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We consider the energy needed to form a spherical hole or void in a simple metal, modeled as ordinary
jellium or stabilized jellium. (Only the latter model correctly predicts positive formation energies for
voids in high-density metals. ) First we present two Hellmann-Feynman theorems for the void-formation

energy 4~R o z (n ) as a function of the void radius R and the positive-background density n, which may
be used to check the self-consistency of numerical calculations. They are special cases of more-general
relationships for partially emptied or partially stabilized voids. The difFerence between these two
theorems has an analog for spherical clusters. Next we link the small-R expansion of the void surface

energy (from perturbation theory) with the large-R expansion (from the liquid drop model) by means of a
Pade approximant without adjustable parameters. For a range of sizes (including the monovacancy and
its "antiparticle, "the atom), we compare void formation energies and cohesive energies calculated by the
liquid drop expansion (sum of volume, surface, and curvature energy terms), by the Fade form, and by
self-consistent Kohn-Sham calculations within the local-density approximation, against experimental
values. Thus we confirm that the domain of validity of the liquid drop model extends down almost to
the atomic scale of sizes. From the Pade formula, we estimate the next term of the liquid drop expansion
beyond the curvature energy term. The Pade form suggests a "generalized liquid drop model, "which we

use to estimate the edge and step-formation energies on an Al (111)surface.

I. INTRODUCTION

Vacancies determine many properties of metals, which
are interesting from a technological point of view. Inside
irradiated metals, they form vacancy clusters or voids
often Slled with pressurized He gas (bubbles). For
sufBciently high implantation doses, voids form regular
arrays (void lattices).

Vacancies and voids are characterized by static and
thermodynamic properties like electron density, forma-
tion energy, enthalpy, and entropy, ' and by dynamic
properties like energy-loss spectra and (curved) surface
plasmons. The lifetime of positrons provides an experi-
mental tool to study voids.

We focus on the void formation energy (at zero tem-
perature). Such energies and other properties have been
calculated within the jellium model, an idealized model in
which the positive charge of the ions is smeared out into
a uniform positive background. ' ' The results and
failures of the jellium model and pseudopotential pertur-
bation theory have been summarized in Ref. 14. Full ab
initio treatments for vacancies in Na and Al have been
done; see Refs. 18—20 and references therein. Vacancies
(and self-interstitials) in bcc Li are studied in Ref. 21,
where a short survey is given of calculations for atomic
defects in metals. Therein difFerent influences on the
theoretical value of the vacancy formation energy are

critically reviewed: the local-density approximation
(LDA) and the underestimated lattice constant following
from it, the effective potential and the need for full-
potential calculations, the structural relaxation around
the vacancy, the size convergence of supercell calcula-
tions, and Brillouin-zone sampling. Ab initio calculations
for 3d and 4d transition metals were done in Refs. 8, 22,
and 23. Those calculations were based on the Korringa-
Kohn-Rostoker-Green's-function (KKR-GF) method.
Divacancies (in Cu, Ni, Ag, and Pd} and nearly spherical
voids (in Cu) were also treated by this method.

While voids have negatively curved surfaces, clusters
have positively curved surfaces. Total energy calcula-
tions for clusters depending on size (number of atoms)
and structure are the counterparts to calculations of void
formation energies. A review of such cluster calculations
within the jellium model is given in Ref. 26. Results of
void and cluster calculations have sometimes been com-
pared with each other. 27,2s

Other examples of particularly curved solid surfaces
are quarter-space solids (or wedges) with rounded or un-
rounded edges. ' Terraces or single straight ledges or
steps, of interest for the understanding of crystal
growth, ' have been considered recently, as have regular-
ly stepped (vicinal} surfaces and wavy steps.

The jellium model often serves as an important refer-
ence system modeling sp-bonded or simple metals, al-
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by means of a Pade approximant. [From the perturba-

though it has intrinsic deficiencies (e.g., the planar sur-
face energy and the void formation energy for the valence
electron density of Al are negativez ). These deficiencies
are rectified by pseudopotential corrections, which
may be treated perturbatively, variationally, ' ' or
exactly. Recently, a structureless pseudopotential model
or stabilized jellium model has been proposed. ' Its
idea is similar to those of Ashcroft and Langreth, Brov;
man, Kagan, and Holas 4' (where calculations without
the second- and higher-order terms correspond to stabi-
lized jellium), Heine and Hodges, and Monnier and Per-
dew. It has the simplicity and universality of the jelli-
um model, but avoids some of its deficiencies. Bulk prop-
erties, planar surface properties, ' ' and curved
surface properties ' ' have been investigated in the
framework of stabilized jellium. Sophisticated calcula-
tions of Pb surface properties have been compared with a
similarly modified jellium model. Planar surface proper-
ties of stabilized jellium have been studied in terms of
correlated many-body wave functions. The "structure-
averaged jellium model" of Ref. 49 is (essentially) the sta-
bilized jellium model slightly modified, and applied to
clusters with a self-adjusting background. 0 The plasmon
resonance in Li clusters has been studied with a "pseudo-
jellium model. " '

