic-order function
P(T), namely,

P(T) = 7(T) [N —n(T)]S(T. )v, (T).

This function is a generalization of the concept of ki-
netic order in that it expresses the degree by which re-
combination processes dominate over retrapping, or vice
versa. The traditional limiting cases considered such as
slow retrapping (first order), retrapping, and fast retrap-
ping are achieved by P(T) taking on the constant values
P(T) « 1, P(T) = 1, and P(T) » 1 respectively. The
main advantage in defining the Q(T) and P(T) functions
in this way is to separate conceptually the QE and KO
approximations and further to allow the system's adher-
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R,„(T)—R„,p(T)
Rrecom(T)

(16)

and

R...p(T)
Rrecom(T)

We also note that

ence to these restrictions to vary with temperature. In
previous formulations the QE approximation is made be-
fore any kinetic-order considerations.

Q(T) and P(T) may also be defined in terms of the
reaction rates, thus,

The final set of conditions are those imposed by
Randall and Wilkins in their original analysis of TL
glow peaks, naxnely Q(T) = 1 and P(T) (( l.
This requires R„, (T) )) R„,~(T) and R,„(T)))R„,p(T), or n, (T)R(T)h(T) )) n, (T)S(T)[N —n(T)]
and n(T) s(T) exp( —E/kT) )) n, (T)S(T)[N —n(T)].
These constitute a legitimate self-consistent set of in-
equalities and are significantly less restrictive than the
equalities of the previous case. Such relationships may
exist over wide temperature ranges. Stated difFerently,
the slow-retrapping conditions best satisfy the require-
ments of a realizable system. It is not obvious in this
case if the reservations of Kelly et al. continue to be
justified. To answer this we must proceed further.

and

Q(T)+P(T) =
Rrecom(T) B. The generalired Brst-order

TL and TSC equations

Q(T) R-(T)
P(T) R„,F(T)

Using the framework of the Q(T) and P(T) func-
tions we can now make some general statements with
regard to the traditional methods of analysis for TL and
TSC curves in which assumptions are employed involv-
ing the relative sizes of the various reaction rates de-
fined in Eqs. (10)—(12). The traditional methods use the
QE approximation, namely Q(T) —1, along with the
slow-retrapping, retrapping, or fast-retrapping approxi-
mations.

Considering the traditional fast-retrapping case first,
we have for this case Q(T) —1 and P(T)» 1, which
implies from Eq. (19) that R,„(T)—R„,~(T) over all
T. If this were strictly true, the active trap would not
empty. Furthermore, if R,„(T)= R„,~(T), then from
Eq. (16), Q(T) = 0, contrary to the initial premise. If,
however, R„, (T) was correspondingly very small in
Eq. (16) then it still may be that Q(T) = l.xs While this
may be true in principle, in practice if R„, were very
small, it is unlikely that a TL signal would be observed in
the first place and the TSC signal would not form a peak
but instead would rise to an equilibrium level forming a
step rather than a peak. Therefore, for a TL and/or TSC
peak to be observed in the active temperature range, the
P(T) )) 1 and Q(T) = 1 conditions cannot both be true
for all T. This discussion leads to the realization that it
is extremely unlikely to have a TL (or TSC) peak xohich

is described by both fast retrapping and qu-asiequilibrium.
In this way we see that the reservations of Kelly et al.
are justified for this case.

For the retrapping case we have Q(T) 1 and P(T) =
1. This means from Eqs. (17)—(19) that R„,z(T)R„, (T) and R,„(T)= 2R„, (T) = 2R„,~(T) over
all T. Although these conditions may be true over cer-
tain temperature ranges, it is unlikely that they will
be true in general since they rely on the functions
n, (T),n(T), S(T),R(T), h(T), and v, (T), which all have
difFerent temperature dependencies. Thus, as before, we
see that the warnings of Kelly et al. may have some
justification in this case also.

The experimentally observed TSC and TL signals,
Iisc(T) and Iix, (T), are related to the &ee-carrier con-
centration n, (T) by I~sc(T) = AFep(T)n, (T) and
I~L(T) = gn, (T)/r(T), where e is the modulus of the
electronic charge, IJ, (T) is the electron mobility, A is the
efFective electrode area, F is the magnitude of the applied
electric field, and g is the luminescence efficiency of the
recoxnbination process (0 ( rl ( 1).

From the definitions of the Q(T) and P(T) functions
[Eqs. (14) and (15)] and the first rate equation [Eq. (5)],
one may arrive at the following expression for n, (T),i2

r(T)n(T)s(T) ( E )
Q(T) + P(T) kT (20)

Then substituting this expression for n, (T) into Eq. (14)
produces

dn(T) ( Q(T) ) (
(T) «EQ(T)+P(T)) & kT)

(21)

Integration of this last equation using dT/dt = P pro-
duces

Q(O)
n(T) = no exp —— s(O

El
x exp

~

—
~

dO
k

= no exp[ —g(T)], (22)

where no is the initial electron concentration in the active
trap, and

With Eqs. (20) and (22), the TL expression becomes

Q(O) l ( E )
„g(T) =

y I

Q(O) p(O)
Is(O)exp

(23)
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I»(T)= n I

!'n,(T) ))

= rtno exp
~

—
~
exp[ —g(T)].a(T) ( E )

