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External breaking of ground-state symmetry
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Ground-state symmetry can be broken by an external field. The threshold value of the symmetry-

breaking field may be roughly estimated by comparing experimentally the behavior of two identical

physical quantities, as functions of the field, for the set of field directions equivalent, with respect to the

action, to a group generator. The kinetic coefficients as the functions of magnetic induction B are used

as an illustration.

I. INTRODUCTION

The breaking of the symmetry group of the medium by
an external (scalar, vector, tensor, etc. ) field consists in

changing the translation symmetry and/or point symme-
try of the medium. Any change of symmetry will be ac-
companied by a rapid variation of the coefficients appear-
ing in the mathematical formulas describing a given
physical phenomenon occurring in the crystal. If these
coefficients are not of a scalar type, i.e., they are vectors
or tensors, then, as a rule, with the change of the point
symmetry, the character. of the coefficients will also be
changed. For example, the isotropic second-order tensor
can take the form of the anisotropic one; the uniaxial
crystal becomes biaxial, etc.

Unfortunately, the coefficients are some unknown func-
tions of the field applied in order to break the crystal
symmetry. For a given value of the nonscalar field, the
coefficients acquire different (fortunately, very often
significantly different' ) values for difFerent directions of
the field. An exception to this rule is provided by the so-
called crystallographic equivalent directions for a given

type of field. For each of these directions, the physical
quantities describing the phenomena occurring in the
crystal take the same value for the same value of the field.
The equivalent directions are the ones which transform
into each other under the action of the point-symmetry
group of the crystal. For different groups we have (for a
given field) the difFerent sets of equivalent directions.

W'e see that the hypothesis concerning the external
symmetry breaking of point symmetry by the nonscalar
field is one of the simplest to be verified in an experimen-
tal way, because, in this case, apart from the changes of
the values of coefficients, the set of equivalent directions
changes, as well as the character of nonscalar coefficients.
These latter features of symmetry breaking may be used
to roughly estimate the threshold value of external field.

It is possible to establish the symmetry breaking for
only one direction of the field provided we are able to
detect the jump in the values of the coefficients. In an ex-
periment performed with insufficient precision, the jump
in the value of the coefficient may pass unnoticed if it is
small and takes place in the narrow interval of the field

and, in addition, the coefficient behaves, as the function
of the field in the same way on both sides of the crossover

region. In such a situation the measurement for other
directions equivalent to the first one is indispensable.
After crossing over some value of the field, called the
threshold value, the previously equivalent physical phe-
nomena wi11 no longer be equivalent. Namely, for
equivalent directions, some of the identical curves
representing a given coefficient as a function of the field
will not coincide any longer above the threshold value.
Owing to that, we are able to estimate the order of the
threshold value. Carrying out more and more precise ob-
servations of the coefficient in the presumed interval of
the threshold value of the field, we will finally notice the
jump of the coefficient.

In Sec. II we restrict our considerations to the case
when the symmetry of the ground state of the crystal is
broken by an external magnetic induction B. In this case
the measurement can be carried out by taking advantage
of the relations between the kinetic coefficients of the
transport phenomena. For the equivalent directions of
the field B in a given crystal, we write the relations be-
tween the components of the conductivity tensor t7;1(B).
The same relations hold true for the dielectric permittivi-

ty E;i(B) and magnetic susceptibility g; (B) tensors. ' So
the relations written in Sec. II are sufficient to formulate
the geometry of the experiment on the basis of the elec-
tric and heat conductivity, the magneto-optic effects, and
the dynamic magnetic susceptibility. Some methods of
measurement will be proposed in Sec. III.

II. RELATIONS FOR THE ELECTRIC
CONDUCTIVITY TENSOR

The form of the material tensor and the point-
symmetry group of the crystal are mutually related. Of
course, the interactions in the crystal determine its sym-

metry group. Fortunately, on our level of consideration,
the notions of the symmetry of the physical phenomena
(hence, the coefficients) and symmetry of the crystal can
be used interchangeably.