In this paper, we study the energetics of spherical voids
of arbitrary size in an otherwise-homogeneous stabilized
jellium. First we present two rigorous theorems far the
void surface energy as a function of the void radius R and
of the stabilized jellium density n. They are consequences
of the Hellmann-Feynman theorem

az, /w, =
& q, [au, /w, [q „&,

where 8&%'&=E&%&. The derivatives with respect to R
and n are related to the electric field arising from the di-
pole layer at the background edge, to the number of elec-
trons that have spilled out into the vacuum region, and to
the electron density at the background edge. Such
theorems serve to check numerical calculations. To
derive the void theorems, we need first to derive a
(Hellmann-Feynman} theorem for stabilized jellium
spheres, which generalizes a formerly derived and numer-
ically checked thearem far ardinary jellium spheres. 5z 53

We show how our void theorems (whose nonstabilized
versions have been derired in Refs. 52 and 54) are related
to a theorem which has been derived for voids in ordi-
nary jellium by Finnis and Nieminen. ' And we study the
limiting case of large void radius R ~~. Theorems re-
cently derived and illustrated for the planar surface
emerge in this limit. They modify theorems provided
by Budd and Vannimenus for ordinary jellium.

In addition to these sum-rule studies, we link the
small-R expansion of the void surface energy

oz =aR+bR +cR +O(R5)

with the large-R expansion

tion theory, it follows that there is no term -R z in Eq.
(1), and that, for stabilized jellium, o vanishes. ] The
small-R coeScients, resulting from perturbation theory
either directly or via the void theorems, contain the bulk
energy of ordinary jellium, for which we use the expres-
sion of Ref. 59, and the dielectric function from linear
response theory (with an appropriate local field correc-
tion }. The large-R coeKcients are obtained from self-
consistent planar surface calculations of cr and y, the
latter found with the help of the fourth-order gradient ex-
pansion for the kinetic energy. cr and y are the surface
tension and the curvature energy, natural parameters of
the liquid drop model. 6' s3 This madel proposes for
weakly curved surfaces a curved-surface energy of
o A+ —,'y JdA R ', where R ' is the local curvature

(negative for a concave surface). With the help of the
Pade form, this model may be generalized3 to strongly
curved surfaces down to the Wigner-Seitz radius ro. The
Pade form of 0 z with the substitution R ~—R describes
the nonoscillatory part of the cluster surface energy crz.
The surface energy of a single atom, o'„(or o ", ) deter-

0 0

mines the cohesive energy 4nroo„'. Liquid drop and
0

Pade results for monovacancy formation energies are
compared here with self-consistently calculated values
and with experimental data. Finally, we apply the gen-
eralized liquid drop model to edges and steps, and com-
pare the step formatian energy so estimated for a step on
an Al(111) surface with the value recently obtained from
sophisticated calculations. '

Our present work is a detailed explanation and exten-
sion of a brief preliminary report.

II. THE SYSTEM, ITS CHARAC''j 'RISTIC
QUANTITIES, AND RIGOROUS YHEOREMS

We consider a spherical void with radius R in an
otherwise-homogeneous (stabilized or ordinary) jellium
with valence electron density n =3/4m r, . (Atomic units,
bohr=A' /me and hartree= me /A', are used
throughout. ) The positive-background density profile
n 8(r —R },where 8 is the Heaviside step function, is neu-
tralized by the corresponding electron density, nz(r).
Here R =N'~3z'~3r„where z is the valence and N is the
number of removed atoms. Mathematically, R and n are
independent variables, i.e., (4n /3)R n need not be an in-
teger. The case N= 1 or R =ro, with ro=z'~ r, being
the Wigner-Seitz radius, corresponds to a monovacancy.
The number of electrons that have spilled into the void
region r &R (divided by the void surface area) is

2

vz= r —nz r

The dipole layer near the void surface causes an electric
field 4'z (r)=Cz (r )r/r [with Cn (r) &0], and, via
Cz(r)=dfz(r)/dr and Pz(oo)=0, a corresponding po-
tential Pn(r) which goes smoothly from positive values
inside the void to zero for distances far away from it.