(24)

TSC equation becomes

S(T) N, (T) ( E ))

R(T) Q(T)+P(T) q kT

x ) (—1)'+'
(
—

) exp[ —jg(T)). (31)

Since ITsc(T) and n, (T) are related by AFep, (T), deriv-

ing the TSC equation essentially consists of deriving an
expression for n, (T). Since n, (T) = r(T)I»(T)/q,

n (T) = r(T)no exp
~

—
~ exp[—g(T)].

a(T) f E )

(25)

Unlike the TL solution, the TSC equation requires one to
specify the form of 7 (T). This is done by imposing the
charge neutrality condition. For temperatures greater
than To, this is expressed,

At this point we introduce the first-order, slow-

retrapping approximation [P(T) « 1] realizing that the
vast majority of physically observable cases fall into this
category. Under the condition P(T) « Q(T) where Q(T)
is on the order of 1, except at the very end of the peak,
the TSC and TL equations become

S(T)N, (T) f' E ) . ;+, rnp.( ) =
&(T)Q(T)

P kT
l—):(—)'+'I,

H

x exp —— a(8)e ~" d8 ~, (32)

n. (T) + n(T) + H = h(T) + h„(T). (26) and

For the model considered in this study, h„(T) 0 over
the active temperature range. Therefore, from Eq. (9),

7.(T) =
v, (T)B(T)[n, (T) + n(T) + H]

'

and Eq. (25) becomes

n.(T)'+ n. (T)[n(T) + H]

a(T) 1
v, (T)R(T) Q(T) + P(T)

( n(T) ) ( E )
in(T) + H) i kT)

At this stage one may employ the expansion,

(29)

rn(T) )'

(30)

provided H ) n(T). With s(T) = N, (T)S(T)v (T), the

a(T) n(T) E l
,(T)B(T) Q(T) + P(T) ikT)'

The solution to this equation is considered in more de-
tail in the Appendix. In the present derivation it will
be assumed that the concentration of trapped electrons
in both the active level and the deep electron traps is
much greater than the concentration of kee electrons at
any temperature T within the active temperature range,
that is, n(T) + H )& n, (T). This is essentially the same
approximation used by Lewandowski and McKeever in
their earlier analysis. ~2 The result of this approximation
is that one may ignore the n, (T)2 term compared to
n, (T)[n(T) + H] in the above equation resulting in

ITsc(T) = Q(T)ITsc(T),

ITL (T) = Q(T)I»(T),

(34)

where ITIC(T) and Ig(T) rePresent the observed TSC
and TL pro61es under conditions of quasiequilibrium and
Srst order. It should also be noted that the above rela-
tionship for TSC is only valid within the n(T) + H )&
n, (T) approximation, while the TL relationship is per-
fectly general for 6rst order for this model.

Prom the above expressions we can see that a 6rst-
order TL or TSC peak is described by the approximate
solutions IT~& (T) and ITIC(T), modi6ed by the Q(T)
function. From a practical standpoint we are still faced
with the problem of knowing what the shape of this func-
tion is. As they stand, the above first-order equations
are not practical as experimental tools since they can-
not be described solely in terms of macroscopically mea-
surable parameters, unlike the original Randall-Wilkins
equation. In an attempt to overcome this one may pro-
ceed in two different ways.

As a first approach one may recognize that the de6ni-

rtnpa(T) ( E )
ITL(T) =

Q(T)
exp

l

x exp —— a(O) e ~" d8 . (33)

If the QE approximation is made by setting Q(T) = 1,
the TL equation takes on the form determined by Randall
and Wilkins. s To obtain the Randall-Wilkins form of the
TSC equation one must in addition require that H »
no. This requirement is a consequence of inclusion of
deep thermally disconnected traps in the present model
and their absence in the model proposed by Randall and
Wilkins and is also in accordance with the conclusion
of "mixed-order" kinetic analysis by Chen et al. ~4

By comparing Eqs. (32) and (33) with and without the
QE approximation, it is clear that,
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tion of Q(T) results in useful relations between Q(T) and
the observed TSC and TL spectra. For instance, Q(T)
can be represented in terms of TSC thus,

Pp(T) 7 (T) d (ITsc (T) & +1
ITsc(T) dT ( p(T) )
Pw(T) dITsc(T)

I»c(T)

where typically the temperature dependence of p(T) is

weak and can usually be ignored. In terms of TL, Q(T)
may be expressed as

ITr (T) dT

Both the above expressions require knowledge of &(T);
however, this requirement can be removed if one has ac-
cess to simultaneous TL and TSC since Q(T) can also be
written [assuming p(T) =constant] as

aP dITsc(T)
AFepITr (T) dT

As discussed in a previous paper these expressions es-
tablish that the QE approximation is only valid at the
temperature of the TSC peak maximum. In principle, the

shape of Q(T) can be determined experimentally from a
measurement of either TSC alone [Eq. (36)], or TL alone
[Eq. (37)], or from a simultaneous measurement of both
TL and TSC [Eq. (38)]. However, in practice this line of
attack is fraught with difhculties since, experimentally,
the scaling constants are unknown, and the function 7 (T)
is often unknown also.