The unitary generator g of the group G leads to the fol-

lowing relations between the components of the electric
conductivity tensor:

~„(»=g;tg, k ~1k (de«g;i ')g 'B j

gi 1gj k lk ( ~
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This is the mathematical expression for the Neumann
rule. In turn, for the antiunitary generator g'=Og, where
0 is the time inversion operator, we have

o,j(.B)=gag, ko. kI[
—det(g;, ')g 'B]

gi Igj k +kl (

The above formula is the generalization ' to any antiuni-
tary generator of the point group of the Onsager rule,

o.
, (B)=o.,;(—B),

originally formulated for the time inversion generator 0.
In the above formulas g,.I is the 3X3 matrix representa-

TABLE I. The point-symmetry groups 6 of the crystal and the relations between the components of
the electric conductivity tensor as functions of magnetic field directed along the equivalent directions.

Position number Group G Relations (for detail, see the Appendix)

1

2
3

4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

2, m, 2/m
222, mm 2, mmm

4,4/m
4

422,4mm, 4/mmm
42m

23,m 3

43m
432,m 3m

33
32, 3m, 3m

6, 6/m
6

622, 6mm, 6/mmm
6m 2

11', 11', 1
'

21', m 1',2/m 1',2/m ', 2'/m
2221', mm 21', mmm 1', m 'm 'm, mmm '

41',4/m 1',4/m '

41',4'/m '

4221', 4mm 1',4/mmm 1',4/m 'mm, 4/m 'm 'm '

42m 1',4'/m 'm 'm

231', m 31',m'3
43m 1',m'3

4321', m 3m 1', m '3m '

31',31',3 '

321', 3m 1', 3m 1', 3 'm, 3 'm'

61',6/m 1', 6/m '

61',6'/m
6221', 6mm 1',6/mmm 1',6/m 'm 'm ', 6/m 'mm

6m 21', 6'/mmm '

2', m ', 2'/m'

m m2
4', 4'/m

4 1

42'2', 4m 'm ', 4/mm 'm '

4'22', 4'mm ', 4'/mmm '

42'm '

4', 2m', 4'm2
4'32', m 3m '

4'3m'
32,3m, 3m

6'
6'

6'/m '

62'2', 6m 'm ', 6/mm 'm '

6'22', 6'mm ', 6'/m 'm 'm
6m'2'
6'm2'
6'm'2

(A1)
(A1),(A3)

(A6)
(A8)

(A3),(A6)
(A3),(A8)

(A1),(A10)
(A8), (A10)
(A6),(A 10)

(A11)
(A11),(A16)

(A14)
(A12)

(A14),(A 16)
(A12),(A 16)

(3)
(3),(A1)

(3),(A1),(A3)
(3),(A6)
(3),(A8)

(3),(A3),(A6)
(3),(A3),(A8)

(3),(A1),(A10)
(3),(A8), (A10)
(3),(A6), (A10)

(3),(A 11)
(3),(A 11),(A16)

(3),(A14)
(3),(A12)

(3),(A14),(A 16)
(3),(A 12),(A 16)

(A2)
(A1),(A4)
(A2), (A5)

(A7)
(A9)

(A4), (A6)
(A3),(A7)
(A4), (A8)
(A3),(A9)

(A7),(A 10)
(A9),(A10)

(A11),(A 17)
(A15)
(A13)

(A2), (A11)
(A14),(A 17)
(A15),(A 16)
(A12),(A 17)
(A13),(A 16)
(A13),(A18)
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tion of the unitary part of the generator and det(g;~ ') is
the determinant of 3X3 matrix of the inverse element—1

The characteristic features distinguishing the generator
0 are as follows. The equivalent direction for the field B
is the field 8'= —8; the form of the tensor o;J(B) is such
that cr,"(8)/cr;(8')=1 (i j =1,2, 3). The explicit form
of the relations (1) and (2) for other group generators and
the characteristic features of group generators are given
in the Appendix. On this basis and, on the other hand,
by knowing the set of generators for a given group, ' we
can write (Table I) the minimal but complete set of group
characteristics (for example, for the electric conductivity
tensor).

The set of directions equivalent to field 8= [0,0,8 ]
(the star of magnetic induction 8) consists of, at most,
two directions, B, —B. For this star, for all groups with
the exception of the groups listed under position Nos.
32 —34 in Table I, the tensor cr;, (8) takes the simplest
form, for which the components cr;3 and o.

