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The paper is devoted to the statistics of semiclassica1 charge transport in semiconductors subject to

high electric fields. Two main approaches are distinguished: one is mostly analytical and makes use of
the notion of a mean free path, and it led to the so-called lucky-drift model; the other one is based upon

Monte Carlo computer simulations and has the ability to include a realistic band structure. The present

paper aims to show that in spite of the differences in wording and viewpoint, both approaches are funda-

mentally equivalent. We first review the lucky-drift model in its simplest form, and then present some

basic features of the statistical approach used in numerical simulations of transport. On the one hand,

statistical concepts are introduced into the lucky-drift model, and the notion of lucky-drift trajectories is

criticized and replaced by that of energy autocorrelation. On the other hand, the results obtained in nu-

merical simulations are reproduced in the framework of a generalized lucky-drift model tailored to allow

for strong nonparabolicities. The statistical description of transport is applied to the determination of
the rate of inelastic collisions undergone by a hot electron in the presence of an impact-excitable impuri-

ty. It is argued that such a rate is a better indicator of the fraction of carriers attaining a certain energy

than the band-to-band impact-ionization rate. The previous expression of the impact-excitation rate, de-

rived on the basis of the picture of lucky-drift trajectories, is revised, and a comparison with experiment

is attempted.

I. INTRODUCTION

There have been several approaches to the high-field
transport regime in semiconductors, of which a review
has been made by Capasso. ' In very broad terms, two
classes or traditions may be distinguished. The first is as-
sociated with the names of WolfF, Shockley, BarafF,
and Ridley, to quote just a few: Their theories are based
upon the notion of a mean free path for the hot electrons,
and do not contain an explicit reference to the band
structure, except for the carrier efFective mass. The
frameworks are analytical (Ridley's lucky-drift model
reproduces BarafFs numerical curves) and are mostly
concerned with the calculation of the band-to-band im-
pact ionization rate. The second class of theories, intro-
duced by Fawcett, Boardman, and Swain and by Hess
and co-workers, ' is based upon Monte Carlo computer
simulations including a realistic band structure: Such
theories, which rest on the Boltzmann semiclassical
transport equation, eventually modified to account for
quantum efFects, describe in detail the electron trajec-
tories in real and momentum space and allow the statisti-
cal calculation of all kinds of observables. ' Both kinds of
theories sufFer from our limited knowledge of the
electron-phonon interaction, as well as from the uncer-
tainties in material parameters. Each kind of theory has
its own merits: For example, the Monte Carlo simula-
tions are potentially more accurate and give more de-
tailed information about the transport, but they require
running a computer program whenever a new situation
arises, whHe the analytical theories rest on a simple phys-
ical picture allowing quick prediction of the chemical

trends. Hence both classes of theories have to be used,
depending on the question addressed in the contiguous
realms of basic physics and device design. Ideally they
should be employed in a complementary manner, but the
discrepancies in viewpoint and wording are sometimes so
great' that the frameworks almost seem mutually ex-
clusive, which is very detrimental to a complete under-
standing of the phenomena under investigation. The aim
of the present paper is to bridge the gap between both
descriptions and allow a cross fertilization. On the one
hand, we want to introduce some statistical-mechanical
elements into the lucky-drift model developed by Ridley
and Burt"' in order to extend its range of usefulness
and warn against fallacious use of the so-called "lucky-
drift trajectories. " This is of immediate interest, since
the model has become increasingly used in device model-

ing. ' ' On the other hand, we aim at interpreting the
numerical results of computer simulations in terms of the
simple physical picture provided by the lucky-drift con-
cept. This should faciiitate the use of Monte
Carlo-simulated results by nonspecialists. Above all, the
aim is to establish a correspondence between both
theories, so that each result obtained in one framework
may receive further illumination when transposed into
the other one. %'e are aware that some links between the
two frameworks have already been set up. Indeed it was
Shichijo and Hess's numerical work, showing that drift-
ing electrons prevailed in the high-energy tail of the hot-
electron distribution, that triggered Ridley's elaboration
of the lucky-drift model. And McKenzie and Burt' used
a Monte Carlo simulation to support Burt's variant" of
the lucky-drift model. However, the links between both
classes of theories are not always we11 or completely un-
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derstood, thereby preventing the conjugate use of both
viewpoints. In clarifying the existing relationships we
hope to show that they are in fact much stronger than is
commonly felt. The approach adopted herein is heuristic
and tentative in part, but important qualitative results are
obtained in an almost calculationless manner. Where
analytical calculations could not be done in extenso, scal-
ing shortcuts have been used, the justification of which
lies in the consistency of the whole picture.

Section II is devoted to transport statistics, not to the
microscopic quantum processes governing the electron-
lattice interaction. It is structured as follows. Subsection
A sets out the gist and the main results of the lucky-drift
approach to the high-field transport regime in the well-
understood case of parabolic bands. This will, inter oh'a,

provide us with a language allowing us to formulate ques-
tions and thereby start a dialogue with the other class of
theories. Subsection B deals with the statistical frame-
work employed in Monte Carlo numerical models. Only
those elements (distribution function and averages) which
are necessary for our later purpose are recalled. Then
Subsec. C attempts a reinterpretation of the lucky-drift
model in the light of the picture emerging from the simu-
lations. This in turn provides simple relationships ex-
pected to hold in arbitrary numerical simulations, at least
in an approximate manner. Subsection D illustrates the
new statistical picture with the notions of drift and
diffusion. In Subsec. E we examine the behavior of the
lucky-drift model in an arbitrary band structure, with
special interest in the multivalley case.

In Sec. III the new statistics is applied to revise a previ-
ous calculation' of the hot-electron impact excitation
rate of an impurity capable of undergoing internal transi-
tions, whose physical significance has been largely un-
derestimated so far in spite of its well-known technologi-
cal interest.

Before entering Sec. II, a word of caution is necessary.
In the literature, two distinct subjects have often been
mingled, namely, high-field transport and band-to-band
impact ionization. The usual test of high-field transport
theories has long been through the experimentally mea-
sured impact-ionization rate per unit length (a„ for elec-
trons). This assumed (sometimes implicitly) that once a
carrier had reached the threshold energy for lattice ion-
ization, E;, hole-electron pair creation took place im-
mediately, so that the impact rate was straightforwardly
related to the fraction of carriers reaching E;. That hy-
pothesis is called the "hard-threshold" assumption. It is
now widely recognized that the threshold is "soft"
The probability of impact ionization is low in the vicinity
of the energy-momentum threshold E;, so that (i) pair
creation hardly affects transport beyond E, ; and (ii) the
number of hole-electron pairs created is not simply relat-
ed to the fraction of electrons attaining E, In a number
of previous works, the results are cast in terms of the
impact-ionization rate, and one has to isolate the results
regarding transport from assertions on the very
phenomenon of impact ionization. In the present paper,
Sec. II deals with transport only, and Sec. III suggests an
alternative indicator of the fraction of carriers attaining a
certain energy.

II. TRANSPORT STATISTICS

A. The lucky-drift model

The lucky-drift model was introduced by Ridley in
1983 as an extension and improvement of Shockley's
lucky-electron model. Its motivation comes from the nu-
merical works of Baraff and of Shichijo and Hess. The
former considers a parabolic band structure, and the
(nonpolar) electron —optical-phonon interaction (follow-
ing Shockley) is characterized by a constant mean free
path A, . The latter work considers a realistic band struc-
ture, obtained from pseudopotentials, and the electron-
phonon interaction (both polar and nonpolar) is treated
according to first-order perturbation theory in which the
matrix elements are taken at the high-symmetry points.
In those two numerical works, the vast majority of elec-
trons reaching the ionization threshold energy do so by
drift, not ballistically as Shockley supposed. Thus the
probability exp( E/qFA—, ) for a collisionless fiight up to
energy E in an electric field F largely underestimates the
number of electrons reaching E. Ridley argued that, be-
cause at high energies the energy relaxation time largely
exceeds the mean free time, it is possible for an electron
to attain energy E while drifting in the field. Indeed the
associated probability of "lucky drifting" to energy E is
higher than the probability of attaining E in a ballistic
flight. This explains BaraFs curves quantitatively and
Shichijo and Bess's results qualitatively.

The lucky-drift model was subsequently clarified and
further established by Burt" and McKenzie and Burt. '

They performed' a Monte Carlo simulation of high-field
transport in a model semiconductor characterized by a
parabolic band structure where the deformation-potential
electron-phonon interaction has a constant mean free
path, in accordance with BaraFs work. In this simple
case the lucky-drift model is fully analytical, and the
comparison with the numerical simulation provided a
test of the model. The probability for the electron to
reach some given energy (say, the ionization threshold
energy E, ) such as given by the simulation was accurately
reproduced by the lucky-drift model over four orders of
magnitude, without using disposable parameters.

