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Magnetophotorefractive eSects in diluted magnetic semiconductors: Theory and experiment
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Faraday and Voigt magneto-optic effects in undoped Cd, „Mn„Te, a diluted magnetic semiconductor,
modify nonlinear beam coupling during photorefractive two-wave mixing. Three magnetophotorefrac-
tive geometries using transmission holographic gratings are identified: {1) the longitudinal Faraday
geometry; (2) the transverse Faraday geometry; and (3) the Voigt geometry. In the magnetophotorefrac-
tive phenomena, magnetic-field-induced circular and linear birefringence alters the polarization and
phase of coupled modes propagating in the presence of electro-optic gratings generated by photoinduced
space charge. Experimental and theoretical behavior for each of the geometries is presented as functions
of incident beam polarization and magnetic-field strength. The magnetic field controls the magnitude
and the direction of nonreciprocal energy transfer between the two beams.

I. INTRODUCI ION

The photorefractive efFect is a dynamic holographic
process in which laser interference fringes are imprinted
in the material as a refractive index grating. ' Such a
grating can couple two coherent laser beams during two-
wave mixing, leading to a nonreciprocal energy transfer
with one beam gaining intensity at the expense of the oth-
er. ' The photorefractive grating formation is a three-
step process involving the generation of photocarriers,
the development of space-charge electric fields, and an
electro-optic effect. An interesting dimension is added
when magneto-optic effects are combined with electro-
optic effects in a diluted magnetic semiconductor. Dilut-
ed magnetic semiconductors (DMS's) display pronounced
magneto-optic effects that can be tailored by controlling
the fraction of magnetic ion, thus providing additional tu-
nability. In this paper, we present a detailed investiga-
tion of magnetophotorefractive phenomena in
Cdc 9Mno, Te, a Mn-based II-VI DMS. ' We have previ-
ously reported the demonstration of magnetophotorefrac-
tive effects using Faraday rotation.

Photorefractive semiconductors are of interest for im-
age processing applications because of their potential for
high nonlinear-optical sensitivity and high speed.
Among the binary II-VI and III-V compound semicon-
ductors, CdTe has the highest electro-optic coefBcient r4&

in the infrared. ' CdTe continues to exhibit large linear
electro-optic and photorefractive properties even when
transition-metal ions are randomly substituted in the
group-II lattice positions. The incorporation of Mn + in
a II-VI semiconductor such as CdTe results in a diluted
magnetic semiconductor. ' A spin-spin exchange in-
teraction couples the d-electron states of the Mn + ions
with the s- and p-like conduction- and valence-band elec-
trons, respectively, i.e., the sa-called sp-1 exchange in-
teraction. " This exchange interaction underlies striking
magneto-optic effects such as the giant Faraday and
Voigt effects. ' '

Magnetophotorefractive effects rely on the Faraday ro-
tation or on the Voigt effect during two-wave mixing. In

the Faraday effect, an external magnetic field H induces
circular birefringence in an otherwise optically inactive
isotropic medium. ' In addition to the Faraday rotation,
the DMS's exhibit a large linear birefringence for light
propagating at right angles to an externally applied mag-
netic field, i.e., the Voigt effect. '"'

We introduce three distinct magnetophotorefractive
geometries with copropagating beams: (i) the longitudi-
nal Faraday geometry; (ii) the transverse Faraday
geometry; and (iii) the Voigt geometry. These geometries
are shown in Fig. l. In the two Faraday geometries, the
optical-field polarization rotates as the beams propagate
through the sample. The directions of rotation are deter-
mined by the component of the k vector of the optical
field parallel or antiparallel to the H field. The Faraday
geometries are not "pure" geometries, because there are
components of k that are perpendicular to the field.
These components can experience a Voigt efFect. Howev-

er, the Voigt effect is quadratic in magnetic field and is
usually weaker than the linear Faraday efFect. Therefore,
in each Faraday geometry, Faraday rotation is the dom-
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FIG. 1. The three magnetophotorefractive geometries with
transmission gratings. Magnetic-field-. induced circular
birefringence in the Faraday geometry causes the optical-field
polarizations to corotate inside the crystal in the longitudinal
Faraday geometry, and to counter-rotate in the transverse Fara-
day geometry. Magnetic-field-induced linear birefringence in
the Voigt geometry causes anisotropic photorefractive coupling.
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inant magneto-optical efFect. The Voigt geometry, in con-
trast, is a "pure" geometry because there is no com-
ponent of k parallel to the applied H field. In this case,
the Voigt effect introduces linear birefringence that
modifies the photorefractive mixing.

X

II. MAGNETOPHOTOREFRACTIVE THEORY

A. Photorefractive mixing

The dependence of photorefractive two-beam coupling
on crystallographic orientation was described theoretical-
ly and experimentally by Strait, Reed, and Kukhtarev for
a crystal with 43m (Td} symmetry, cut with orthogonal
axes along [110],[110],and [001].' The orientations of
the pump and signal laser beams relative to the coordi-
nate axes are shown in Fig. 2. The laser beams are in-
cident on the (110) face with symmetric incident angles,
and copropagate in the y direction along the [110] axis.
The angle between the [110] crystallographic axis and
the grating vector K is given by P. The incident polariza-
tion angles a and P for beams a and b are defined relative
to the grating vector, which is parallel to the x axis.