3, (i = 1,2) are
identically equal to zero: o.

, 3=o.3;
=—0. The final forms of

the tensors o; for other stars of field B can be also easily
written. In many problems they are necessary but, for-
tunately, here they are not. In order to determine wheth-
er the symmetry has been broken (and if so, what group
arises after the breaking symmetry) or not, it is sufficient
to take into account only these relations between the
components o.;, which are characteristic for a given gen-
erator.

III. BREAKING SYMMETRY AND MEASUREMENT

The problem of external symmetry breaking reduces to
the problem of breaking at least one of the group genera-
tors. A generator of a given order can be broken as fol-
lows:

(i) To lower order. For example, the twofold axis may
be broken to the onefold axis, i.e., to the identity element
of a new group. In this case the forced symmetry group
is the maximal subgroup of the ground-state symmetry
group.

(ii) To the same order but of a different nature. For ex-
ample, the twofold unitary axis may be broken to the
twofold antiunitary axis or vice versa. To this case be-
longs, among other things, the rotations of the magnetic
axes frame with respect to the crystallographic axes
frame of the diamagnetic or paramagnetic phase of a
sample.

(iii) To higher order. For example, the twofold axis
may be broken to the fourfold axis. In this case the
forced symmetry group is larger than the ground-state
symmetry group.

Let us illustrate the above statements by the example
of a ferromagnetic sample in the ground-state symmetry
G =2'22' (case No. 34 in Table I) for which the magneti-
zation vector M is parallel to the y axis. The characteris-
tic relations for the OC2, and C2„generators are as fol-
lows:

o „(8)= —o „(8')
=cr )3(8"),

o „(B)=o, i(B')
=o „(8"),

cr2, (8)= —o,~(B')
= —a»(B"),

cr,2(8)= cr, i(8—')
= —cr„(B"),

cr, 2(B)=cri, (B')
= —o )2(8"),

crs&(8) =o &2(B')
= —o 2, (B"),

(4a)
(4b)

(4a')
(4b')

where the field B=[B„,B,B,] is transformed to the
direction 8'=[8„8, B,] [Eqs. (4—a) and (4a')] and
direction 8"= [ B„,B~, B, ]

—[Eqs. 4(b) —and 4(b')] under
the action of the elements OC2, and C2~, respectively.

For the field 8=[0,8,0] we have 8'=8"=8,
o. ,2=o.2, =cr23=o-32 =—0, and o.»= —o.». These relations
cannot be broken by any reasonable value of B. If the
field B is antiparallel to the field M of the sample, then
with an increasing value of 8, the value of cr»(B) will

tend towards zero, and then, after changing the sign, its
absolute value wi11 be systematically increasing. The
state with reversed M, M~ —M, is also a stable state.

By applying the field 8=[0,0,8] (8'=8"=—8), we
can remagnetize our sample to the state with M~~z axis.
Then, the following groups are possible. 6 =2 [case (i)],
G=2'2 2 [case (ii)], G =4, 42'2', and so on [case (iii)].
The relations (4a), (4a'), (4b), and (4b') will be modified to
the forms: o. ,3=o.3, =o.23=o.32

=—0; in addition, o.&2&O.2,
for G =2 o i2= o 2i for 6 =2'2'2, 4, 42'2', 0 l1 o 22

6 =4,42'2' (compare with the conditions under No. 1,
No. 33, No. 3, and No. 37 in Table I, respectively). It is
not possible to distinguish the state of symmetry G =4

from that of symmetry 6 =42'2' by applying the field

B~~z axis. In such a case the history of a sample is de-
cisive. Namely, the ferromagnetic ground state of sym-
metry 6 =2'22' is possible under the condition that
above the Curie temperature, the sample had one of the
following symmetries: 6 =2221', 4221', or 6221', this is
because only for those unbroken symmetries, the state
below the Curie point with M~~z axis has the symmetries
G =2'2'2, 42'2', and 62'2', respectively. We see that the
more information on the sample we have, the simpler the
experiment will be to solve our problem.

By applying the field B=[B, , 0]0(B'=—8"=8) the
ground state of symmetry G =2'22' can be transformed
to the nonground state of symmetry 6 =22'2'. This state
will be realized because Eqs. (4b) and (4b') are modified to
the form which implies the following relations between
the components of cr,-' o. &2= o.