An alternative approach is to use Eqs. (34) and (35);
and Eqs. (36) and (37) to produce the relation,

where I(T) = ITsc(T) for TSC and I(T) = 7-(T)ITr (T)
for TL. Equation (39) is simply a first-order, linear, dif-
ferential equation with the solution

1 ( 1 dT itI(T) = —exp

(1 dO ) IqE(8)
x exp

i

—
i

dO.

The complete relation for TI is obtained by setting
I(T) = r(T)ITr, (T), I~E(T) = w(T)ITAL (T), and by sub-
stituting Eq. (33) with Q(T) set to unity into Eq. (40).
This done, the generalized erst-order TL equation be-
comes

gns ( 1 dT ) t'1 dO i ( E t E 't
ITL(T) = '

exp ~--
7-(T)p ~ p 7.(T)) T, ~p 7(8)y ( k8) p T q kOy

exp
I

1.(8) exp
I I

exp —— s(A) exp ~—

(41)

It should be pointed out that the only approximation used in the derivation of the above equation for TL is that
P(T) « Q(T) and it is in all other ways a perfectly general solution for this model.

The complete expression for TSC obtained from the above TL equation via ITsc(T) = AFep7 (T)ITL(T)/g is

AFepno t' 1 dT l t'1 d8 l ( E t

ITsc(T) = exp
~

——
~

exp
~

—
~
s(O) exp ~—

P q P ~Ty ~, i ~8) i k8y

1 e
x exp —— s(Q) exp

~

—
~

dO dO.
p T. kO)

(42)

The approximations involved in the above TSC solution
are: n(T) + H )) n, (T), p(T) =constant, and, P(T) «
Q(T).

Although Eqs. (41) and (42) are more complex than
their quasiequilibriurn counterparts, they represent more
accurately the true shapes of the TL and TSC curves
than do the simple Randall-Wilkins forms. It should be
noted that the above expressions still contain the un-
known term r(T). However, v(T) can either be consid-
ered a constant [where its temperature dependence is ig-
nored compared with the exp( —E/kT) terms] or it may
simply be parametrized thus, 7 (T) = C T, where C
and n are constants. If either of these simplifications are
introduced we have achieved the desired aim of produc-
ing full expressions for TL and TSC written entirely in
terms of macroscopic parameters only.

IV. CALCULATIONS

A. Equation parametrization

VA now consider curve shapes obtained from the
Randall-Wilkins (RW) equation, the generalized first-
order equations derived in the previous section, and
those obtained by numerically solving the rate equations
directly using an adaptive fourth-order, Runge-Kutta-
Fehlberg (RKF) routine. Our goal is to determine if
the generalized equations give superior descriptions com-
pared to the Randall-Vfilkins equations and to deter-
mine under what conditions the Randall-Wilkins equa-
tions may be safely applied. Before this is done, however,
some comments regarding the parametrization of R(T)
and S(T) and the relationship between TL and TSC are
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in order.
Lewandowski and McKeever show that the relation-

ship between TL and TSC is given by the following ex-
pression,

AFe p(T)
Tsc( )

— TL( ) H R(T)v (T)
OO

x ) (
——') expf —jg(T)).

j=o

From this expression it was observed that if H )& no (or
N) then one may approximate the series by the first term,
and also, if p(T)/[R(T)v, (T)] —constant, then the TL
and TSC have the same shape and peak temperature. For
many of the curve shapes presented in this section these
conditions will indeed hold. In the curves that follow, we
have assumed that the following set of conditions hold
true:

(1) rj = 1. This, in fact, is a consequence of the model
we have chosen in Fig. 1 wherein all recombination events
are radiative.

(2) IJ,(T) = p = constant. This allows us to monitor
n, (T) instead of ITsc(T) since, under this assumption,
they dier by a constant.

(3) In order to use the expressions derived in the pre-
vious section some knowledge regarding the functional
form of the unknown functions R(T), S(T), 7 (T), or s(T)
must be inferred or assumed. Because of the relationships
between these functions, it is only necessary to assume a
functional form for any two. In this paper we will assume
that R(T) and S(T) may be approximated by power-
law temperature dependencies of the form DT " and

I

R(T) = DT and S(T) = CT '. (44-)

With v, = (SkT/m')ijz and N, (T) = 2[kTm'/
(2z'h )]

j' we have

s(T) = N, (T)S(T)v, (T) = BT (45)

and using Eq. (27) with H &) n, (T) and no, the recom-
bination lifetime could be parametrized thus,

1

r(T)
v, (T)R(T)H = AT i (46)

These choices produce the following parametrized first-
order equations. For d f 3/2,

CT s respectively. These assumptions regarding R(T)
and S(T) are necessary to begin the parametrization of
the generalized first-order TL and TSC equations. As
noted earlier, v, (T) = (SkT/m') j, and while difFerent
values of d were used for difFerent calculations, typically
we used d = 1.5. Thus R(T)v, (T) will have a weak tem-
perature dependency compared with the exponential de-
pendencies of the trapped charge concentrations.

(4) No a priori assumptions are made concerning n, (T)
or n(T) Th. ese functions take on values dictated by the
numerical solutions to the rate equations. Often, how-
ever, it is found that n, (T) or n(T) or both can be
considered to be very much less than H. When this
happens, this will be noted. However, we should take
note that when this doe8 occur, and when taken together
with points (1)—(3) above, we see from Eq. (43) that the
TL and TSC peaks will indeed have maxima at approxi-
mately the same temperature.