We shall recall here some of the basic hypotheses and
results of the model which will be of direct concern in the
following. For more details the reader is referred to Refs.
6, 11, and 12. Let us first rederive the probability P(E)
for an electron to reach energy E in the presence of a field
F. P(E) is thought of as the probability of traveling a
distance z =E/qF downfield, starting from z =0, without
relaxing energy to the lattice. While moving from z =0
to z =E/qF, the electron continuously gains energy from
the field. Energy relaxation is modeled by artificial
energy-relaxing events in which the electron loses all its
energy suddenly. The link with reality is that the time
rate at which energy is relaxed is the true physical ex-
pression (also employed in Monte Carlo simulations) in
which the electron-lattice scattering rate is obtained from
the golden rule including the relevant matrix element.

There are two transport modes for a carrier: (i) in the
ballistic mode, characterized by the mean free path A, and
the mean free time v., the electron does not relax momen-
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u~(E) =qF~(E)/m ' (2)

(where m' is the eff'ective mass}. This assumes that the
momentum significantly varies during a collision, or in
other words that the momentum relaxation time is close
to the collision time ~. This condition is obeyed in non-
polar semiconductors, and in polar materials at
sufficiently high fields where nonpolar coupling prevails.
Just like A, , Az=uz(E)rz(E) is independent of energy in
the case of spherical parabolic bands and deformation-
potential electron-phonon interaction. For the lucky-drift
concept to be valid, A,z must be much larger than A, ,
which becomes true at high enough fields for wide-gap
semiconductors in which the dominant energy loss to
phonons is via the nonpolar interaction. The two lengths
are related through:

1 qFA,

2 fuu/[2n (co)+1]
so that A,z »A, if the energy gained over a free path is
much larger than the average energy lost per collision.
Since A,z -F, this should occur at high enough F

The probabihty P(E) is the sum of two terms. Either
the electron escapes lattice interaction (over a spatial
scale -A,), or it is defiected and then enters a state of drift
associated with the energy relaxation length A.z. The first
term is Shockley's probability of no collision,
exp( EiqFA, ). T—he second one refers to an electron
which has collided once and then drifts. Consequently

P(E)=exp( —z/A, )+f exp( z'/A, )(dz'/A, )—
0

Xexp[ —(z —z')/A, z], (4)

where z' is the distance at which the electron begins to
drift. The structure of the second term in the right-hand
side of Eq. (4) is transparent: (i) the electron travels bal-
listically from z =0 to z', with a probability exp( —z'/A, );
(ii) it has a probability dz /A, of interacting with the lat-
tice between z' and z'+dz', thereby e8'ecting the transi-
tion to the drift mode; (iii) finally in that mode it has a
chance exp[ —(z —z')/A, ]ozf avoiding energy relaxation
up to z =E/qF. In the remainder of the paper z will be
called the lucky-drift variable.

The integration in (4) is straightforward:

P(E)=exp( E/qFA, )—
exp( E/qF A,z )—exp( —EiqF A,)—

(1—A, /A, z )

turn nor energy; (ii) in the drift mode, which takes place
once the electron has suffered one collision, energy relax-
ation is characterized by a relaxation length A.z. That
length is the product of the energy relaxation time rz(E},
defined by

E/rz =Rcol[2n (co}+1]r,

{where fico is the optical phonon energy, n (co )

=[exp(%co/kT) —1] ' is the Bose-Einstein number, and
fico/[2n (co)+ 1] is the average energy lost by the electron
in an electron-phonon collision), and of the drift velocity
u&(E) of an electron of energy E:

m Vg =qF7

qFuz =enrico/[2n ( )c+o1]r . (&b)

[Strictly speaking, in Eq. (Sa} we have replaced the
momentum relaxation time by the collision time r, as is
customary. ] Those equations entail (7). The constancy of
the drift velocity has a natural explanation in the lucky-
drift picture: Momentum relaxation is so strong that any
increase in {Ale) = ( m 'vz ) is prevented, while the larger
space-time scales for energy relaxation allow E,„ to in-

crease with F.

B. The energy distribution function

The statistical description which is used in the numeri-
cal simulations depends on the electron population as a
function of the energy E above the bottom of the conduc-
tion band E, taken as the zero energy. The density of
available conduction states per unit energy interval and
per unit volume N(E) may in principle be obtained from
the crystalline structure. The states can be more or less
occupied, and this is quantified by the occupation func-
tion f(E) varying between zero and unity. The total
number of electrons per unit volume in the conduction
band is thus:

n, =I N{E)f(E)dE, (9)
0

where + ~ stands for the top of the conduction band.
Denoting by n (E)dE the fraction of electrons between E
and E+dE, we have:

n (E)=N{E)f(E)/n, (10)

and n (E)dE is also the probability for an electron to have
its energy lying between E and E +dE.

The result has been examined in detail by McKenzie and
Burt, " and the hard-threshold ionization rate a„de-
rived therefrom is in excellent agreement with a numeri-
cal simulation. '

%e list and comment on two other results obtained in
this model. Consider first the average energy E,„.The
calculated value qF(A, z+A)=, qFAz, scales like F . This
is a direct consequence of the parabolic-band density of
states, which entails a scattering rate 1/~(E)-E'~ . If
the energy-balance equation

Ace 1
qFUs =

2n (co}+1

is written in the saturation region, i.e., with a field-

independent drift velocity u„and if {1/r)=1/r(E, „)
(apart from a dimensionless factor close to unity), then
Eav

As a second example, we consider the average drift ve-

locity It is. taken' to be uz(E,„),whence:

u, = [%co/[2n (co)+1]m '] '

whatever the electric field, i.e., it is the drift velocity at
saturation u, . Equation (7) is just what would be obtained
from energy and momentum balance assuming a monoen-
ergetic distribution,
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n(E)= (dP/dE) . — (13)

The energy distribution n (E) for the simplest lucky-drift
model [constant A, and A,z, Eq. (5)],

exp( E /qF A,z ) —exp—( E /qF A,)—
qF(l, z —

A, )
(14)

is shown in Fig. 1. The maximum is located at
E =qFA(1 —A, /Az) ' I (nA zA/, ), that is, at some qFA, . At
high energy n (E) decays as exp( E/qFA. z ). —

In deriving P(E) it is considered that the probability
for a drifting electron not to relax energy to the lattice
(that is, to merely acquire electric potential energy from
the field) is exp[ —Jdt'/rz[E(t'))). Energy relaxation
to the lattice occurs abruptly, i.e., the electron loses all its
energy in an "energy-relaxing event. " This approach is a
generalization of Shockley's lucky-electron model, and is
reminiscent of the Drude model of conductivity, where
an electron loses all its momentum in a collision. Because
in Eq. (1) rz is defined so as to give the correct energy
loss to the lattice, the electron energy distribution is

In the numerical simulations of high-field transport, an
electron is introduced at zero energy, and then experi-
ences heating in a field F and cooling to the phonons ac-
cording to the collision rates of the various electron-
phonon interactions. For an overview of the Monte Car-
lo procedure see Refs. 7 and 12, and Ref. 19 for a detailed
account. After some time, a steady-state regime is
achieved in which the electron energy E fluctuates
around a well-defined average energy E,„. If the simula-
tion is repeated over a large number of particles, the
number of carriers whose energies lie between E and
E+dE after a given time is a measure of n (E). Then the
ensemble average of each one-particle energy-dependent
observable A (E) may be calculated through the formula:

( A ) =f '"
A (E)n(E}dE . (11)

It should be noted that the description of the electron
population through n (E) is not complete. The quantum
state of an electron is defined by its crystal momentum ih'k

and its spin (the latter being insensitive to the electron-
phonon interaction). Where anisotropy plays a role,
knowledge of the wave vector is important. This will be
considered briefly in Sec. III on a special example. The
discussion is here restricted only to the distribution of
electrons in the energy space. Note that when electrons
are present in high-energy valleys of the conduction
band(s), ih'k and the spin are not sufficient to specify the
electron state any more; the energy E should be given,
too.

In the lucky-drift approach, an electron is introduced
in an electric field F at zero energy, and the probability
P (E) for the electron to reach energy E from the field F
in spite of inelastic phonon scattering is computed. Since
P (E) is the probability that the electron reaches energy E
or more,

P(E)= f n(E')dE',
E

or equivalently:
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FIG. l. Normalized electron population n (E)= —dP/dE (in
eV ') of the lucky-drift model in parabolic bands at several
fields F(A, —30 A, Boo=42 meV, m =0.30mo, T =300 K).