2&
=o.

&3
=o.» =—0 and

0 32 0 23 which are different from those for symmetry
6 =2'22'. Similarly, above some value of the field
8=[+„, Br, B,], B=[B ,B ,0], 8= [B , O, B,], and
8=[0,B,B,], the ground state of symmetry G =2'22'
wi11 be broken to the state of symmetry G =1, G =2' (of
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generator HCz, ) (the full symbol of this group is
6 =112'), G =2 (of generator Cz ) (the full symbol
6 =121), and G =2' (of generator HC2„=HC2, C2 ) (the
full symbol 6 =2'l l), respectively.

In conclusion, the fields B=[0,0,8], B=[0,8~,8, ],
and B=[8„,8,8, ] can break the symmetry 6=2'22' to
the symmetry 6 =2'2'2 (or 42'2' or 62'2'), 2'l l, 1, respec-
tively. In such a case the relations (4a), (4a'), (4b), and
(4b') are simultaneously modified. In turn, for the field
B=[8„,0,8, ] the group G =121 is possible provided the
relations (4a) and (4a') are no longer valid. By applying
the fields B=[8,0,0] and B=[8„8,0] we can obtain
the symmetry 6=22'2' and G =112', respectively, be-
cause the relations (4b} and (4b'} are no longer valid.

The measurement of the breaking field is reduced to
finding the value of the field B above which one (no
more!) of four characteristic relations, e.g.,

adopted to other (e.g. , electric, pressure, etc.) fields. Re-
call that the measurement of breaking of one, two, . . . ,
group generators leads to the experimental observation of
two, three, . . . , functions of field 8 along the equivalent
directions in a group generator. We will be able to esti-
mate the range of the threshold value of 8 by comparing
the functions which are identical with respect to the ac-
tion of the group generator. This will allow us to fit the
experimental method more adequately to solve our prob-
lem. The more and more precise measurement in the in-
terval of a previously estimated threshold value allows us
to answer most questions concerning the physical mecha-
nism of the external breaking of the ground state, the sta-
bility of ground state, ' and other questions difBcult to
predict now.
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APPENDIX

is no longer fulfilled. If we know the history of the sample
we would know its broken symmetry groups. Then, the
measurement of the value of the breaking field may be
based on the knowledge of the broken symmetry group.
Namely, by diminishing the value of the external field we
expect the symmetry to be restored. Therefore, we could
proceed in the reverse way to determine the point where
the symmetry gets restored.

For some media, the measurement based on the
magneto-optic phenomenon is the only one possible. It
consists in the observation, as a function of field 8, the
birefringence b,n(B), polarizations of electromagnetic
waves, and so on, for two of those equivalent directions in
a group generator which will be broken. In order to
avoid the differences in corrections originating from
space dispersion of the electro-magnetic wave vector k,
the measurement for the fields B and 8' must be carried
out for the same propagation direction k.

IV. SUMMARY AND REMARKS

The space inversion operator i cannot be broken by ap-
plying an axial field B. However, it can be broken by an
electric field E. In turn, the time inversion operator 0
can be broken by field 8, but not by field E. For some
state of medium, it might appear technically impossible
to obtain a suSciently strong field 8 to break the group
generator 0; this is the case for the groups listed in posi-
tion Nos. 16—31 of Table I. The electronic configuration
of their ground state has an electric nature. Its response
to the magnetic interaction is very weak. Then, the
modification to a new electric configuration is possible
but only by applying a very strong magnetic field. The
induction of magnetic configuration (breaking the antiun-
itary generator H} is possible theoretically but not techni-
cally, because here the extremely strong field is needed.