Photorefractive two-wave mixing is a phenomena com-
mon to electro-optic crystals with extrinsic photoconduc-
tivity. ' Photocarriers that are generated in bright in-
terference fringes difFuse to dark fringes, where they are
trapped by point defects. The trapped space charge is the
source for an electric field that modifies the refractive in-
dex of the material through the electro-optic efFect. The
spatially modulated refractive index represents a
diffraction grating with the same periodicity as the in-
terference fringe pattern. The two beams that write the
grating automatically satisfy the Bragg condition and
diff'ract off the grating, with the first-order diffraction of
one beam interfering constructively or destructively with
the other transmitted beam. The interference produces
nonreciprocal energy transfer from one beam to the oth-
er. The direction of the energy coupling is determined by

FIG. 2. For the crystal orientation and beam con6guration in
the two Faraday geometries, the laser beams are symmetrically
incident on the (110) face and copropagate in the y direction
along the [110] axis. The angle between the [110] crystallo-
graphic axis and the grating vector K along [111]is given by P.
The state of polarization is specified by angles a and P for
beams a and 1 measured relative to the grating vector, which is
parallel to the x axis.

the polarization of the laser beams and by the symmetry
of the electro-optic tensor.

The rate of change in wave amplitude during propaga-
tion through the periodically modulated crystal is de-
scribed by the coupled-wave equations in the nondepleted
pump approximation. These equations for the field am-
plitudes a and b at near-normal incidence are'

d nn r4, 3cos ((()}sin((()) cos(P)[3cos (P)—2] l'x

A, cose;„" cos(P)[3cos (P) —2] sin(P)[3sin (t}})—2]
(2.1)

where n is the refractive index, r4, is the nonzero
electro-optic matrix element for cubic symmetry, A, is the
wavelength in vacuum, and 0;„ is the internal angle that
the separate beams make with respect to the y axis. The
space-charge electric field in the absence of applied e&~".-
tric Selds is given by

a.b' . 2+IaIbE„=iEr) (=i /En 'cos(a P), (2.2—)
a b

where the diffusion field is Ez. The periodic intensity
distribution of the interfering beams is expressed as
I(x}=Io[1+msin(Ex)], where K =2m/A is the spatia. l
frequency, A=A, /2sin8 is the fringe spacing for a pump
wavelength of A,, and 0 is the external half-angle between
the beams. The diffusion field is given by E~ =Kkz T/e,

where ka is the Boltzmann constant. The wave field am-
plitude and intensity outside the crystal are related by
I,=a.a /2. The factor i in Eq. (2.2) represents a shift of
the diffraction grating by a quarter fringe spacing relative
to the interference grating. This shift is responsible for
the nonreciprocal energy transfer. The parameter
varies between 1 and —1 and incorporates many features
of the transport and space-charge processes that are re-
sponsible for the photorefractive efFect, including
electron-hole competition. ' '

The coupled-wave equation (2.1) is sensitive to crystal
orientation and beam polarization. When / =35.26', 90',
or 144.74', the ofF-diagonal matrix elements are zero, and
beam coupling is isotropic. These angles correspond to
the grating vector directed along the [111],[001], and
[111]directions. On the other hand, for /=0' the grat-
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ing vector is oriented along [110],and the diagonal ele-
ments are zero. These special crystal orientations can be
used to advantage during experiments by allowing only
one magneto-optic effect at a time to modify the pho-
torefractive beam coupling.

In the theoretical discussion of the magnetopho-
torefractive geometries, we make several simplifying as-
sumptions. First, we neglect all influence of magneto-
transport efFects on photorefractive mixing. Second, the
magnetic permeability is assumed to be a constant.
Third, we neglect magnetic-field-induced dichroism,
which causes different absorption for difFerent polariza-
tions. ' ' Magnetotransport effects can be important
during photorefractive mixing for special circumstances '

under large applied electric and magnetic fields. We use
no applied electric fields in our experiments, for which
the magnetotransport effects do not influence wave mix-
ing. On the other hand, we cannot rule out the effect of
magnetic dichroism in our experiments above 10 kG for
photon energies close to the band gap or for high magnet-
ic fields. Therefore our theoretical discussion is limited
to small-field effects. High-field effects will be considered
in a later paper.

B. Faraday photorefractive geometries

In a longitudinal magnetic field, the eigenmodes of
propagation are 0+ and 0 circularly polarized light,

1

ki

For photon energies slightly smaller than the interband
transition, the refractive index is dominated by the inter-
band I's-I & transition. ' The magnetic field splits the
spin degeneracy of the transition, shifting the transition
energies difFerently for the different helicities. The cr+
and 0 circular polarization refractive indices can be ex-

r
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. „cos(P,+8',(y))
=b,e'~""

sin(Po+ 8+(y) )

1;p
~ e

E

(2.3)

The exPression for the a beam is obtained by rePlacing Po
in Eq. (2.3) byao, and bby a.