C. The energy correlation length

Artificial though they may appear, the energy-relaxing
events invoked in the lucky-drift picture have a deep, un-
suspected significance. Because, in such an event, the en-
ergy is reset to zero, just after the event the electron has
lost all memory of its previous Inotion altogether. The
electron experiences a series of loss-free acceleration
bursts which are independent of each other. In between
two "unlucky" (that is, energy-relaxing) collisions, the
energy values are correlated: if l, denotes the average
length drifted between two unlucky events, and if the
electron travels downfield over a length l )&1„it is very

correctly reproduced by Eqs. (5) and (13), which entail
Eq. (14). The definite proof that the approach is basically
sound in deriving P(E) has been given by McKenzie and
Burt in their Monte Carlo simulation in a model semicon-
ductor of parabolic band structure. '

The so-called lucky-drift trajectories (i.e., E vs z) show
continuous energy increase followed by abrupt relaxation
to the zero energy (bottom of the conduction band}.
Clearly this is a mathematical device which correctly
reproduces the hot-electron behavior in the energy space,
but not a physical picture of the true trajectories. Actu-
ally the electron energy changes by +ih'co in one electron-
phonon interaction. The correct picture is that of an
average energy E,„given by

E,„=f E( dP/dE)dE—, (15)

around which the electron energy fluctuates in time ac-
cording to the distribution function n (E}. More precise-
ly, the ergodic principle tells us that in the steady-state
regime the fraction of time spent between E and E +dE
is n(E)dE. The expectation value of a one-particle,
energy-dependent observable A (E} should not be calcu-
lated with the assumption that the lucky-drift trajectories
reflect the evolution of energy in real space and subse-
quently perform an average over such a trajectory. Rath-
er, ( A ) should be calculated in the standard manner of
statistical mechanics, viz. , through Eq. (11). An example
will be treated in detail in Sec. III.
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unlikely that no energy-relaxing collision has occurred in
between, so that the energy values are uncorrelated over
a length l. Thus l, has the meaning of a correlation
length; this is further substantiated in the Appendix by
means of a spatial Langevin approach to the transport in
the drift regime, in which the carrier energy stochastical-
ly oscillates around the average energy due to random ex-
change of phonons with the lattice. The value of l, may
be readily obtained from the lucky-drift picture. The en-

ergy gained over I, is qFl„and since I, is the average dis-
tance drifted downfield between energy-relaxing events,
qE/, is the average electron energy E,„defined by Eq.
(15). Hence the correlation length is:

I, =E,„/qF . (16)

[1—P(Ep)]"=exp[1 in[1 P(Ep))/I, ] . —

It can be written as:

P (Ep, I)=exp[ —a & (Ep )I ],
where

a &(Ep) = —in[1 P(Ep)]/I, — (19)

appears as the probability per unit length that E exceeds
Eo, which is vanishingly small for high energies. To
check that this expression makes sense, let us examine
two limiting forms First, for .Ep &)E,„,P(Ep} is small,
and (19) reduces to:

a &(Ep)=P(Ep)/I, , (20)

so that a & (Ep ) is proportional to the probability that E

In the Appendix it is argued that such a picture is of gen-
eral significance, and not restricted to the lucky-drift
framework, and a more general definition of l, is given.
That length may be viewed in a difFerent manner: it is
that over which the energy can take all values according
to the distribution function n(E). For a given field F,
there is an average energy E,„,around which the instan-
taneous energy fluctuates on the scale of the correlation
length; E takes virtually any value over a distance I, .

We are now in a position to describe the evolution of
energy versus drifted distance in a realistic manner, more
akin to that observed in the Monte Carlo simulations, see
Figs. 16 and 17 of Ref. 8, while retaining the handy
lucky-drift framework. Let Eo be some definite energy:
P(Ep) is the probability for the actual electron energy E
to be Ep or more; 1 —P(Ep) is the probability that
F. &Eo. We now ask the following question: If at some
given point of space E &Eo, what is the probability
[denoted by P&(Ep, l)] that E stay below Ep during a
length /? As E fluctuates along the electron path, for
large l it becomes increasingly unlikely that E always
keeps below Ep. We divide I into n = I /I, segments equal
to the correlation length. Over each segment l„ the elec-
tron virtually explores the available energy range, with a
probability 1 P(Ep) to rem—ain below Ep. Considering
that earth segment is uncorrelated with the others, the
probability P& (Ep, l) that E always stays below Ep may
be factorized into:

exceeds Ep, which looks satisfactory. In fact Eq. (20),
with I, given by (16), is identical to Burt's expression"
for the impact ionization rate with Ep as the (hard)
threshold energy for pair production. The comparison
with Burt's model" is possible because E,„«E0. Hence
hard-threshold impact ionization negligibly modifies
Burt's statistics in cutting ofF the energy distribution
beyond Eo.

Expression (20) is not valid at low energies [Ep «E,„,
P(Ep) =1]: it would give a finite probability, while it is

extremely unlikely for a particle to stay near zero energy
under high-field conditions. The exact expression (19)
yields a&(Ep)~+~, and P&(Ep, l)~0, in agreement
with physical intuition.

At this stage the artificial character of the lucky-drift
trajectories is evident. In that picture, the electron re-

peatedly returns to zero energy, while in actuality it
spends most of its time where n (E) is highest, that is, not
far from E,„. From the ergodic principle the fraction of
time spent at energies between 0 and Ep is 1 P(Ep). It
vanishes as Ep~0 [indeed 1 —P(Ep) is quadratic in Ep
near zero according to Eq. (5)]. This is also what Eq. (19)
tells us. Hence the collisionless trajectories envisaged in

lucky-drift theory simply are a mathematical trick allow-

ing the calculation of P(E}. They have no physical reali-

ty and can lead to erroneous conclusions when used out-
side their realm, namely, in the determination of the elec-
tron energy distribution n (E)= dP/dE. —

As for P&(Ep, l), we may calculate the probability

P& (Ep, l) that a particle starting with energy E )Ep
remain above Eo after a distance l. We find

P & (Ep, I)=exp[ —a & (Ep )I],
with

(21a}

a & (Ep ) = —lnP (Ep ) /I, , (21b)

and a similar interpretation holds. The limiting form of
Eq. (21b) for low energies [P(Ep)=1] is

a& (Ep)= [1 P(Ep)]/1, ~—0, (22)

and P & (Ep, I ) departs from unity for distances I much in

excess of the correlation length. In other words, it takes
a lot of length for the particle to move down to low ener-

gies (E (Ep).
The above reasoning is valid over length scales l )&l„

or, better said, the typical lengths a&' (after which E
overtakes Ep) and a&' (after which E drops below Ep)
should exceed the correlation length l, . Nevertheless, in

spite of that limitation in the use of the rates a & and a &,
which should be much less than /, ', they may give ac-
ceptable results for a&/, or a&/, approaching unity. To
illustrate this, let us determine the energy Eo which is
most frequently crossed. The number of Eo crossings per
unit length is a&(Ep)+a&(Ep)= —I, 'ln[P(Ep)[1

P(Ep}]]. It —is maximum for P(Ep)= —,': Ep can be

viewed as the demarcation energy E&&2, with 50% of the
electrons above the energy E,rz, and 50% below. Thus
even though for that value a &/, and a &/, =1n2 approach
unity, the conclusion is at least qualitatively right. In
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practice, E,&2 lies close to E,„ if the distribution is well
behaved. We recover the conclusion that the electron
spends most of its length around E,„,and not at zero en-

ergy as the lucky-drift trajectories erroneously suggest.
In the same way, note that if Eo stands below the demar-
cation energy [i e., P (Eo ) & —,

' ], a & (Ev ) & a & ( Ev ), the
drift along the field will make the electron's energy cross
Eo upwards more frequently than downwards. Hence the
random collisions tend to bring the electron's energy near
the demarcation level, around which the carrier energy
stochastically oscillates.

We can obtain more from the simple reasoning leading
to Eq. (17}. Considering a particle of initial energy
E (Ep we have found the probability that over a dis-
tance 1 the energy never overtakes Eo. It is exp( —a&1),
and a&(Ev ) is the probability per unit length for the en-

ergy to exceed Eo. Over a large distance (1» 1, ), the
number of times E crosses Ev upwards is thus a&(EO)l.
We next ask: What is the probability P,» that the ener-

gy goes once above Eo? As the probability per unit dis-
tance a&(EO) is constant if we look at a scale greater
than 1„we may use Poisson statistics and write down

~up, 1 as

P„u ) =a&(EO)l exp[ —a&(Ev)1] . (23)

The use of Poisson statistics is justified for independent
(i.e., uncorrelated) events occurring with a constant prob-
ability per unit time (in the case of photon counting) or
per unit length (in the present case of particle motion).
Here it is justified provided that the average length a&
separating two events (viz. , Ev crossing towards higher
energies) be larger than the correlation length, viz. ,
a&(Ev)l, «1. This will hold for low values of P(Ev),
that is, improbably high energies. Similarly, the proba-
bility that over a distance 1 the electron overtakes n times
the energy Eo is

P„„=[a & (Ev )1]"exp[ a& (Ev—)1]/n! (24)

For improbably low energies Eo [i.e., P(EO)~1], we
can calculate accurately the probability that it be reached
n times downwards while traveling over a distance 1:

Pe,„„„=[a& (Ev )1]"exp[ —a & (Ec )1]In! (25)

D. Drift and difFusion

Drift is the result of momentum averaging through lat-
tice scattering. Let us try to envision the time evolution
of crystal momentum Ak in the way we described the
behavior of energy. Whether in the lucky-drift picture or
in a Monte Carlo simulation, between two (momentum-
relaxing) collisions the evolution of haik is deterministic,
and after each collision the memory of the previous
momentum state is destroyed. This again suggests that
momentum values are correlated over a time ~, the col-
lision time, which is approximately equal to the momen-
tum relaxation time, and this is readily confirmed by a
classical Langevin approach (by "classical" we mean that
the evolution is described with time as the variable). It is
worthy of remark that the momentum correlation time

J,+ "([E(r)—E.„][E(t+ r') E.„])dr'—
&, (E E, )')— (26)

cannot be determined in general. If we suppose that E
differs little from E,„ in the course of time, a small-signal
expansion gives r, =(2/3)rz(E, „). In the large-signal
case, we shall take -rz(E,„)as an all-purpose estimate
of the energy correlation time. This is reasonable unless
rz(E) is a strong function of energy, such as occurs
around an intervalley separation which usually results in
a sudden increase in the density of states.