The theoretical idea presented here, of the rough esti-
mate of the threshold value of field 8 may be essentially

Below, all the formulas are written in Cartesian coordi-
nates. The generator C2, (binary unitary rotation around
the z axis) fixes the following equalities between the com-
ponents of the tensors o,"(B)and o; (B'), respectively,

11 12 13 11 12 —13
21 22 23 = 21 22 —23
31 32 33 —31 —32 33

(A 1)

here the fields B=[8„,8,8, ] and B'=[ 8, 8,8—,)—
are equivalent. Four of these equalities are characteristic
for the Cz, generator. These are o,3(B)/o;3(B')
=o3;(B)/o 3;(B')=—1 (i =1,2) under the condition that
8 is not parallel to the z axis which, in turn, insures
that o,3%0 and o3,40 (i =1,2). In conclusion, the
characteristic features of the C2, generator are 0.;3
=o3; ——0 (i =1,2) for B~~z axis and o;3(B)/o;3(B')

(T3,(B)/o3;(B')= —1 (i= 1,2) for 8%z axis.
The characteristic features of other binary unitary or

antiunitary rotations are of the same nature and can be
easily read from the relation, given below, between the
tensors for fields 8 and 8'.

For brevity we will write below only the components of
the o; (B') tensor. For the generator HC2, (binary an-
tiunitary rotation around the z axis) we have

11 21 —31

o;J.(B')= 12 22 —32, for B'=[8,8, 8,], —
—13 —23 33

(A2)

and for other generators,
C2x:

11 —12 —13
o';.(B')= —21 22 23, for B'=[8, 8, 8,], — —

—31 32 33

(A3)
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11 —21 —31

0; (B')= —12 22 32, for B'=[ B—„,B,B,],
—13 23 33

(A4)

Below, all the formulas concerning the rhombohedral and
hexagonal lattices are written in hexagonal coordinates in
which the x and y axes make an angle equal to 2m/6.

For C&, we obtain B'=[ B—,B, B—,B,],

Cq ..

11 —12 13

cr;, (&')=
(11—12—21 +22) (11—21) (23 —13)

(11—12) 11 —13

(32—31) —31 33

cr,, (B')= —21 22 —23, for B'= [ B„B—, 8, ],—
31 —32 33

(A5)

C4, .

22 —21 23

0, (B')= —12 11 —13, for B'=[ B~,B—„B,] .

32 —31 33

The xy plane of the cubic, hexagonal, tetragonal,
and rhombohedral systems is the isotropic plane
for kinetic phenomena. This property is preserved,
in the form explained below, for the medium placed
in an external magnetic field. The characteristic
features of the C4, generator are the following
conditions, cr»(B)/cruz(B') =crzz(B )/cr»(B') =1 and
cr&z(8)/crzI(B') =crz&(B)/crIz(B') = —1. In a similar way,
the characteristic features for the other threefold, four-
fold, and sixfold (unitary and antiunitary) generators can
be read from relations between the tensors for fields 8
and 8', given below. For OC4„we have

22 —12 23

S„: B'=[8,—8„+B,B, ],

(ll —12—21 +22) (11—21) (13—23)

cr;, (8')= ( l l —12) 11 13

(31—32) 31 33

cr; (B')=

Cs, . B'=[8„B,B„,B,—],

22 (21 —22) 23

cr;i =(B') (12—22) (11—12—21 +22) (13—23)
32 (31—32) 33

OSq, . 8'=[ B,B, —8,—8—],

(11—12—21 +22) (11—12) (31—32)
(11—21) 11 31

(13—23) 13 33

(A 1 1)

(A12)

(A13)

(A14)

cr,~(B')= —21 11 —13

23 —13 33

for B'=[8,—8„, 8,], —

S4, .

22 —21 —23

(A7)

HC6, : B'= [
—8, +8,—8„8,], —

22 (12—22} 32
o.;~(B')= (21 —22) (11—12—21+22) (31—32}

23 (13—23) 33

(A15)

cr; (B')= —12 11
—32 —31

OS4, .

13, for B'=[8, B„B,], —
33 .

(A8)

Cq). B'=[ 8, 8, 8,—], — —

22 21 23

o;,(8') = l2 11 13

32 31 33

(A16)

22 —12 —32

a,"(B'}= —2l 11 31
—23 —13 33

for B'=[ B,B„, 8,], —(A9)—

OC~, : B' =[B,B„,B,],
22 12 32

a.
,"(8')= 21 11 31

23 13 33

(A 17)

33 31 32

cr, (B')= 13 "11 12, for 8'=[8 ,8„8,] . „
23 21 22

(A10)

C~', : B'=[8,8„,—8, ],

22 21 —23

cT, (B')= 12 11 —13
—32 —31 33

(A18)
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