In our analysis of the magnetophotorefractive effect we
choose to represent the problem in terms of a fixed exter-
nal reference frame within which Eq. (2.1} for linear po-
larizations is used at each position y along the beam
direction. The increment da(y) at y depends on the local
orientations of a(y) and b(y) at y. The contribution of
da(y) must propagate from y to L, during which the po-
larization experiences additional rotation. The output
polarization state of da(y) must therefore be included as
the increments are integrated over the length of the crys-
tal.

For linearly polarized beams in the presence of a longi-
tudinal magnetic field directed along the y axis, the
coupled-wave equations Eq. (2.1) at a distance y inside
the crystal become

pressed as

n+ =no —b,n(H), n =no+En(H),

where no is approximately independent of magnetic field,
and hn(H) is approximately linear with H, for small
fields. The Faraday rotation angle, at a distance y inside
the sample, is given by

8~(y) =hnky = V(k.H)y,

where V is the Verdet constant in units of degree/G cm,
and k is the unit k vector. For the incident b beam
linearly polarized at an angle po with respect to the x
axis, the electric-field vector at y inside the crystal is
given by

a„

dy az

nr~, 3.cos (P)sin(P) cos(P)[3 cos (P) —2] cos[PO+8F(y}]

Acose;„" cos(p)[3cos (iIt) —2] sin(p)[3sin (p) —2] sin[po+8+s(y)]
(2.4)

To find the x and y components at the exit face, the incremented electric-field vector components at y must propagate
from y to L with the appropriate rotation. The incremented output field da(y;L) is given by

cos[8~(L —y ) ] sin[8$ (L —y) ]

dy P cosi9,.„"—
sin[8$ (L —y) ] cos[8~(L —y)]

3cos (p)sin(p) cos(p)[3cos (p) —2] cos[Po+8F(y)]

cos(P)[3 cos (P)—2] sin($)[3 sin (P}—2] sin[Po+8+(y)]
(2.5)

because the incremented electric-field vector a experiences additional Faraday rotation as it propagates from y to the
back of the crystal at L.

The intensity of the probe beam is measured at the exit face of the photorefractive crystal. In this discussion, we fol-
low the formalism of Ref. 16 and view the output intensity of beam a through a linear analyzer oriented along the x or
the z axes. The change in x and z components of beam a at the exit face are given by
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2
1 L, da„(y;L}

KI,„(L)=—aocos[ao+8$(L)]+ I dy —
—,'~aocos[ao+8~(L)]~

o dy

L, da, (y;L)
EI„(L)=—aosin[ao+8z(L)]+ I dy ——', ~aosin[ao+8$(L)] ~

(2.6)

where the first term on the right-hand side gives the total
intensity of the probe beam at the output with coherent
interference between the direct beam and the increment
from the beam coupling. The second terms in the respec-
tive equations are the beam intensities in the absence of
coupling. The photorefractive gain F for small modula-
tion is given by

6I, (L)+BI„(L)
L I,„(L)+I„(L) (2.7)

In the following sections, we describe the longitudinal
and transverse Faraday geometries. For both Faraday
geometries, the grating vector is oriented parallel to a
(111)axis with /=35. 3' shown in Fig. 2. This orienta-
tion gives the largest photorefractive gain' and produces
large Faraday photorefractive effects. The Voigt effect
makes no contribution to photorefractive two-wave mix-
ing for this orientation.
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FIG. 3. Calculated photorefractive gain for the longitudinal
Faraday geometry as a function of applied magnetic field with
/=35. 3' and the grating vector parallel to the [111]axis. The
initial polarization conditions are s and p polarized. The gain
approaches its average value for high magnetic fields.

1. Longitudinal Faraday geometry

In the longitudinal Faraday geometry, shown in Fig.
1(a), the a and b beams copropagate in the direction of
the applied magnetic field. Because the internal angle 8;„
is small, the k vectors are directed nearly parallel to the
magnetic field, with only a small component of the k vec-
tor normal to the field. For linearly polarized beams, this
geometry produces Faraday rotation in each beam, caus-
ing the polarization vectors to corotate during propaga-
tion through the crystal.

The results of Eqs. (2.5)—(2.7) for the longitudinal
geometry are shown in Fig. 3 for ao= po for fixed initial p

and s polarizations as functions of magnetic field. The
magnetic field changes the sign of the gain in the s-
polarized case. The photorefractive gains for both polar-
izations oscillate with increasing field, undergoing one os-
cillation for each 180' of Faraday rotation. The oscilla-
tions are damped as the gain approaches an average value
for large rotations. The high-field gain in Fig. 3
represents a running average for multiple rotations, with
the orientational dependences averaged out.