As previously noted, we assume:

( ITL(T) & (KTrTij"-~l ( AT ~' ) T t' AO j' ) 2 s ( E l
I
ex'

I

—
I

ex'
I

o-' 'exp I—
( ) ) ( Tsc ) ( P(3/2 —d) ) z; (P(3/2 —d) ) ( ke)

B 2 s ( E I
x exp —— O exp

~

—
~

dO de.
P z; g kO) (47)

For the case where d = 3/2 the equations are

ITr,(T) l~
~

KTLT
~

Tpgp O2 —g+(pgp)

q ITsc(T) ) g KTsc ) T. ( kO)

B , , f Elx exp —— O exp
~

—
~

dO dO.
P T. q kO) (48)

In these equations KTr, —— gnoBA/p and KTsc
AFepnoB/P. The necessity of presenting two forms of
the parametrized equations, one for d g 3/2 and one
d = 3/2, follows from our choice of parametrization and
does not represent a fundamental requirement of the the-
ory. There are six unknown parameters, KTg (KTsc),
A, d, b, E, and B. With regard to fitting, it would be
necessary for any algorithm to use Eq. (47) and then
switch to Eq. (48) if d becomes equal to 3/2. As they
stand, Eqs. (47) and (48) require the following approxi-
mations: H )) n, (T) and no, P(T) « Q(T) (first order),

ITSC(T) KTSC
ITr,(T) KTr,

(49)

and IJ, (T) =constant for TSC. In principle, one need not
make the H » no approximation. Instead of Eq. (46),
one could construct 1/r(T) as v, (T)R(T) [n(T)+H] using
only the n(T) +H )& n (T) approximation and insert Eq.
(22) for n(T). This, however, leads to more coniplicated
equations with a larger number of unknown parameters.

It should also be noted that, given the above
parametrizations, we can write
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t' E)
n, (T) = nors(T) exp i—

kT)
1 f E't

x exp —— s(O) exp
~

—
~

de
P z; I, kO)

(50)

where we observe that if d = 1/2, the TL and TSC peaks
will have the same shape and peak temperature. This is
nothing more than the parametrized version of the state-
ment R(T)v, (T) =constant.

The rate equations (5) and (6) were parametrized in
the same way as Eqs. (47) and (48). To allow for a direct
comparison with the results obtained from the Randall-
Wilkins solution, it too must be parametrized in the same
fashion. The RW equation is given by

calculations were performed with 5 and d set to 3/2, with
P = 4 0 K/ruin, E = 0 300 eV, and no ——¹

From Eq. (49), d = 3/2 and therefore I&s&(T)
const x TIYi, (T). This means that, for these parame-
ters, T I & T,. We see &om Table I this is indeed the
case with T ~ less than T, by 0.1 K except for cases
15 and 18 where they differ by 0.226 K and 0.965 K re-
spectively. This arises kom the fact that, for case 15, H
and N differ by only an order of magnitude while for case
18 they are the same. Since Eqs. (47) and (48) assume
that H )) no, the prediction from Eq. (49) will not be
perfectly valid for these cases.

f. Fitting the RW equation to the RKF eolutione

( El BkT4—s
n, (T) = norBT exp

~

—
~

exp
kT) PE

&&
/

1+
I
exp I—( (b —4)kTit ( E l

E & g kT)

to be used in fitting to the RKF solutions.

B. Curve shapes

(51)

Table I summarizes the range of parameters used for
the calculations. In addition to the N, H, C, and D
parameters, Table I also shows the temperatures of the
TSC and TL peak maxima, T, and T ~ respectively. All

where v is taken to be constant. Parametrizing the RW
equation according to the above prescription and mak-
ing use of an approximation by Keating produces the
parametrized RW fitting equation,

After generating data using the RKF analysis, the RW
expression from Eq. (51) was fitted to the resulting TSC
and TL curves in order to determine parameter values.
In the following discusssion a sample of these data sets,
which emphasize the more significant trends observed, is
examined in greater detail.

The graphs in Fig. 2 show six TSC data sets gener-
ated using RKF. These data sets (a)—(f) correspond, re-
spectively, to cases 1, 3, 4, 14, 17, and 15 &om Table
I. The parametrized RW expression was fitted to these
data sets with the results presented in Table II. Note that
the leading scale factor is not listed and the parameter
C is tabulated instead of B since C is more directly re-
lated to the value of the capture cross section. From this
table we see that the results of fitting to TSC (actually
n, ) yielded a range of activation energies from 0.291 to
0.318 eV. The "poorest" fits (largest value for g2) were

TABLE I. Summary of the system parameters used for the calculation of the TSC and TL curves.
Power-law temperature dependencies of the form R(T) = DT "; d = 3/2 and S(T) = CT
b = 3/2 were assumed for the recombination and capture cross sections. T, and T ~ are the
temperatures of the TSC and TL peak maxima respectively. For all calculations, the activation
energy was 0.300 eV, the heating rate was 4.0 K/min, and N = no

Case
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

N(m ')
10
1O'

10
1O'

10
1O'
1O'

10
10
1O'
1O'
1O"
10
1010
1p11

10

1012
1O'