The average drift velocity expresses the average dis-
tance traveled downfield per unit time. The lucky-drift
model deals with a local, energy-dependent drift velocity
v&(E)=qFr(E)Im', which is determined by the perfect-
ly randomizing nature of the momentum-relaxing col-
lisions, just as in Drudes model of conductivity. The
average drift velocity at saturation v, is taken to be
vz(E,„}.The question is now reinvestigated in light of
our new statistical tools.

The vector average drift velocity

v, =(1/t) f v (t')dr' (27)

r(E) depends on the energy state of the particle. This
comes about because a collision changes the energy by
+%co &&E, while it changes the momentum altogether, so
that the hot electron explores a constant-energy surface
E(k) in k space over time scales of some r. Energy
evolves over larger times -rz(E).

We have schematically described momentum correla-
tion in time. What about space? In terms of the path ac-
tually traveled by the particle, the correlation extends
over A, , the mean free path. If we consider the drift
variable x, the momentum correlation length is
A,uz(E)lve(E), where vg(E) is the (instantaneous) group
velocity. This is because the distance drifted downfield
between two collisions is vz(E) X r=Avz/v . For length
scales in excess of A, uz/ug, the momentum A'k shows un-

correlated fluctuations around a well-defined average
value (m'v, in the case of constant effective mass). For
the lucky-drift concept to be meaningful, the two
characteristic length soales A, and A,z should obey the re-
lation A, «A,z. In terms of correlation lengths, this says
that the particle averages its momentum (i.e., is drifting)
over a much shorter scale than it averages its energy.

There is a quantity that has not been mentioned so far,
which is the energy correlation time. In the Appendix it
is shown that the energy autocorrelation in space varies
exponentially with x if A,z is taken to be independent of
energy. Similarly the momentum autocorrelation func-
tion varies exponentially in time with time constant r(E),
because the relaxation time r(E) is solely determined by
an isotropic matrix element (deformation-potential cou-
pling) and the density N(E) of available states at the en-

ergy E (with the final energy nearly equal to the initial
one, as E »%co). In the case of energy, the relevant re-
laxation time rz(E) depends on energy, leading to a
nonexponential autocorrelation function. The energy
correlation time
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{[v&[E(t +t')] —v, ] I v&[E(t)]—v, j

+u(t + t')u(t)+v~[E(t + t') ]u(t)

+u(t+t')vz[E(t)]) . (30)

In (30) the last two terms average to zero, because u rap-
idly fluctuates while vz remains nearly constant. Hence

D =D +D~,
where

(31a)

D, =I {u(t+t')u(t))dt' (31b)

is the diffusion coefficient associated with the fluctuations
of the instantaneous velocity vg around the local drift ve-

locity [over a scale v(E)], and

(at large t} may also be written

u, = J u&(E)( d—P/dE)dE . (28)

Eq. (28) is derived from (27) by first averaging v (t) over
a time r[E (t)] «rz(E}, spent at constant E, which gives
vz(E) (directed along F). Then we replace the fraction of
time the particle has spent at an energy E by
( dP—/dE)dE Th. e use of u, ={uz ) makes sense for dis-
tances of /, or more, over which the energy distribution
has been virtually explored. The value obtained in this
way exceeds uz(E,„) by a factor &n in the parabolic
model, yet the simple estimate v, =v&(E,„) compares
favorably with numerical simulations. ' In fact uz(E}
such as given by the original lucky-drift model is unphys-
ical at low energies, since it exceeds the group velocity
for E & qFA, /2. This arises because 1/~ varies as
N(E)-E', leading to infinite collision times r(E) as
E~0. (Near E =0, other scattering mechanisms, not ac-
counted for in the lucky-drift model, set an upper bound
to the scattering time and keep uz below ug. ) As n(E)
takes appreciable values for E =qFA, (Fig. 1), the contri-
bution of infinite vz's near E =0 overestimates {uz).
Therefore we shaH retain u, =vz(E,„). Then rz(E,„)ap-
pears as the time needed to drift over a correlation length
iLz, consistent with our using it as the energy correlation
time.

We now come to diffusion. When a sheet of carriers
leaves the plane x =0, the average drift velocity describes
the movement of the centroid of this bunch of carriers
along the field. They also diffuse because of the concen-
tration gradient. The diffusion coefficient D is half the
mean-square spreading of the pulse of charge carriers in
space, after a unit time has elapsed. This leads to the
well-known expression of the diffusion coefficient in terms
of the velocity autocorrelation function:

D =I {[vg(t+t') v, ][vg(t) v—, ])dt' . —(29)

The instantaneous velocity will be written down as
vs(t)=v&[E(t)]+u(t), where u(t) randomly ffuctuates
around zero on a scale r[E(t)], whereas vz[E(t)] fluctu-
ates around v, on a scale ~z [E(t)]. The integrand of (29)
may be expanded into

Dg= vg E t+t' —v vg E t —v dt'

(31c)

D =2E,„r(E,„)lm' . (33)

In (33) we have further assumed that n (E) was
sufficiently peaked around E,„. Equation (33) may be
readily checked in the parabolic case. The parabolic en-

ergy distribution Eq. (14) yields D =2v'mE, „r(E,„)/m '
in spite of n (E) not being peaked at E,„(Fig. 1). What
actually matters is not the "peakiness" of the distribu-
tion, but the presence of a single characteristic energy,
here E,„. We now transform D& along similar lines:

D, = {[v, (E)—v, ]')rz(E» ) = u,'rz(E» ) (34)

Owing to the unphysical behavior of uz(E) near E =0 al-
ready outlined, in (34) we simply put v,

2 as the variance in
drift velocity [this is consistent with a small-signal expan-
sion of uz(E) around vz(E,„),which in the parabolic case
yields a variance u, /4]. Then the expressions of u, and

~E lead to Dg -D&. To finish with, D may be written as
follows:

D -E,„{u, ) /qF . (35)

Equation (35) appears as a generalization of Einstein s re-
lation between mobility p and diffusion D at low field

({uq ) =pF and E,„-kT in the Ohmic, thermalized re-
gime). At high field where {vz ) saturates, the diffusion
coefficient is expected to scale like E,„/qF [Eq. (35)] or
wz(E») [Eq. (34)]. As a matter of fact, the experimental
D(F) drops at high field, but the intervalley transition
gives rise to a peak in D(F) known as straggle diffusion,
expressing the fact that the average drift velocities in the
low- and high-energy valleys are fairly different. ' When
E,„coincides with the intervalley separation E,- in a
direct-gap semiconductor, the times r and ~E are very
strong functions of E owing to the sudden increase in
N(E). The hypothesis of a single characteristic time al-
lowing scaling shortcuts in the calculation of D and D&
is impracticable, but expressions (33) and (34) for Dg and

D& behave correctly in that a sharp drop in the diffusion

coefficients after intervalley transfer is predicted owing to
the drop in ~ and rz, but the peak in D(F) is not repro-
duced. Nor was reproduced the Ohmic-to-saturated
transition in {uz), meaning that lucky drift describes

is the diffusion coefficient associated with the fluctuations
of the local drift velocity uz(E) around the average drift
velocity, which occur over a typical time scale rz(E}.
The general result (31a) is the mere consequence of
decoupled time behaviors for momentum and energy due
to ~ &(~z. Another general result is that Dg and D& have
the same order of magnitude. To see it we first transform
D:
Dg={tt(E) ~(E)) = I tt (E)r(E)n(E)dE . (32)

Approximating u (E) by ug(E) [since vz(E) «ug(E)],
and taking the spherical parabolic estimate
u (E}=2E/m', we get:
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only the high-field behavior. The use of one characteris-
tic length or time scale will generally not yield good re-
sults in the presence of significant intervalley scattering.
If statistical averages ( A ) are to be calculated, the use of
the full distribution function in Eq. (11) is mandatory.
Statistical features specific to the existence of several val-
leys are tackled in the following subsection.

fi k /2m ' =E(1+aE) (36)

where a is a nonparabolicity parameter (for simplicity we
consider the isotropic case}. The consequences are the
following: (i) v (E)=(1/R)(dE/dk) is less than the para-
bolic value (2E/m ' }'~2; (ii) m '(E), defined as the "opti-
cal" effective mass, increases with respect to m*, the
efFective mass at zero energy; and (iii) the density of states
N (E) is enhanced together with the collision rate 1/r(E)
As a result of (i) and (iii) the mean free path A,(E) de-
creases at high energies. From (ii} and (iii) the energy re-
laxation length

Az(E) =qF [s(E)]2E/[m «(E)fico/(2n + 1)] (37)

decreases at high energies, too. Ridley worked out a
simple model of smooth nonparabolicity, in which
A k /2m ' -E ~ or equivalently m '(E)-E '~ (valid for
not too low E's). He found a smooth, nonparabolic
average-energy-field dependence, E,„-F,and concluded
that a constant effective mean free path, depending on the