2. Transverse Faraday geometry

The transverse Faraday geometry in Fig. 1(b) differs in
two important aspects from the longitudinal geometry in
Fig. 1(a). First, the two beam polarizations counter-
rotate because the k vectors of the copropagating beams
have equal but opposite components in the direction of
the applied magnetic field:

k, H= —kbH,
eF= ebF

The counter-rotation produces a behavior significantly
different for the transverse geometry from that for the
longitudinal. One of the most dramatic diSerences is the
finite beam coupling for initially orthogonally polarized
beams. The second aspect is that much larger magnetic
fields must be applied to produce significant Faraday ro-
tations because of the small k~~-component in the crystal.

The magnetophotorefractive equations for the trans-
verse Faraday geometry are also given by Eqs. (2.5)—(2.7).
Equation (2.2) is replaced by

2+I, I~
~„(y)=4~, ' '.o.[,-P,+8@y)-8,'(y)],

(2.8)

accounting for the change in the space-charge field with
distance y into the crystal caused by the counter-rotating
beams.

Two initial polarization cases were simulated for the
transverse Faraday geometry: (1) equal initial polariza-
tions ao=po; and (2) orthogonal initial polarizations
po=ao+90'. The magnetic-field dependences are shown
in Fig. 4. The values for photorefractive gain for equal
initial beam polarizations shown in Fig. 4(a} approach a
different average value compared to the longitudinal case
for large rotations. The second case with orthogonal ini-
tial polarizations shown in Fig. 4(b) exhibits qualitatively
different behavior, because in the absence of a magnetic
field this initial polarization condition produces zero pho-
torefractive gain for all polarization angles. %ith in-
creasing magnetic field, the counter-rotation of the polar-
ization vectors causes finite coupling.
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C. Voigt geometry

In the Voigt geometry, shown in Fig. 1(c), the a and b
beams copropagate along the y axis perpendicular to the
magnetic field applied along the z axis. The Voigt effect
is a magnetic-field-induced linear birefringence. For
linearly polarized light, the component of the electric-
field vector parallel to the magnetic field experiences a
different refractive index than the electric-field vector
perpendicular to the magnetic field. It has been shown
that, close to the energy gap of a DMS, the Zeeman split-
ting of the excitonic transitions governs both the Faraday
and Voigt efFects. Further, the a+ transitions underlie

the Faraday effect, whereas both o+ and p transitions
come into play in the Voigt effect. ' ' ' The refractive
indices for the parallel and perpendicular polarizations

can be expressed as

nii =ne+bnt(H), nt rtQ+lhirt J (H)

where no is approximately independent of magnetic field

and h, n(H) is approximately a quadratic function of the
magnetic field, for small fields. By analogy with the Fara-
day effect the phase angle between the orthogonal polar-
izations is given by

e,(y)=(an, —ant)ky = Yl(I XH)l'y,

where Yis the Voigt analog to the Verdet constant.
The coupled-wave equations describing the increment

in the field vector of the a beam at the output of the crys-
tal are

da(y'L) nn r~t
3

g
dy A, cose;„

exp(ihn
ii
k (L —y })

0 exp[ihnj k(L —y)]

3 cosz(P)sin(P) cos(P)[3 cosz(P) —2] exp(I~rtiiky)cos(~o)

cos(P) [3cos (t(})—2] sin(P) [3sinz(P) —2]

exP(idn�unky)sin(Pe
}

(2.9)

The intensities observed through x- and z-oriented
analyzers are

1
lLI (L)=—aoexp(ihnllk ) ( o)
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and the gain is still given by Eq. (2.7).
For the Voigt photorefractive experiments, the pho-

torefractive coupling must not be isotropic. %hen the
photorefractive coupling is isotropic [i.e., when the off-
diagonal matrix elements in Eq. (2.4) are zero) there is no
coupling between the polarizations parallel and perpen-
dicular to the applied magnetic field. Therefore in the
Voigt experiments we choose /=0' in order to observe
the Voigt-photorefractive efFect. For /=35. 26', 90', or
144.74' the Voigt effect, although possibly strong, would
not alter the photorefractive mixing. The mixing in the
presence of the Voigt effect is shown in Fig. 5, plotted as
a function of K2 for t(}=0' with the grating vector parallel
to a (110) axis. A Voigt phase shift of 180' between the
vertical and horizontal polarizations make the gain van-
ish for all polarizations.
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FIG. 4. Calculated photorefractive gain for the transverse
Faraday geometry as a function of magnetic field with /= 35.3'
and the grating vector parallel to the [111]axis. Four initial
polarization conditions are shown. For equal initial polariza-
tions Po=ao, in Fig. (a} the incident polarization conditions are
s and p polarized. Results are also shown in (b) for cross-
polarized conditions Po =ao+ 90'.
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was cooled to 220 K the dark resistivity increased by two
orders of magnitude to approximately 10 Qcm, and
much smaller laser intensities could be used to saturate
the gain. Near 220 K, photorefractive gains approaching
0.1 cm ' were observed for a fringe spacing of 3.8 pm,
with a pump-to-probe beam intensity ratio of 1000:1.
The magnetophotorefractive gain measurements were
done at 220 K for reasons explained below.