]012

H(m ')
1pl2
1p12

10
1p12

10

1p12

]p12

1p12

1012

1p12

10
1O"
1p12
1014
1O'4

10
1O"
1p15

C (K'm')
1.6x 10
1.6x 10
1.6x 10
1.6x 10
1.6x 10
1.6x 10
1.6 x 10
1.6x 10
1.6x 10
1.6x 10
1.6x 10
1.6x10
1.6x 10
1.6x 10
1.6x 10
1.6x 10
1.6x 10
1.6x 10
1.6 x 10
1.6 x 10

D (K m')
10—15

1O-"
10—15

10—15

10—14

1p
—13

10
1p

—14

10—13

10
1p

—13

1O-"
1O-"
1O-"
]0 13

1p
—13

10 13

1p
—13

10
]0 13

T , (K)
131.285
121.645
113.279
105.959
130.312
130.197
130.185
120.756
112.363
105.100
112.364
112.375
112.353
112.354
112.484
112.352
112.353
113.219
112.352
112.352

T i (K)
131.114
121.507
113.165
105.864
130.149
130.035
130.024
120.625
112.258
105.011
112.258
112.258
112.248
112.248
112.258
112.246
112.246
112.254
112.246
112.246
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obtained for data sets (a), (b), and (c), in which both N
and H are small (10s and 10t2 m s respectively). When
N and H were increased (10 or 10 m and 10
10~s, or 10~4 m s) as in sets (d), (e), and (f), the fits
were markedly improved (see Table II). For set (f), the

values of N and H are large but the condition H &) N
is only weakly satisfied since H/N = 10. As a result, set
(f) is not as good a fit as sets (d) and (e).

When 6tted to RKF TL data, a similar trend is ob-
served (see Ftg. 3). In most cases, however, the param-

1.5 1.5

1.0 1.0

a 0.5 a 0.5

0.0 0.0

-0.5
100 110 120 130

Temperature(K)

140 150
-0.5

80 100 110
Temperature(K)

120 130

1.5 1.05

1.0

a 0.5 a 1.00—

0.0

-0.5
80 90 100 110

Temperature(K)

I

120 130
0.95

80
I

90 100 110
Temperature(K)

120 130

1.01 1.25

a 1.00 a 1.00—

0.99
80

0.75
80 130100 110

Temperature(K)

90 130110 120

Temperature(K)

120

FIG. 2. TSC curves engenerated using the Runge-Kutta-Fehlber method. The sg o o p () io.o e expression. Solid lines are also used to re resent t
ae is s own; t e scale shown is for the &T& function. T(),. (,),, ( ) "-'- "p

: se (a) case; ( j case 3; (c) case 4. ~d~ case
a

parameters.
( );( j,();( ) case 14; (e) case 17; (f) case 15. See Table II for Stted
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TABLE II. Parameters obtained from 6tting the Randall-Wilkins TSC and TL equations to
Runge-Kut ta-Fehlberg data.

Set(Case)

(c)(4)

(d)(14)

(e)(17)

(f)(»)

Source
actual
fit-(TSC)
fit-(TL)
actual
fit-(TSC)
fit-(TL)
actual
fit-(TSC)
fit-(TL)
actual
fit-(TSC)
fit-(TL)
actual
fit-(TSC)
fit-(TL)
actual
fit-(TSC)
fit-(TL)

0.0156
0.0120

0.0193
0.0156

0.0224
0.0187

8.85 x 10
8.33x 10

8.85 x 10
1.24 x 10

2.24 x 10
0.0080

C(Kni)
1.60x10
6.31x 10
3.21 x 10
1.60x 10
6.14x 10
3.46 x 10
1.60x 10
6.92 x10
4.00x 10
1.60 x 10
4.78 x 10
9.76 x 10
1.60 x 10
4.78 x 10
1.40 x 10
1.60x10
5.41x10-"
2.53x 10

E (eV)
0.300
0.305
0.300
0.300
0.302
0.297
0.300
0.299
0.295
0.300
0.310
0.299
0.300
0.310
0.300
0.300
0.302
0.291

b

1.50
2.22
2.18
1.50
2.31
2.29
1.50
2.41
2.39
1.50
2.00
1.41
1.50
2.00
1.47
1.50
0.74
2.25

Parameter case from Table I.

eter values obtained from TL fitting are closer to the
actual values than those obtained from TSC fitting. In
the case of sets (d) and (e), the parameters obtained from
TL fitting are nearly perfect. Also shown in the graphs
of Figs. 2 and 3 are the Q(T) functions which were eval-
uated from the RKF data.

We notice, from Figs. 2 and 3, that in most cases the
Q(T) function is close to unity (i.e., the system is near

QE) for temperatures below the peak maximum. Be-
yond the peak maximum; however, a sharp decrease in
the Q(T) function is seen. Note that in sets (a), (b),
and (c) the quality of the fit is poorest on either side of
the peak maximum; this is a direct result of deviations
from quasiequilibrium which render the Randall-Wilkins
equation invalid. The departure from QE is not as severe
in sets (d), (e), and (f); thus the validity of the Randall-
Wilkins equation is better in these cases.