E. Generalized lucky-drift model

Practical applications' ' of the lucky-drift model so
far consider the simple case of spherical parabolic bands.
It is the version recalled in Sec. II A, which is completely
analytical. It predicts that 63% of the carriers can be
found at E & E,„,and that the high-energy tail of the dis-
tribution varies as exp( E/E,—„),with E,„F-In. some
instances this poorly reflects the true, or presumed, hot-
electron behavior. Simulations in direct-gap materials
such as GaAs or ZnS show that the scattering rate steep-
ly increases when satellite valleys appear, due to an
enhanced density of available final states. Then the rate
of increase of the average hot-electron energy exhibits a
sudden drop, so that the smooth relation E,„-F does
not make sense any more when E,„crosses the interval-
ley separation energy E, . If the basis of the lucky-drift
concept is sound, such discrepancies are to be ascribed to
the use of parabolic-band dispersion relations, even
though the mean free path implicitly accounts for a den-
sity of conduction-band states largely exceeding that as-
sociated with a parabolic band with zero-energy effective
mass. Lucky-drift theory in principle is not restricted to
parabolic bands. The simplifying features afforded by
parabolic bands are: (i) the constancy of A, =vs(E)r(E)
and Az=vd(E)~z(E) with respect to energy for
deformation-potential interaction; (ii} a constant efFective
mass m, allowing immediate writing of vz(E). Actual
bands deviate from parabolicity in two ways, that we
could name smooth and unsmooth. By smooth we mean
that not far from valley minima, the dispersion relation is
smoothly altered into

energy range of interest, could be used safely.
The second, unsmooth deviation from parabolicity cor-

responds to the case in which the surface in the Brillouin
zone belonging to a single energy is not, even approxi-
mately, a sphere or an ellipsoid, but a complex surface of
several sheets. This is usually associated with the appear-
ance of satellite valleys at high enough energies (the inter-
valley energy E; =0.35 eV in GaAs, 1.45 eV in ZnS).
McKenzie and Burt applied the lucky-drift theory to a
multivalley model semiconductor, and found fairly good
agreement with the Monte Carlo predictions, but not so
uniformly good as in the parabolic monovalley case. '

This was tentatively attributed to a discrepancy between
the "true" (i.e., Monte Carlo-simulated) and the lucky-
drift trajectories, and the present work supports their
conclusion. In the multivalley case band-structure-
related quantities such as v~ and m ' do not depend on E
only, but also on the electron position k in the Brillouin
zone. The scattering rate 1/r is also a function of k, and
1/~ as a function of E means an average over a constant-
energy surface in the phase space. Specifically we mean:

g fdkr '(k, n)5[E„(k)—E]
1/r(E) = (38)

g fdk5[E„(k}—E]

where n is a sheet or valley index. This averaging in k
space favors the valleys of higher density of states, where
the electrons spend a larger time. Then the energy relax-
ation rate 1/rz is defined as a function of E through Eq.
(1); a single phonon angular frequency to is used, which is,
for example, an average of optical and zone-edge acoustic
phonon frequencies.

A definition of spatial rates 1/A, and 1/A, E, which are
central to the lucky-drift model, needs some care. Strict-
ly speaking, both depend on the wave vector k, and lucky
drift is still a valid concept provided that, for all k at a
given E, A,z »A, . Then momentum relaxes over much
smaller space-time scales than does energy. Since the
electron-phonon interaction connects Bloch states of
nearly equal energies (%co «E), it is possible to average
1/A, over a constant-energy surface in phase space and
view the ensuing A, as the mean free path, or momentum
relaxation length, for an electron of energy E. Similarly,
a constant-energy average of As'(k)=[vd(k)iz(k)]
may be performed, so that A,

-l and AE 'are now func--
tions of energy. Some points or small regions of the
phase space may exhibit singular behavior caused by a
vanishing group or drift velocity. This would require a
specific, material-dependent examination, for which a nu-
merical approach is better suited, and is contrary to the
aim of the paper, which is devoted to the understanding
of universal trends, in the spirit of Ridley s lucky-drift
approach. Thus in the following we shall simply suppose
that both the mean free path and the energy relaxation
length can be meaningfully defined as functions of energy,
and test the behavior of the lucky-drift model in the case
of energy-dependent A, and A.z. This we sha11 call the
"generalized lucky-drift model, "and it is to the investiga-
tion of its statistics that we now turn.

We first establish the general expression for the energy
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distribution function and apply it to a simpli6ed example
borrowed from a Monte Carlo simulation using a full
band structure. The probability for an electron to reach
energy E in a field F is a generalization of Eq. (4):

P(E)=exp —f dz'/iL(z')
0

+ f exp —f dz" /A, (z") [dz'/A, (z')]
0 0

Xexp —f dz" /A E(z" )
z'

where we have used the lucky-drift variable z =E/qF,
and the rates A, '(E) and A,E '(E) depend on energy, in
contrast to the original Eq. (5). The first term is the prob-
ability of a ballistic Sight up to z, while the second one
sums all lucky drifts starting at z' between 0 and z;
A(z) [AE(z)] stands for A(E) [XE(E)]wherein z =E/qF.
It is useful to notice that P (z } satisfies a simple
differential equation:

I'
Gfz

[P(z) —PLB(z)], P (0)= 1,1

Z
(40)

where

P„a(z)=exp —f dz'/}((z') (41)

P„D(E)=exp —f dz'/AE(z')
0

(42)

we rewrite P (E) difFerently, using an integration by parts:

P(E)=exp —f dz'/Az(z'),

is the probability of lucky-ballistically reaching z.
Since the dominant term in (39) is expected to be the

probability of lucky drifting to E, viz. ,

the density of conduction-band states as E, is crossed,
and associated therewith a fourfold increase in the col-
lision rate over less than 0.1 eV. The electron distribu-
tion in energy space (Fig. 2) is found to be localized in the
upper neighborhood of E,. for I' ranging between 0.5 and
1 MV/cm, with very few carriers beyond 2.1 eV (& 1%
according to Ref. 23). From Fig. 2 we compute
E,„=1.50 and 1.71 eV at F =0.5 and 1 MV/cm. The
original lucky-drift model predicts that E,„-I' should
increase by a factor of 4 over that Geld range, and thus
poorly describes the situation. Can we reproduce the
"true" (i.e., Monte Carlo-simulated) behavior in the gen-
eralized lucky-drift framework? Disregarding smooth
nonparabolicity effects, we take the spatial collision rate
to be a steplike function of the simplest kind:

exp[(E E; )/6—; ]
'(E)=A, , '+(A, 2

' —
A, , ')

(45)

where 1 stands for low energy (E &E, }, and 2 for high

energy (E &E;). The function has a Fermi-Dirac-like
variation, changing from A, , to A, z around E; within an in-

terval -6; taken to be 0.07 eU. The values of A, , and 12
are computed through A, (E)=U (E}i(E)at E =1 and 2

eV. The scattering times v&=10 ' s and ~2=0.2X10
s are from the simulation (Fig. 4 of Ref. 23). Computation
of the group velocity v (E} accounting for m'=0. 3mo
and a nonparabolicity parameter a=0.69 eV ' yields

U, =0.58 X 10 cm/s and v2 =0.62 X 10 cm/s. Therefore
A, &=58 A and A,2=12.3 A. The parameters are listed in

Table I. As for A,E '(E), it is deduced from A,(E) through
Eq. (3}, where —,

' is the parabolic-band value of
E/[m'(E)ug(E) ]. If the E(k) relation (36) is used, we

+f exp —f dz" /k(z") [dz'/AE(z')]

Xexp —f *dz "/AE(z")
Z'

(43)

Since A,E »A, , the second term in the right-hand side of
(43) should be negligible, except at low, finite E If it is.
dropped we find that P(E)=PLD(E).

The energy distribution of the new model,
n (E)= dP!dE, may be—straightforwardly derived from
the differential equation (40). Taking P(E)=Pi D(E), we

may retain as a good approximation:

dP/dE =[qFAE—(E)] '[PLD(E) —PiB(E)] . (44)

This generalized expression of the electron energy distri-
bution n (E}vanishes for E~O or + m; the high-energy
tail is controlled by the asymptotic behavior of A,E(E), in

the spirit of the lucky-drift theory.
In order to check our generalized model in a concrete

case, we turn to a numerical simulation of transport in
ZnS which made use of a realistic band structure. Zinc
sulfide is a wide (Er =3.7 eV), direct bandgap semicon-

ductor where the intervalley separation in the empirical-
pseudopotential band-structure model is E; = 1.45 eV (al-

most the same for I'-I and I'-L). There is a sharp rise in

LLI

I:
0.5
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CL0
CL

C0
L-

w 0.1.

Enef gy E (eV)

FIG. 2. Electron population n (E)=X(E)f(E) in ZnS at 300

K, according to a Monte Carlo simulation in a realistic band

structure (after Figs. 2 and 8 of Ref. 23): open circles, F=0.5
MV/cm; full circles, F= 1 MV/cm. Normalized electron popu-

lation n(E) in ZnS at 300 K, according to the generalized

lucky-drift model with energy-dependent, steplike A,(E) (param-

eters in Table I): Solid line, exact n (E) [Eq. (40)]; dashed line,

approximation Eq. (44).
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Phonon
energy fico

(meV)

42

Effective Low-energy
free path A,

&

at 300 K (A)

58

Nonparabolicity
a (eV-')

0.69

mass
m '/m,

0.3

TABLE I. Parameters for the generalized lucky-drift model (ZnS).