2. Temperature dependence ofphotorefractiue eQect

-1.2

FIG. 5. Calculated two-wave mixing gain as a function of
+e„ in the Voigt geometry for /=0' with the grating vector
parallel to the [110]axis. The gain changes sign at 8„=180'
with a0=45', and oscillates with decreasing amplitude about
zero value for higher magnetic Selds.

III. EXPERIMENTAL RESULTS

A. Photorefractive characterization

1. Experiment

In our studies of the magnetophotorefractive effect, we
used a nominally undoped crystal of modified-
Bridgeman-growth Cdo 9Mno &

Te. After growth, the
crystal was oriented by x-ray diffraction and cut into a
parallelepiped with edges along [110], [110],and [001].
The sample length in the direction of propagation in the
experiments along [110]was 0.79 cm. In all our experi-
ments, the fringe spacing A was approximately 4 pm.

In the two-wave mixing experiment, the laser beam
from a Kr+ laser, operating in fundamental transverse
mode (TEMoo}, with an emission wavelength of 799 nm is
split by a beam splitter into a pump beam and a signal
beam. The signal beam is made weaker to work in the
small-ainplitude-modulation approximation (m « I ).
The two beams are directed onto the sample, mounted in-
side a Janis variable-temperature superconducting mag-
net cryostat. We measured the two-wave mixing gain by
mechanically chopping the pump beam and measuring
the modulation of the probe beam intensity using a Si
photodiode and a lock-in amplifier.

The incident polarization is controlled using half-wave
plates after the beam splitter in both the pump and the
probe beams. The two plates allow an accurate deter-
mination of the input polarization of the two beams and
remove systematic misalignment caused by imperfection
in the beam splitter. The Faraday rotation is measured
for both the pump and the probe beam by placing an
analyzer after the sample and monitoring the transmitted
intensity. All the polarizations are accurate within 2 -3 .

The photorefractive properties of the sample were first
characterized by performing two-wave mixing at 1.06 pm
using an yttrium aluminum garnet (YAG:Nd) laser. A
laser intensity of —1 %'/cm was necessary to saturate
the photorefractive gain at room temperature because of
the small dark resistivity of 10 0 cm. When the sample

The photorefractive effect is useful not only for optical
imaging applications, but also works as a probe of materi-
al properties, performing as a deep-level defect spectros-
copy which can be used to study nonequilibrium
charge-state occupancies of defects. The pho-
torefractive effect depends explicitly on charge trapped at
defects within the material. Therefore the type of de-
fects, their concentrations, binding energies, and optical
cross sections can strongly inhuence photorefractive
beam coupling. By studying the two-wave mixing gain as
a function of temperature, the contribution of different
defect species to the photorefractive behavior can be
determined.

The temperature dependence of two-wave mixing gain
in Cdo 9Mno &

Te at 799 nm was measured with the crystal
orientation shown in Fig. 2, corresponding to /=35. 3'
with the grating vector (K) along [111]. The tempera-
ture dependence is shown in Fig. 6. The fringe spacing
was 4 pm, with a pump-to-probe intensity ratio of 700:1.
The optical fields were p polarized (parallel to the plane
of incidence) to work with maximum gain for this crystal
orientation. ' The gain exhibits a nonlinear temperature
dependence. The striking feature is the change in the
sign of the gain near 100 K, signifying a change in the
direction of energy transfer. The direction of energy
transfer is determined by the crystallographic orientation
of the crystal (the sign of the electro-optic coeScient},
and by the sign of the dominant photocarriers. The ob-
served temperature behavior is in sharp contrast to the
linear temperature dependence predicted by the single-
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FIG. 6. Temperature dependence of two-wave mixing gain
for p polarization of the optical Selds. The change in the sign of
gain near 100 K indicates a change in the sign of dominant pho-
tocarriers and a change in the direction of the energy transfer.
The solid line is to guide the eye.
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defect model of the photorefractive effect. This behavior
can be explained by including the effects of additional de-
fect levels in the crystal. ' Note that the gain achieves
its maximum value near 250 K, with a sharp drop ofF

below it. To work with large gains, we choose the tem-
perature of the sample to be 220 K. This temperature is
also optimum to produce large magneto-optic effects, as
explained in Sec. III B3.

3. Temperature depettdettce of magneto-optic sects

In addition to controlling defect charge states, temper-
ature also determines the strengths of the magneto-optic
effects in diluted magnetic semiconductors. The Faraday
rotation depends on the Verdet constant V(x, A, , T),
which is proportional to magnetization M, and is a func-
tion of the magnetic ion (Mn +} concentration x and the
temperature T of the sample. The magnetization and the
Verdet constant increase as temperature decreases, allow-

ing larger Faraday rotation at smaller applied magnetic-
field strengths. Cd, „Mn„Te can be grown as a single
crystal up to x =0.77 in the bulk, although the value of
x for maximum magnetization depends on temperature.
For instance, at room temperature M increases with in-

creasing x, whereas at low temperatures the antiferro-
magnetic coupling between Mn + ions can cause M to
decrease with increasing x. The wavelength dependence
of the Verdet constant is such that it is resonantly
enhanced for photon energies close to the band edge.
Therefore, we use a photon energy of 1.55 eV correspond-
ing to the 799-nm line of the Kr+ laser, which is close to
the band-gap energy 1.69 eV of Cd0 9Mn0 &