Table II shows fitting values obtained for the data
shown in Figs. 2 and 3. The values given in Table II
reveal, as mentioned earlier, that in most cases fitting to
TL data yields parameter values which are closer to the
actual values. The primary reason for this improvement
is that the Randall-Wilkins equations assumes that w is
a constant. Since there is only one recombination path-
way, r = ~„,thus ~/r„= 1 and the RW expression for
TL [i.e., Eq. (51) divided by r] is completely independent
of the texnperature dependence of 7.. The RW expression
for TSC [Eq. (51)], on the other hand, is directly pro-
portional to w, thus any temperature dependence in w

will directly affect the quality of the fit. As mentioned
in other reports, ' large concentrations of thermally
disconnected traps reduce the temperature dependence
of 7, thus increasing the validity of the Randall-Wilkins
expression for TSC. In most cases, however, one expects
better results when fitting to TL rather than TSC.

Compo&son of the generalized espmssions to the
RKE meulte

In order to compare the results discussed above to the
generalized expression it was necessary to solve numeri-
cally the integrals in Eqs. (47) and (48). The inner inte-
gral was evaluated by using Keating's approximation.
For the outer integral it was necessary to use an adaptive
Simpson's rule algorithm. In order to save coxnputation
time when calculating the value at some temperature T;,
the integral was only evaluated from T; q to T; and added
to the previously saved value of the integral from Tp to
Tq —1

Since computation times Rom several minutes to a few
hours are common when calculating the generalized ex-
pression using a 486/33 MHz personal computer, it was
not practical to use the generalized expression as a fit-
ting equation. In order to perform comparisons, both the
RW expression and the generalized expression were cal-
culated using exactly the same parameter values which
were used in the RKF calculations. Figure 4 shows over-
lay plots of TSC evaluated by each of the three methods.
The RKF plots are the same as those shown in Fig. 2.
Notice that the RW curves for data sets (a), (b), (c), and
(f) do not match the RKF curves whereas for sets (d)
and (e) they do match quite well (compare to the fitting
results of Fig. 2). The curves for the generalized solu-
tion, however, are in good agreexnent with every one of
the RKF curves except for set (f) in which the require-
ment H &) N is not well satisfied. It was found that the
generalized solution was in excellent agreement with the
RKF solution for all parameter ranges tested, provided
that the stated assuxnptions were not violated.

Similar observations to those stated above were made
for the TL curves shown in Fig. 5. For sets (a) through
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same as or SC. For set

oes not depend on the temperature dependence of

0

Having confidence in the integrity of the generalized
solution, the validity of the RW
ves igate over a wt wider range of parameter space. By
comparing the RW expression to th 1

is avoided. T
era ize expression the lengthy computation time of RKF

. The testing involved calculating TSC curves
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the surface plot in Fig. 6. This indicator is intended to
provide a reference point so that the reader might visu-
alize the quality of fit based on the value of y2.

The inference &om the above data is that, while the
generalized equations for TL and TSC, namely Eqs. (47)

and (48), are accurate descriptions of the TL and TSC
process for all first-order cases, the RW equation only
serves as an accurate description for some parameter
ranges. In this sense the reservation of Kelly et al. may
have some validity, but clearly the description of TL and
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FIG. 5. Comparison of TL curves generated using the Runge-Kutta-Felhberg method with those generated by the generalized
and Randall-Wilkins expressions. Open circles represent RKF data (every third data point is shown); solid and dashed lines
represent the generalized and RW expressions, respectively. The parameter values used in each data set are given in Table I:
set (a) case 1; (h) case 3; (c) case 4; (d) case 14; (e) case 17; (f) case 15.
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then it follows that

dIvsc(T) dITsc(K ~
s

~ E ~ T)
dT dT

I E/= ——exp
~

—
~

I&&&(K', s', E'; T)
kTy

I

+I~Risc(K', ', E'; T)

(55)

(56)

However, since I~sc (T) = Iz+sc (K', s', E'; T), we have

dI~sc (T) s' ( E' )= ——exp
~

—
~

I~sc(T) + Ipse(T)

(57)

which may be written as

E' s' ( E'i
kT2 13 ( kT ) Ivsc(T)

dIvsc (T)
dT

For T = T, we may solve for s' as

( E' i PE'

ikT ,) kT2, ' (59)

from which we observe that s' is not an independent vari-
able. Substituting s' into Eq. (58) we find

E' 1 1 E' ( 1 1& dlnI~sc(T)
k T2 T2, k (T, T) dT

(60)

The form of the left side of Eq. (60) is such that one
cannot solve analytically for E'; however, this may be
done numerically quite easily. Another observation is
that E' must be temperature dependent. Therefore,
the interpretation is that the function E'(T) is that
temperature-dependent energy function that one must
use in the Randall-Wilkins expression so that it will ex-
actly fit the experimental TSC curve. Furthermore, since

Ig&(T) = Q(T)Ipse(T), and since Q(T, ) = 1, then

I&sc(T,) = I~sc(T,) and, therefore, E'(T,) = E,
where E is the real energy.