Inter valley
separation

E; (eV) (eV)

1.45 0.07

High-energy
free path A.2

at 300 K (A)

12.3

find that —,
' should be replaced by (1+2aE) /

[2(1+aE)]-0.75 in the 1—2-eV range. This is taken
into account in the computation of A,s '(E). The electron
population n (E), both exact [Eq. (40)] and approximate
[Eq. (44)], has been displayed in Fig. 2 for the fields
F =0.5 and 1 MV/cm. In this example, the difference
between P(E) and PLD(E) is noticeable owing to the
smallness of the high-energy free path, making the condi-
tion A, /AE « I moderately satisfied. The area under the
exact n (E) curve [solid line, Eq. (40}]is P (0)= 1; the area
is less than unity in the case of the approximate n(E}
curve [dashed line, Eq. (44)]. The agreement with the
Monte Carlo results in Fig. 2 is striking. Just as in previ-
ous comparisons, ' ' we do not make use of any dispos-
able parameter. It is seen that over that field range most
carriers remain in the upper neighborhood of the inter-
valley energy, with a high-energy tail growing with field.
The effect of increasing the field hardly modifies the peak
of n (E}slightly above E;, but enhances the rms width of
the distribution, thereby pushing up the average energy.
Of course the long-lasting tail is also the result of a con-
stant energy relaxation length at high energy, so that the
present calculation based upon (45} is not expected to
represent accurately the Monte Carlo —simulated results
for E,„&2 eV (not available in Ref. 23). At very high en-

ergy, 1/~ is bounded (&7X10' s '), so that the long-
lasting tails do not seem unphysical. Other conduction
bands (not calculated in Ref. 23) will eventually come
into play and decrease the energy relaxation length.
Another possible drop in Az =vd(E)rE(E) is expected if
umklapp electron-phonon processes giving rise to back-
ward scattering decrease the high-energy drift velocity
vd(E).

Since the n (E) from the Monte Carlo and lucky-drift
models are very close, so should be the average energies.
The E,„'s at F=1 MV/cm are remarkably close (Monte
Carlo: 1.71, lucky drift: 1.79 eV). Our Monte Carlo es-
timation E,„=1.50 eV at F=0.5 MV/cm suffers from
the absence of reliable n(E) at E (1 eV. If the lucky-
drift average is computed for E ~ 1 eV to allow a safer
comparison, we find 1.49 eV. The agreement is impres-
sive given the simplicity of the analytical model. Note
that at low energy, polar scattering prevails in ZnS, so
that no great accuracy is expected from the lucky-drift
description.

Figure 3 shows the average energy E,„and the demar-
cation energy E,&2 [for which P(E,&2)= —,'] as functions
of field F in the generalized lucky-drift model. The two
energies are not very different. The average-energy-field
dependence is noticeably sublinear, and tracks that ex-
pected from numerical simulations ' [Fig. 11 of Ref. 8
gives E,„(F) in GaAs around E;=0.35 eV]. Figure 3
also shows E,„/qF together with A,z(E,„). The difference
is important due to the large range of values taken by

3 -30

.2PE

C

E „/qF
~ - .- --- E.)

2.01.0 1.5
Electric Field F (MV/cm)

FIG. 3. Average energy E,„,demarcation energy E&/2, and

energy correlation lengths E,„/qF and XE(E,„)as functions of
field F in ZnS at 300 K, according to the generalized lucky-drift
model (parameters of Table I).

A,z(E) in such a multivalley model. Which is closest to
the correlation length? Once most electrons have over-
taken E, , AE(E) is almost constant over the width of the
energy distribution, and the Appendix shows that
AE(E,„) is the energy correlation length. At low fields
such that most electrons lie within the central valley,
AE(E»)-A&F, and AE(E,„)-AzF once E,„exceeds E, .
The use of one correlation length Az(E,„)is adequate for
F~ 1 MV/cm, see Fig. 2. At F=0.5 MV/cm, corre-
sponding to E,„or E,&2=E;, the consideration of one
correlation length is inappropriate, and the autocorrela-
tion function for E(x) is expected to be strongly nonex-
ponential.

From this example it follows that the lucky-drift sta-
tistical device, namely, the calculation of the possible en-
ergies from "unphysical" flights starting from zero ener-

gy, reminiscent of the Shockley lucky-electron concept,
leads to an essentially correct energy distribution if realis-
tic relaxation lengths are used. In previous subsections,
we have emphasized the artificial character of the lucky-
drift trajectories, which lead to correct statistics insofar
as energy is concerned. In fact two cases should be dis-
tinguished. The consideration of those flights starting
from zero energy is fully relevant in the study of transient
transport, for instance, in the nonlocal model described
in Ref. 14 (in which, however, the expression for the im-
pact ionization rate should be corrected according to the
remarks of Sec. III). In the case of thermal carriers in-
jected at a heterojunction they can yield the fraction of
ballistic electrons. Concerning bulk, steady-state trans-
port, however, the notion of ballistic carriers is not ade-
quate, since after a sufhcient time or length, all carriers



7984 E. BRINGUIER 49

eventually enter the drift regime. Shichijo and Hess
have shown that "lucky" electrons actually start from the
average energy. They are lucky in the sense that they es-
cape significant energy relaxation while gaining energy
from the field. Because this is reflected in the derivation
of P(E) based upon an energy-dependent A,z, correct
statistics for n (E) ensues.

III. IMPACT EXCITATION

The purpose of this section is twofold. First, we revise
an earlier calculation' of the hot-electron-impact excita-
tion rate a, of a deep impurity. That impact process is
the basis of the operation of so-called high-field electro-
luminescence display devices, where the impacted impur-
ity returns to its ground state by emitting visible light.
The previous calculation rests on the use of the lucky-
drift trajectories, similar to the derivation' of the band-
to-band impact-ionization rate a„ in the case of a soft
threshold. The application of our new statistical rules
will result in a different expression for a„which will be
compared with the original one and with experimental
data. ' Second, in addition to practical reasons there are
also fundamental reasons to undertake this task. We
wish to emphasize that impact excitation can, better than
impact ionization, serve as a test of transport theories.
Because impact excitation is simply the inelastic collision
of an energetic carrier with an impurity, it is a one-body
process which is easier to deal with than carrier-induced
hole-electron pair production, a three-body process. For
instance only recently" was it realized that the ioniza-
tion probability is rather small jut above the energy-
momentum threshold for pair production, so that the
rate a„ is not straightforwardly related to the fraction of
carriers reaching the threshold energy. In spite of Kane's
early theoretical calculation in Si, it was a surprise in
1981 to find effective threshold energies for impact ion-
ization largely exceeding the Eg or 2Eg values. A
straightforward consequence is that hole-electron pair
creation negligibly affects the hot-electron distribution
function, see Fig. 7 of Ref. 27. Furthermore, the very
values for the energy-momentum threshold such as pre-
dicted by Anderson and Crowell have recently been
shown to be in error. More importantly, owing to the
complexities of the band structure there may be several
thresholds in k space, of unequal softness, as well as an-
tithresholds, ' making the interpretation of the ob-
served a„awkward. In contrast, the inelastic collision of
a high-energy electron on an impurity is characterized by
only one threshold (per excited level of the center), which
is readily obtained from the excitation spectrum of the
atom. Hence the ensuing electroluminescence just sam-
ples the high-energy tail of the distribution, and it is ar-
gued in Sec. III D that P(E}could be directly measured.
A third advantage afforded by measuring a, 's instead of
a„'s is the constancy of current in the former case. When
hole-electron pairs are created, the electron current is not
homogeneous along the sample thickness, and the newly
crated electrons do not belong to the steady-state distri-
bution n(E) under investigation. Only after some drift
downfield are they "thermalized. " Additionally, a hole

current traverses the material, possibly giving rise to un-
desired extra effects. Other drawbacks inherent in the
use of a„'s to probe the hot-electron energy distribution
have been pointed out by Capasso. ' Impact excitation of
an impurity and impact ionization of the lattice have one
common drawback, which is the incomplete knowledge
of the cross section of either process as a function of ener-

gy above threshold. Yet the theory of the one-body pro-
cess is easier to work out than that of the three-body pro-
cess.

A. Impact excitation rate

By E, we denote the energy threshold for impact exci-
tation, and by o (k} the total cross section for an incident
electron of wave vector k. Strong orientational depen-
dence of 0 with respect to the crystal axes has been found
in a theoretical calculation ' based on the Born approxi-
mation (i.e., Fermi s Golden rule). Note that this orienta-
tional dependence of o(k) has nothing to do with that of
the impact-ionization rate a„, which in the early works
was attributed' to an anisotropy in transport prior to the
impact process.