Te at 220 K.
In the Voigt efFect, the phase difFerence between the

components parallel and perpendicular to the magnetic
field, called the Voigt phase shift, depends on the square
of the magnetization with the proportionality factor
Y(x, A, , T}. The dependence on T and x is more pro-
nounced than in the Faraday effect. The Voigt effect is
also enhanced for photon energies close to the band gap,
as for the Faraday effect. '

dc magnetic field. The magnetic field rotates the polar-
ization angle a within the sample according to
a(y}=ao+8r, with both beams undergoing the same ro-
tation in the same direction (corotating). The Verdet
constant for our sample is V=0.076 (deg/Gcm) at 220
K for 799 nm. A modest field of 1.5 kG is therefore
sufBcient to produce a 90 Faraday rotation as the beam
traverses the entire 0.79-cm length of the crystal.

The gain as a function of the incident polarization is
shown in Fig. 7 for applied dc magnetic fields of 0, + 1.5,
and —1.5 kG. The polarization angle an=90' corre-
sponds to incident s polarization (perpendicular to the in-
cident plane), and a0=0' and 180' corresponds to in-
cident p polarization (parallel to the incident plane). The
zero-field data provide the reference for interpreting the
magnetic-field data. In the presence of an applied. dc
magnetic field, the gain is determined by averaging 1 (a)
over zero-field values from the initial polarization state
a=ao to the final polarization state a=ao+8z. This
produces a shift in the gain curve peak position and a
reduction in its magnitude. For example, for H =+1.5
kG (corresponding to 8+=90') with ac=0', the magni-
tude of the gain is determined by averaging the zero-field
I from ac=0' to a0=90'. Similarly the gain curve max-
imum for H=+1.5 kG occurs at a0=45' and has a
value -0.04 cm ', corresponding to the zero-field value
of I (a) averaged over ao from +45' to —45'. The gain
for H= —1.5 kG has the opposite sign relative to
H =+1.5 kG because the rotation of the optical-field po-
larization is in the opposite sense. The solid curves in Fig.
7 are fits from the theory of Eqs. (2.5)-(2.7}.

The experimental two-wave mixing behavior in Fig. 7
qualitatively agrees with the simulations. However, the
experimental data include a constant offset. This addi-
tional contribution to the two-wave mixing arises from
induced absorption gratings, which has not been included
in the theoretical formulation described in Sec. II. In
photorefractive crystals absorption ~ratings appear in ad-
dition to electro-optic gratings because the space

B. Magnetophotorefractive geometries

1. Longitudinal Faraday geometry

0.08

0.06,
-1.5 kG

~ 0kG
T =220K
A=4'

The sample orientation, the grating vector K, and the
polarization of the optical fields for the Faraday
geometries, are shown in Fig. 2. This orientation, corre-
sponding to /=35. 3', is chosen for three reasons. First,
in the absence of an applied dc magnetic field, p-polarized
incident beams achieve the largest photorefractive gain
with this orientation. ' Second, the gain changes sign as
the incident-beam polarization is changed between s and
p-polarizations. Third, there is no Voigt-photorefractive
effect for this crystal orientation because the coupling is
isotropic. A11 the data for the Faraday geometries were
taken at T =220 K. This temperature was chosen to im-
prove both the dark resistivity and the magneto-optic
effects. The assignment of positive and negative direc-
tions to the magnetic field is arbitrary.

In this configuration, the direction of propagation of
the laser beams is approximately parallel to the applied

0.04

f

0.02 t
CO

0.00

-0.02
45 90 135

Incident Polarization nn (deg)
180

FIG. 7. Experimental two-wave mixing gain as a function of
incident polarization of optical fields in the longitudinal Fara-
day geometry for H=O, 1.5, and —1.5 kG. The data at
H =+1.5 kG correspond to a +90 Faraday rotation through
the sample. The solid lines are a fit to the theory with a contri-
bution from absorption gratings.
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charge trapped at deep defects (which generates the
space-charge electric fields) also changes the absorption
by defect photoionization. The coupling from absorption
gratings is insensitive to the state of polarization of the
incident optical fields. The contribution from the absorp-
tion grating in Fig. 7 is ha =0.007 cm

Two-beam coupling modulation as a function of a dc
magnetic field is demonstrated in Fig. 8 for incident p and
s polarizations. The direction of energy transfer for s po-
larization can be reversed by applying a modest magnetic
field of 1 kG. The oscillatory behavior of gain about its
average value with increasing magnetic field can be un-
derstood in terms of the averaging process described
above. The magnetic oscillation period is determined by
the optical path length and the Verdet constant. Increas-
ing either the crystal length or the Verdet constant (e.g. ,

by decreasing the temperature or increasing the Mn frac-
tion) increases the total Faraday rotation and decreases
the magnetic oscillation period.