While the above may be true if Izwsc(T) —Ig&(T),
that is, if s(T) constant, E'(T,) may deviate from the
real energy if the &equency factor has a sizable tempera-
ture dependence. Indeed, one of the benefits of this for-
mulation of TL and TSC kinetics is that, since one starts
with generalized expressions and then subsequently in-
troduces approximations in the development of analyti-
cal techniques, one is able to identify clearly the errors
involved and derive the relevant correction terms. To
produce the corrected energy E, „wemust take into ac-
count the frequency-factor temperature dependence. To
do this we equate Ig&(T,) and I&+sc(T,), thus,

I&sc(T,) = Ks(T, ) exp
~

— '
~

exp —— s(O) exp
~

—
~

dOqE f E(T .)i 1 ' ( E(O) t

kT, & z; i kO

= Ks'exp
~

— '
~
exp

E'(T,) )
kT, )

E'(0) )
s'exp

~

—
~

dO
kO

(61)

In this expression, E(T,) = E, „sinceQ(T, ) = 1,
E'(T,) is obtained from Eq. (60) above, and s' is the
RW constant-frequency factor given by Eq. (59). Equa-
tion (61) is satisfied if

s(T,) exp
~

— ' "
~

= s'exp
~

—
k

'
~

. (62)
( E'(T, )&

kTmc kT~c

With s' given by Eq. (59) we find that the solution for
corr &Sy

(s(T .)kT2. )E, „=kT,ln~

Indeed, if s(T) is a constant and therefore is equal to s'
which is given by Eq. (59), then Eq. (62) shows that
E, „=E'(T,).

In general, when considering the suitability of a par-
ticular method for use as an analytical technique one
must address several concerns, namely, generality, appli-
cability, and ease of use. The method just described is
quite general in that it does not use the QE approxima-
tion in the derivation of its equations (more accurately,

it makes use of the fact that at T, the QE assumption
is valid). Furthermore, the correction terms are known
and if additional information is available, these can be
accounted for. The method is derived only for first-order
kinetics; however, in the vast majority of cases likely to
be encountered, this criterion will be satisfied. A ma-
jor advantage in applying this technique to real data is
that it only requires quality data near the peak temper-
ature and furthermore one need only have these data
for one heating rate. Typically it is the data near the
peak that are the highest quality. This method is in con-
trast to the initial rise4 and the heating rate method of
Hoogenstraaten. While the initial rise method is quite
general, it requires that the peak be somewhat isolated
and noise &ee. The method of Hoogenstraaten requires
that the peak be known for several heating rates, and,
furthermore, Hoogenstraaten's method is derived &om
the traditional TL and TSC equations which employ the
QE approximation.

While in principle the method presented here is only
valid for TSC data, all of our calculations show that ex-
cept for cases when H N, T, —T ~ and therefore
this method could safely be applied to TL data as well.
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of E'(T) over the temperature range bring fitted. For ex-
ample, for case 4 in Fig. 8 the E (T) function is slightly
higher than 0.300 eV until just after the peak temper-
ature, when it drops sharply below. Fitting the entire
peak with the RW expression would result in the average
of E'(T) over this range and would therefore likely pro-
duce an energy lower than the actual value. In practice,
the quality of experimental data (either from noise or
overlap with neighboring peaks) is such that only parts
of the peak are actually fitted. If the temperature range
fitted is dominated by data past the peak temperature,
then the resulting energy will likely be slightly less than
the actual value, whereas if most of the fitted portion
is below the peak temperature the energy will likely be
greater than the actual value.

VI. FINAL COMMENTS AND PRACTICAL
IMPLICATIONS

In this paper we have presented a more complete the-
ory of TL and TSC kinetics. By the introduction of the

Q(T) and P(T) functions and their relations to the re-
action rates, we have shown that slow-retrapping (first-
order) kinetics will be the dominant process in systems in
which QE is satisfied (i.e., QE and non-first-order kinet-
ics are incompatible). The main advantage arising from
the Q(T) and P(T) formulation of TL and TSC kinetics
is the explicit separation in the general solutions of the
QE and KO approximations. This is in contrast to previ-
ous developments where the QE approximation is made
before questions of KO are considered. Furthermore, we

have developed general expressions for TL and TSC in
terms of the Q(T) and P(T) functions and arrived at
solutions to the rate equations for the first-order case
without the QE approximation and without the pres-
ence of Q(T) in the final equations. By parametrizing
these general first-order solutions and comparing their
curve shapes with both the Randall-Wilkins and numer-
ical RKF solutions to the rate equations, we have shown
that the general first-order equations reproduce the nu-

merical solutions over a wider range of parameter cases
than do the Randall-Wilkins equations.

The parametrized, general, first-order equations [Eqs.
(47) and (48)] could be used in fitting algorithms. How-

ever, these equations contain, in general, six parameters
which is usually too many for an unambiguous fit. There-
fore, it became necessary to develop an independent an-
alytical technique to arrive at one or more of the param-
eters and thereby reduce the order of a subsequent fit.
Furthermore, any analytical method would have to be
valid to the same level of theory as the fitting equations
themselves, namely, the method could not rely on the QE
approximation. In Sec. V we present a simple method for
obtaining the activation energy. This method makes use
of the knowledge that the QE approximation is only valid
at the TSC peak maximum and therefore does not rely
on the QE approxixnation as such. It was found that the
main error entering into this analysis arises from the tem-
perature dependence of the frequency factor, which could
lead to errors as high as 0.048 eV for extreme cases (i.e.,

when H = N). Correcting for this [Eq. (63)] reduced the
errors to at most 0.003 eV for all cases. The correction
term, however, requires knowledge of e(T,) which in
general is unknown. Given experimental TSC data, one
method to resolve this is to solve Eq. (60) for E'(T,).
Since E'(T,) depends only upon the data ITs&(T) and
the value of T „E'(T,) is merely a constant. Next,
using the parametrization of Eq. (45), Eq. (63) becomes