The rate of impact excitation a, is defined as the ex-

pected number of excitations per unit length per charge
carrier. Just as its analogue a„, it is also2 the number of
carriers impacted per unit time per unit volume, normal-
ized to the incident Aux (carrier current per unit area).
The second de6nition straightforwardly yields a
mathematical expression for a, . Taking one incident
electron per unit area, the incident 6ux is (vd &=u, .
When the electron's energy E(k) is in excess of the
threshold E„its probability per unit time to collide with
a center is o(k)vg(k), to be multiplied by the number of
centers per unit volume n. Since momentum is relaxed
more rapidly than energy, we average this in k space over
a constant-energy surface E(k)=E, and deSne an

effective isotropic cross section o(E} and group velocity
u (E) as

(E)= ( (k) (k) &/(, (k) &, (46a)

(46b)

a, =—f nor(E)ug(E)( dP/dE)dE . —
s e

(47)

The expression obtained previously, ' based on the pic-
ture of lucky-drift trajectories, is

vg (E)
a,'= f no(E) P(E)dE/E .

E ud E (48)

The expressions difFer in two ways (not to mention the
orientation averaging). The first difFerence lies in the
drift velocity used. In Eq. (48} the values of ud(E) which

The collision probability per unit time per unit volume is
no (E)u (E), the ensemble average of which is [Eq. (11)of
Sec. II]

f no'(E)ug(E)( dP/dE)dE, —
e

so that
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matter are just above the energetic threshold E„while in
Eq. (47) U, is deemed to be vd(E,„). At low fields where

E, ))E,„, the drift velocity used in Eq. (48) will tend to
overestimate the impact rate per unit length. The second
difference lies in the weighting factor. In a,'n(E) is re-
placed by P(E)/E. If, as is the usual case, E, is high
enough that it cannot be reached ballistically, then
n(E)=P(E)/[qFAE(E, )] just above E, . So the in-
tegrand of a,' contains E, as a denominator instead of
qFAE(E, ). At low fields the effect of incorrect statistics
in a,' will tend to be an underestimate of the impact rate.
Therefore the two differences between a, and a,' might
partly offset each other. But more importantly, the field
dependence of the two expressions [in P(E) and ud(E)] is
different. A quantitative comparison between a, and a',
can be found in Sec. III C, where both deviations will be
found.

again it is simpler to deal with a hard-threshold excita-
tion process, by which it is meant that cr(E) is a steplike
function equal to oo if E &E,. The consideration of a
finite impact-excitation cross section right from threshold
is naturally a simplification, but it is more easy to justify
than its impact-ionization counterpart. If first-order per-
turbation theory is used (in collision theory it is named
the Born approximation}, o(E) is proportional to the
density of final states: Since the final energy E —E, lies

near the bottom of the conduction band, N(E E, ) w—ill

assume a parabolic form -(E E,—}'~, that is, it will

sharply increase in the vicinity of E„ in contrast to the
form of the impact-ionization cross section -(E E; } —.
Hence in this subsection we particularize the expression
for a, obtained in Sec. III A to the case of a finite impact
cross section cro right from threshold. Equation (47) then
yields:

B. Impact statistics
a, =ncrov (E, )P(E, )/v, , (49)

In the presence of excitable centers, an electron mov-

ing over a distance d along the field suffers a,d inelastic
collisions. If, as is the usual case (see Sec. IIIC}, the
average distance between two excitation events a, is
large compared to the correlation length, electron trans-
port will not be affected by impact excitation, and the
statistics of impacts will obey simple laws similar to those
outlined in Sec. II C. The collisions occur independently,
with a well-determined average number a,d. Indepen-
dence does not hold on very short spatial scales, since just
after an inelastic collision, an electron is unlikely to be
hot enough to excite a center. But if the length over
which the impacted electron returns to the steady state,
which is of the order of the relaxation or correlation
length, is shorter than the average distance between col-
lision, a, , the perturbation will be insignificant, and the
electron will rapidly lose the memory of the previous col-
lision. Collisions occurring at random with a well-defined
probability per unit length obey Poisson statistics. The
average number of impacts is a,d, the probability that no
impact take place is exp( —a,d}, and the probability of n

impacts is (a,d)" exp( —a,d)hi! The variance in the
number of impacts, which is related to the noise, is a,d.
In the case of a small impact-excitation rate (a,d & 1), a
large noise is expected. The notions developed in this
subsection may be applied, mutatis rnutandis, to impact-
ionization statistics; this will modify the noise-figure cal-
culations derived from the lucky-drift trajectories. '

C. Hard-threshold case

The probability of band-to-band impact ionization does
not vary from zero to unity as the energy-momentum
threshold is crossed: the threshold is "soft.""' In
Keldysh's theory, which is based on the golden rule, the
probability for pair production grows as the square of the
excess energy; depending on the E(k) relationship, in
some parts of the Brillouin zone it may exhibit a different
functional form. Similarly, in the case of an impact-
excitable impurity, the cross section cr(E) smoothly in-
creases ' from zero above the threshold energy E,. Here

wherein we have further approximated v (E} to a con-
stant above E, [this is justified in the framework of the
Born approximation which gives the product o (E)us(E)
as a squared matrix element times N(E E, )]. T—he
meaning of (49) is obvious. For a hot electron, the time-
independent impact-excitation probability per unit time
na(E)vs(E) is multiplied by the fraction of time P(E, )

spent above E„and v, converts the time rate into a spa-
tial rate. It is worthy of remark that the previous expres-
sion' a,' does not meet that requirement, and thereby is
not physical. Equation (49) shows that a, is a direct indi-
cator of the fraction of electrons overtaking a certain en-

ergy, making it an interesting observable for testing
high-field transport theories. More specifically, if
o(E)vs(E) varies as (E E, )' over—the energy scale
Eo= —[d ln[P(E))/dE] ' at threshold, then in Eq. (49)
one simply has to replace o'Ovs(E, ) by

,'~n(o vs)(E, +ED). Taking P(E) in ZnS at 300 K from
our example of Sec. II E, with E,=2.24 eV, and

(E)Us(E)=~0 cm s ' (E +E, ), a =5X10' cm as
reasonable values, we have displayed in Fig. 4 a, and

a,'/a, versus electric field. The strong field dependence
of a, just refiects that of P(E, ), and the older expression
a,', which coincides with a, for F=1.5 MV/cm and
T=300 K, may severely depart from the true value,
especially at lower fields.

D. Comparison with experiment

The best-studied impact-excitable impurity is Mn +

in ZnS. It is an isoelectronic substitute of Zn + which is
electrically inactive. The first excited level ( T, in
crystal-field notation) is at 2.24 eV above the ground
state, the next ones (denoted by T2 and E) lie at 2.46
and 2.64 eV (excitation energies from Table I of Ref. 36).
The observed yellow luminescence is at 2.12 eV (585 nm}
due to Stokes shift, and is the basis of a successful solid-
state fiat-screen technology. We have used low-Mn-
doped ZnS layers (n &6X10's cm 3) since a high Mn +

concentration (n —10 cm ) is known to alter the elec-
trical characteristics. The 550-nm-thick layer is
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FIG. 5. Test of Eq. (49) for a, : [2n(co)+1] ' 'Lo-v, (a, )
has been plotted against the calculated P (2.24 eV) over the in-

vestigated temperature range {80-370K). The transport model
is that illustrated in Figs. 2, 3, and 4.

FIG. 4. Impact-excitation rate a, (this work, revised statis-
tics) in the hard-threshold approximation [E,=2.24 eV,
n cr(E)ug (E)=0 5 X 10'0 s ' for E )E],versus field F at 300 K.
The dashed line shows the ratio of a,' [Eq. (48)] to a, [Eq. (47)
or (49)]. The transport model is that illustrated in Figs. 2 and 3
and refers to ZnS.

sandwiched between two 330-nm oxide layers, which are
perfectly insulating, in order to avoid possible breakdown
of ZnS at high field. Upon application of a high enough
voltage across the stack, conduction appears in the ZnS
film. The field is applied by means of a short (2-ps) volt-
age pulse, during which F is approximately clamped at
2.0 MV/cm. Approximate clamping in the sulfide arises
from the rapid increase of carrier emission rate with field
together with the counteracting effect of the field pro-
duced by the charge transferred up to the sulfide-oxide
boundary. A rise in the peak voltage causes an increase
in the charge transferred across the ZnS layer. Corre-
spondingly there is an increase in the number of excited
centers, of which the luminescence Lo (in photons/s) is
recorded before they deexcite. Lo is proportional to the
number of excited centers and thus is a measure of a, . In
Fig. 3 of Ref. 15, Lo was plotted against the transferred
charge, with temperature as a parameter. It was seen
that (i) Lo is linear in the transferred charge, refiecting
the (approximate) field clamping, and (ii) Lo decreases at
high temperature, consistent with an increased phonon
scattering cooling down the hot-electron distribution.
According to Eq. (49) u, a, should be proportional to
P (E, ). That relationship, by which the theoretical
P(E, ) may be supported or falsified, may be checked ei-
ther through the field or the temperature dependence. In
the above-described capacitive structures the field cannot
be monitored and is approximately clamped, and thus we
are forced to rely on the temperature dependence. v, a, is
measured in arbitrary units through v, Lo, with
u, —[2n (ro)+1] '~ [no experimental data for u, (T) be-
ing available]. P(E, ) is computed at E, =2.24 eV from
the transport model for ZnS over the range 80—370 K.
The comparison is shown in Fig. 5. Contrary to the pre-

diction we do not observe linearity between v, a, and

P(E, ). This can be ascribed to many reasons, among
which only a few will be mentioned. (i) The key parame-
ter controlling the mean free path at high energy is the
deformation-potential constant with large-wave-vector
phonons, which is not known in ZnS (Ref. 23 merely uses
the GaAs value). (ii) The temperature dependence enters
through the Bose-Einstein factor [exp(%co/kT) 1] in-
which a single phonon angular frequency m is assumed.
This assumption is good for optical phonons which in
ZnS do exhibit a fiat dispersion relations (triru=42+2
meV), but questionable for zone-edge acoustic phonons
(25 meV) which partake in intervalley transitions. (iii) In-
direct evidence exists that the electric field in ZnS layers
grown by atomic-layer epitaxy is not uniform, especially
at low temperature. This is confirmed by the observation
that Lo depends on the polarity of the applied voltage
while the average field is clamped at approximately the
same value. The strong field dependence of P(E, ),
shown in Fig. 4, makes the comparison unreliable in spite
of a qualitatively correct behavior with respect to temper-
ature.