Under the given experimental conditions, ideally we
would expect the gain for the incident p polarization to
cross the average line (shown by a dotted line) at incre-
ments of 1.5 kG, corresponding to successive Faraday ro-
tations of 90'. This behavior was shown in the simulation
in Fig. 3. The experimental gain agrees qualitatively with
the simulation only up to 3 kG, with crossings occurring
approximately at 1.5 and 3 kG. However, there is
significant deviation from the simulation for large
magnetic-field strengths. This behavior of gain for higher
magnetic fields is not currently understood, and will be
the focus of future work.

0..06 I I I I I I
i

I I 1 I I I I I I
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I I I I 1 I I I
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I I I j I I I I

Longitudinal Geometry

a, = 90 (s-polarization)

a, = 0' (p-polarization)

k)) H

2. Transverse Faraday geometry

In this geometry the magnetic field is applied normal
to the direction of propagation of the laser beams, as
shown in Fig. 1(b). Because the angle between H and k is
not exactly 90', there is a component of magnetic field

HII =H sin8 parallel to k and a component Hi =H cos8
perpendicular to k, where 8 is te half-angle inside the
crystal. Even though H~ is much larger than H~t, the
dominant magneto-optic effect is the Faraday rotation.

0.08

0.06,

0.04 (
O

~~
0.02

CO

~ 0kG
o +23.6 kG
o +47.2 kG

-47.2 kG

kJ H

T = 220 K
A =4@m

0 = 35.3'
P =a

~ +~i

0.00

The perpendicular component of the magnetic field H~
for the crystal orientation in Fig. 2 will not induce a
Voigt photorefractive effect because the coupling is iso-
tropic for this orientation. However, much larger mag-
netic fields are needed to produce a given Faraday rota-
tion, because of the small value of the angle 8.

In the transverse geometry, both optical fields wi11 un-
dergo the same polarization rotation, but in the opposite
directions (counter-rotating) inside the crystal. The angle
of polarization rotation is given by a(y) =ac+ VHIIy and
p(y) =pc —

VHIIy for the two laser beams, where ao and po
are the incident polarizations at y =0. Experimental re-
sults are presented here when the initial polarizations are
prepared according to the following two different cases:
(i) equal initial polarizations Po=ao, and (ii} orthogonal
initial polarizations Pc=ac+90'. The gain as a function
of incident polarization for case (i) is shown in Fig. 9 for
Axed magnetic fields of H =0, +23.6 kG, and +47.2 kG,
corresponding to Faraday rotations of 0', 45', and +90',
respectively. The results for case (ii) are shown in Fig.
10. The solid curves are the fit from the theory of Eqs.
(2.5), (2.6}, and (2.8) using the same fitting parameters as
in Fig. 7.

There are two important features of the gain curves in
Fig. 9. First, the average gain is 0.01 cm, which is
smaller than the average gain for the corresponding case
in the longitudinal geometry. Second, the gain in the
transverse geometry is insensitive to the direction of the
applied magnetic field because the polarization rotation is
symmetric with respect to the direction of the applied
magnetic field (see the curves for H =+47.2 kG).

The behavior of photorefractive gain as a function of
magnetic field is shown in Fig. 11 for both initial polar-
ization cases. Here the incident polarization of both
beams is fixed, and the magnetic field is varied. For the
initial p and s polarizations, the two-wave mixing gain os-
cillates about its average value as a function of applied
magnetic field. This behavior is qualitatively similar to

0.00

-0.01

-0.02
0 45 90 135

Incident Polarization no (deg)
180

-0.02
0 10 20

H (kG)

30 40 50

FIG. 8. Experimental gain for s and p polarizations in the
longitudinal Faraday geometry as a function of magnetic field.
Above 3 kG the behavior deviates significantly from the predic-
tions of Fig. 3. The solid lines are to guide the eye.

FIG. 9. Experimental two-wave mixing gain as a function of
incident polarization in the transverse Faraday geometry for
fields of 0=0, 23.6, and +47.2 kG representing fixed Faraday
rotations of 6+=0', +45', and +90'. Much larger magnetic
fields are needed to produce a given Faraday rotation compared
with the longitudinal case. The solid curves are the fit from the
theory.
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FIG. 11. Experimental gain as a function of magnetic field
for the transverse Faraday geometry using parallel s and p po-
larizations, and cross polarization. The solid lines are to guide
the eye.
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FIG. 10. Experimental two-wave mixing gain as a function of
incident polarization in the transverse Faraday geometry for
fields of H =+47.2 kG representing fixed Faraday rotations of
e+=+90'. The solid curves are the fit from the theory.

the gain behavior in the longitudinal geometry. Quanti-
tatively, however, there are two important differences.
First, the period of oscillations is much larger; and
second, the gain approaches a lower average value for
large magnetic fields. For the orthogonal initial polariza-
tion case (ii) we used ac=45' and 135'. Note that in the
absence of an applied magnetic field, there is no coupling
between two orthogonally polarized optical fields and
therefore the gain is zero. However, as the magnetic field
is applied, the two fields begin to couple because of the
change in their polarization states inside the sample.
This feature of the gain behavior makes the transverse
geometry distinct from the longitudinal geometry, and
can be used to turn on/off the photorefractive coupling
by turning on/off the external magnetic field.