(BT',skT2. )
PE(T )' I

(64)
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APPENDIX: TSC W'ITHOUT THE CONDITION
n(T)+ H )) n.(T)

In this Appendix we will brieBy present some of the
TSC equations without the n(T) + H )) n, (T) approx-
imation. Starting with Eq. (26) as the coxnplete charge
neutrality relation, the recombination lifetime [Eq. (9)]
becomes

7.(T)
= v, (T)h(T)B(T)

= v, (T)R(T)[n,(T) —h„(T)+ n(T) + H]. (Al)

If the free carriers are electrons and no holes are in
the valence band over the active temperature range [i.e.,

h„(T)= 0], then the recombination lifetime is:

= v, (T)B(T)[n, (T) + n(T) + H].
1

(A2)

The Q(T) and P(T) functions are defined as before in
Eqs. (14) and (15). As shown in Sec. IIIB, using these
definitions of Q(T) and P(T), the rate equations [Eqs.
(5) and (6)], and Eq. (A2), we arrive at the following
expressions:

Then by substituting Eq. (64) into Eqs. (47) and (48)
for E, the general first-order equations could be used for
fitting with at most five parameters instead of six. By
this method, one has replaced the unknown parameter
E with the known parameters T, and E'(T,). While
this method may be more complicated than a three- or
four-parameter fit using the RW equations, as we have
shown for some cases, the QE approximation can intro-
duce sizable errors into the analysis.

The direction of future work involves an extension of
the Q(T), P(T) theory to include systems containing
more than one active level.
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1 ( Q(0)n(T) = np exp-- where we see that this last equation is quadratic in n, (T).
The solution is

and

( E)x s(0) exp
~

—
~

dO
kO) 4S(T)N. (T)n(T) ( E &

R(T) [Q(T) + P(T)] kT)

n, (T) + [n(T) + H]n, (T)

S(T)N, (T) ( E )
R(T) [Q(T) + P(T)] kT

Since the first term is always negative and the second
term is always positive, we must choose the "+"solution
so that n, (T) is always positive. Next, substituting Eq.
(A3) into this equation produces the following result:

n(T) = —
,. id+ eeexp ——

~ ~
e(8) exp

~

—
~

dO

I
1(
2

4S(T)N, (T)np ( E i 1 ( Q(0) i ( E i
R(T) [Q(T) + P(T)] kT P Q(0) + P(0) kO

np 1 ( Q(0) i ( E ) H——exp
~
s(O) exp

~

—
~

dO
2 p T. gQ(O)+P(O)p ( kO) 2

) 1/2

(A6)

Considering the case where Q(T) )) P(T), i.e. , slow

retrapping, Eq. (A3) becomes

I

n'qE(T) [nPE(T) + n(T) + H]

n(T) = np exp —— s(O) exp
~

—
~

dO, (A7)
p T; i kO)

and Eq. (A4) becomes

n, (T)[n.(T) + n(T) + H]

S(T)N, (T) ( E &

Q(T)
( ) PI kT I ( )-

Since under conditions of quasiequilibrium Q(T) = 1, we
find that

n'qE(T)[nqE(T) + n(T) + H]

= Q(T)n, (T)[n, (T) + n(T) + H]. (A9)

This is the real relation between the &ee-carrier con-
centration with and without the QE approximation un-
der first-order kinetics [i.e., the equivalent to Eq. (34)].
We note that, from Eq. (A7), it is unnecessary to label
n(T) as nqE(T) under conditions of Brst order, since this
concentration is not affected by the QE approximation.
From Eq. (A2) we see that Eq. (A9) is nothing more
than the statement, ITL (T) = Q(T)ITi„as expected
since the general TL expression does not depend on the
n(T) +H » n, (T) approximation. If this approximation
is made, Eq. (A9) then becomes n'qE(T) = Q(T)n, (T)
as expected.

Using Eq. (36) for Q(T) expressed entirely in terms
of TSC and Eq. (A2) for the recombination lifetixne, Eq.
(AS) becomes

+ n.'(T) + n. (T) [n(T) + H],
v, TRT

(Alo)

where, in a remarkable occurrence, all traces of r(T) van-
ish. This is in contrast to the earlier generalized first-
order solutions that explicitly contain 7 (T). We rewrite
Eq. (A10) in standard form as

dn, (T) + A(T)n, (T) + J(T)n, (T) = M(T), (All)

where

&(T) = "
[ (T) H]

v, (T)R(T)
)

M(T) = ' nq (T)[nq (T) + n(T) + H]

The form of Eq. (All) is that of the Riccati equation.
The method now would be to solve Eq. (All) for n (T)
as a function of n(T), nqE(T), and T. Equation (A6)
for Q(T) » P(T) and with Q(T) = 1 would produce
nq (T), and Eq. (A7) for n(T) would complete the solu-
tion. This solution would not contain 7 (T) and H would
enter in as a new parameter. However, due to the di%-
culty in solving the Riccati equation for variable coe%-
cients, and due to the complexity of Eq. (A6), it is likely
that the resulting solution would be unwieldy for practi-
cal applications.
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