There also exist dc-coupled sputtered ZnS:Mn + films
(metal-insulator-metal structures) which are more prone
to breakdown, but where the field is readily monitored
through the applied voltage. Then the F dependence of
P (E, ) could be tested But in t.hose samples also the field

was not uniform along the layer thickness, owing to
unidentified flaws that depended on the process. Corre-
spondingly the light emitted was sablinear' with respect
to the current in spite of an increasing (average) field. It
is hoped that another process or material may give a uni-

form field and thereby allow a safe comparison between
impact-excitation yield measurements and theoretical
predictions. (The nonlocal transport model, ' which as-
sumes a nonuniform field profile and predicts negative
differential resistance for certain thicknesses, was found

not to be obeyed in sputtered ZnS films, suggesting that
deep-level ionization does not play a major role in high-
field conduction in those films. )
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IV. CONCLUSIONS APPENDIX

In this paper we have set up a theoretical dialogue be-
tween two descriptions of high-field transport in wide-gap
semiconductors. One is analytical and therefore has
often been restricted to parabolic bands, whereas the oth-
er is a computer simulation allowing inclusion of a realis-
tic band structure. The same physical ingredients, such
as deformation-potential electron-phonon interaction,
enter both descriptions, which only differ in handling the
statistics, and thus should ultimately converge. By bring-
ing them into closer contact, each class of theories can
offer a lateral insight into the other one. Starting from
the lucky-drift approach, which subsumes previous
analytical models, we have compared it with the statisti-
cal philosophy of the Monte Carlo simulation. In a first
stage, this has provided us with better instructions for use
of the lucky-drift model: the artificial character of the
so-called lucky-drift trajectories has been highlighted,
and they have been replaced by the concept of an energy
correlation length of a drifting particle. In a second
stage, we have reproduced numerical results obtained in a
strongly nonparabolic band structure in the frame of the
generalized lucky-drift model, without using adjustable
parameters. A more detailed comparison such as per-
formed in Refs. 12 and 22 is obviously desirable, but re-
quires Monte Carlo facilities which are not available to
us. The close correspondence between the generalized
lucky-drift model and the Monte Carlo approach allows a
much simpler understanding of transport statistics than
computer simulations, without resorting to oversimple
models ignoring the true band structure. In the same
way, the correspondence should make the Monte Carlo
procedure look less opaque to nonexperts than it has
sometimes seemed. Of course, where a detailed or accu-
rate knowledge of transport in a particular material is re-
quired, the Monte Carlo method is irreplaceable. But our
generalized lucky-drift model affords an overview point-
ing to the relevant parameters and the chemical trends.
In this conclusion we wish to reiterate that the ideal ap-
proach lies in the conjugate use of both viewpoints, as
was done in the present paper which aimed at a cross fer-
tilization of both descriptions.

Section III has applied the new statistical rules to the
calculation of the impact-excitation rate of an impurity.
The discrepancy between the present and the former ex-
pression is noticeable, and a similar revision should be
undertaken regarding impact-ionization rates. It has
been argued that the impact-excitation rate of an impuri-
ty should be a much better indicator of the fraction of
carriers overtaking a certain energy than was the band-
to-band impact-ionization rate. The comparison with ex-
periment is straightforward if the electric field is uniform,
and should serve as a test of transport theories.
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The Appendix is devoted to setting up the notion of an

energy correlation length of a high-energy drifting car-
rier, which provides a new look at, and a firmer ground
for, the lucky-drift framework. Being of a statistical na-

ture, the notion is also of interest in numerical simula-
tions of transport.

We write first the energy-balance equation

dE E=qFuz(E)
dt 1 E

(Al)

The stationary solution (dE/dt =0) is obtained for
E' =qFA, z. For E & E', the energy gain from the field is

overcome by the loss to the lattice, so that E~E'. And
if E &E*, more energy is gained by drifting downfield
than is lost to the phonons, so that E will increase toward
the value achieving balance. Whatever the initial carrier
energy at zero time, Eq. (Al) gives one final value, E'.
Equation (A l } is a monoenergetic approach which
correctly yields the average energy E,„=qFA,z, but not
the Quctuations around the average. A standard way to
introduce the fluctuations is the Langevin approach, in
which a random power (averaging to zero) is added to the
right-hand side of (Al). This will be done here with the
difference that we shall investigate the spatial, instead of
temporal, evolution of E, viz. ,

dE E=qF — +f (x} .
dx s'

(A2)

(f(x)&=O, (f(x)f(x')&=r5(x —x'), (A3)

where ( & means the statistical average over a large en-
semble of particles. The condition on the first moment
entails that (E & satisfies energy balance, and
E,„=qFA,z. The condition on the second moment states
that at two different points x'Ax the random force f is
uncorrelated. This is true at large enough spatial scales.
The path traveled between two carrier-lattice interactions
is A, , the corresponding x drifted downfield is
Aud(E)/us(E}: below that scale our Langevin description
through (A2) breaks down. If 5E denotes E E', we-
have

d (5E) 5E
dx AE

(A4)

The energy autocorrelation function in space is
(5E(x)5E(x') &. From (A4) we obtain

The x axis is directed downfield, qF is the rate of energy
gained per cm, and E/AE is the loss. In the original
lucky-drift model, A,E is constant (independent of energy),
whence E'=E,„. This feature is retained for the mo-
ment. As in the Langevin approach, the physical picture
is that random kicks, embodied in f (x), cause a tendency
for E to spread away from the energy-balancing value
E', while the damping term E/A, z tries to bring E back
to E'. f (x) is assumed to satisfy
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(5E(x)5E(x')) =exp[ —(x+x')/Az] (5E(0) )+f dx, J dxz exp[(x, +xz)/Az]( f(x, )f(x2))

Our simple analysis rests on a constant (energy-
independent) relaxation length A,z. In an actual band
structure it is more realistic to consider that A,z at a given
F, just like A,, decreases at high energy. If the variation of
A,z is small over the rms width of the energy distribution,
a small-signai expansion around the value E' achieving
energy balance is possible, and the correlation length is
Az(E'). If Az(E) rapidly varies around E', two prob-
lems arise. First, the value of E achieving energy balanc-
ing:

E'/A, (E')=(E/A, (E))=qF (A7)

generally does not coincide with (E ). Second, whereas

The first term vanishes far away from the origin x =0,
and the double integral is computed from (A3). The result
is (x') x),

(5E(x)5E(x') ) =(I Az/2) exp[ —(x' —x)/Az ] . (A5)

The energy autocorrelation function fades away exponen-
tially with distance, and the energy correlation length is

just A,z =E,„/qF. I, which measures the strength of the
random kicks, is related to the rms deviation from the
average energy:

(A6)

the introduction of Quctuations in the Langevin manner
was successful in a linear equation of motion such as
(A2), it does not carry over to nonlinear systems. When
the damping term E/—A,z is linear with respect to E, the
superposition of a random force f (x) averaging to zero
does not induce any trouble. In the case of a nonlinear
damping —E/A, z( E), the superposition of a random
force is not possible if that force is linked to the damping.
Now in our system —E/A z( E) and f (x) have the same

physical origin, namely, the electron-lattice interaction.
In Van Kampen's words, f (x}is an internal noise, and
therefore the Langevin procedure is inapplicable. See
Ref. 40 for a detailed account of the diSculties involved.
In our case we simply admit the existence of an energy
correlation length. The picture of lucky-drift Sights sug-

gests that autocorrelation of the energy breaks on the
average at l, =E,„/qF (see Sec. II C), but the small-signal

linearized Langevin equation gives l, =Az(E'). The ex-

ample studied in Sec. II E shows that the second answer
is right provided that the nonlinearity is not pronounced.
Appreciable nonlinearity in the energy-balance equation
is expected at intervalley transitions in direct-gap semi-
conductors, where the scattering time and hence Az(E}
sharply drop as a consequence of the increased density of
available states. Other remarks can be found in Sec.
II E.
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