3. Yoigt geometry

To characterize the Voigt effect, we first measured the
Voigt phase shift by increasing the magnetic field from 0
to 60 kG. The incident beam was polarized at 45' with
respect to H, and was analyzed with a linear polarizer at—45' after transmission through the sample. In this
configuration the transmitted intensity varies as
sin (8„/2) and exhibits maxima at e„=(2p+1)n and
minima at 4„=2pm, where p is an integer. The transmis-
sion curve was used to calculate the Voigt phase shift. A
deviation from linearity at high fields, above approxi-
mately 30 kG, was observed due to the saturation of mag-
netization. ' This saturation is more pronounced for low
Mn concentrations, low temperature, and high fields.

To study the beam coupling in the presence of the
Voigt effect, the crystal orientation was changed from
/=35. 5' to /=0', so that the beam coupling was no
longer isotropic. The laser beams propagated along [110]
with the magnetic field applied along [001],and the grat-
ing vector parallel to [110]with a grating spacing of 4
pm. To increase the Voigt effect the temperature was
further lowered to 50 K. The incident polarization for
both the pump and the probe laser beams was 135',
which made an angle of 45' with respect to the magnetic-
field-induced optic axis. In order to minimize the effect
of the polarization change from the cryostat windows at
this lower temperature, a linear polarizer was mounted at
135' onto the front face of the crystal inside the cryostat.
The measured gain as a function of the applied magnetic
field is shown in Fig. 12, which is qualitatively in agree-
ment with the simulations in Fig. 5. The gain changes
sign, signifying a change in the direction of energy
transfer at about 45 kG, which corresponds to a Voigt
phase shift of approximately 100 .

-0.020 ~ I I I I ~ I I I ~ I I ~ ~ ~ I ~ I ~ I ~ I I I

10 20 30 40 50 60
IV. DISCUSSION

FIG. 12. Experimental gain as a function of applied magnetic
field in the Voigt geometry. The beams are propagating along
[110],with the grating vector along [110]and the magnetic field
applied along [001]. The data are qualitatively in agreement
with the simulations in Fig. 5. Note the change in the sign of
gain at H =45 kG. The solid line is to guide the eye.

In our study of magnetophotorefractive effects in unin-
tentionally doped Cd09Mn0 jTe, we purposely avoided
discussion of the point defects that are responsible for the
weak semi-insulating behavior of our crystal and for the
trapped space-charge gratings that lead to the pho-
torefractive efFect. Deep defects in the diluted magnetic
semiconductors have not been studied extensively, al-



7950 RANA, OH, CHUA, RAMDAS, AND NOLTE 49

though there is considerably evidence that self-
compensation by point defects in II-VI semiconductors is
common. Because of the relatively low resistivity at
room temperature, and the rapid increase of the resistivi-
ty by two orders of magnitude when the temperature was
reduced to 220 K, we can conclude that the Fermi level
in our crystal is pinned by a relatively shallow "deep" de-
fect level. The change in the sign of the gain below 100
K is evidence that an additional and even shallower de-
fect level is also present in this material. Because of the
central role that deep defects play in the photorefractive
effect, it will be necessary to understand and control the
defects states in diluted magnetic semiconductors in fu-
ture magnetophotorefractive studies.

In order to enhance the Faraday and Voigt magneto-
optic effects, our experiments were performed with a
laser photon energy tuned close to the interband transi-
tion energy. The magneto-optics for this laser energy is
dominated by excitonic effects. Such excitonic enhance-
ment can also play an important role in enhanced
electro-optic effects. The electroabsorption near the fun-
damental band gap is the source of quadratic electro-
optic effects that can significantly enhance photorefrac-
tive gratings ' when electric fields are applied. Com-
bining enhanced magneto-optics with enhanced excitonic
electro-optics is an area for future work in magnetopho-
torefractive effects. In addition, working with near-
resonant excitation of the semiconductor and/or with
electric fields should lead to interesting physical aspects,

including magnetic-field-induced dichroism and magneto-
transport effects.

Several outstanding issues remain in our study of mag-
netophotorefractive effects. Most notably, the behavior
of the photorefractive coupling for large Faraday rota-
tions does not agree with the model presented in this pa-
per. A more detailed model of the beam coupling should
include transport effects as well as circular dichroism.
Finally, reflection geometries with counterpropagating
light beams are an important class of geometries yet to be
explored. The reflection geometries lead to four-wave
mixing and, most importantly, phase conjugation, which
is one of the most commonly studied and important pho-
torefractive effects with many potential applications.
Phase conjugation can be described as time reversal of
light, and is possible in materials with time-reversal sym-
metry. Because magnetic fields remove time-reversal de-
generacy, magnetophotorefractive effects will provide a
way to control and quench phase conjugation.
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