The void formation energy is the energy to form the
void by digging out the positive background from the
void region r (8 at the center of a large neutral sphere
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n+ (r) = n8—(R r)+—n8(r —R i )8(R2 r)—, (3)

with Rz fixed by fd r n+(r)=0; hence Rz R—i =R .
The corresponding ground-state energies E (of the large
reference sphere) and Ez (of the enlarged sphere with the
void inside} define for R,~~ the void formation energy

(with radius R, ), adding it at the outer surface (up to a
radius Rz )R, ) and finally taking the limit R, ~ ~ of an
infinitely large reference sphere. [Note that for any given
background density n, the expression (4m'/3)R, n=N&
must be an integer. ] So the background density profile of
the reference system, n+(r)=n8(R, —r), is changed by
adding the void perturbation

8„'=Jd'r R(r).C+(r)+ — [C+(r)]4~ + 2 4~

n+ (r)}t(r)de
(6)

dn

where 0+(r} is the electric field due to n "+ (r). The last
term of Eq. (6}arises from the stabilization correction.

From the many-body Hamiltonians for the void prob-
lem, the following sum rules can be derived straightfor-
wardly using the Hellmann-Feynman theorem:

[n —n(0)] =f ds C(s),de
(7)

4nR on =(En E)i~— (4) 3n o z = dr(r R)—Cz (r}8 „n
dn R

oz, the void formation energy per unit area, we call the
void surface energy. The formation energy of a monova-
cancy is 4mroo"„.

0
The many-body Hamiltonian for the reference sphere

1S

+3 n

'2

R +2 cr&=nR r —1 &r — s s
8 00 0

BR oo

(8)

8= f'+ fd r — P[R(r)] —n+ (r) P+ k(r)
2 4m

(5)

Here the second square-bracket term in the potential en-

ergy operator is the stabilization correction. The
electric-field operator R(r) arises from the charge density
n+ (r) —fi'(r), where

El
6'(r) =+5(r—r, )

is the electron-density operator. P deletes the divergent
self-interaction, so

P}i(r)k(r')=g g 5(r—r, )5(r' —r )

JAl

is the air distribution function operator. Finally,
P= —',(z /r, ) and e =bulk energy (per electron) of ordi-

nary jellium. (For the details of the stabilization correc-
tion, see Ref. 37.) The ground-state energy of 8 is E,
needed in Eq. (4).

Ez is the ground-state energy of the void Hamiltonian

8n arising from the reference Hamiltonian 8 by adding
to its background density n+(r)=n8(Ri —r} the void
perturbation (3). So we have PIi =A'+ 8' z with

+n R [n„'(R)—n(0)], (9)
dn

where C(s) is the electric field of a semi-infinite stabilized
jellium (occupying the half-space s &0) and n (0} is the
electron density at its a planar (flat) surface. As an exam-
ple of how to proceed, the void theorem (8) is proved in
Appendix A. Other Hellmann-Feynman theorems for
partially emptied or partially stabilized voids are present-
ed in Appendixes B and C, respectively.

Of course, the right-hand sides (rhs's) of Eqs. (7)-(9)
can be written equivalently (but see remark added to Ref.
55) in terms of the potentials Pa(r) and P(s), instead of
the electric fields 8"„(r) and 8(s). And to each of Eqs.
(7)-(9) there corresponds a theorem for ordinary jellium:
In Eq. (7), n (0) must be deleted; in Eqs. (8) and (9), the
last terms must be deleted. Note that na(r), hence also
8„"(r) and oui, change if the stabilization correction is
switched off. The theorem (7) follows from Eq. (F14) of
Ref. 36, with C = nde/dn and X—=0. It is the stabi-
lized version of the Budd-Vannimenus theorem. ss

The nonstabilized versions of Eqs. (8) and (9) with

Pit(r) on the rhs have been derived in Refs. 52 and 54.
Their difFerence agrees —if use is made of the nonstabi-
lized version of Eq. (7)—with a theorem given by Finnis
and Nieminen' and rederived in Ref. 65. The analogous
difference of +s. (8) and (9) yields the relation

3n —R —2 oui = nR f dr ——( —1)@ii(r)—f ds 6(s) +3 nv — oo r
U

gn BR " a R " — dn
e v& nR [n—ii (R) n(0)], —de

dn

(10)

which compares with a corresponding theorem for neutral spherical clusters, modeled by stabilized jellium spheres:
'3 2

3n —R —2 o~z =nR f dr — g~&(r) —f ds C(s) +3 n e vii+n R [n&(R) n(0)] . —R r 0 c
o dn dn
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do fo d @() d de

n ~ dn dn

2cr =+nR [pn(R) —$(0)]In

(12)

Here the cluster surface energy (per unit area) on follows
from the total energy of the stabilized jellium sphere via

E„'= R n(e+he)+4nR on .4m

3

Here he = P—n—de/dn is the stabilization correction of
the bulk energy; for a "cluster" consisting of only one
atom, i.e., (4n./3)R n =z or R =ra, the quantity 4nroo',

0

is the cohesive energy. '
vn =f a dr(r/R) na(r)

represents the number of electrons (per unit area) that
have spilled out into the vacuum region. Equation (11)
follows from Eq. {A4},if R, and E are replaced respec-
tively by R and Ez and use is made of Eq. (7). The origi-
nal expression on the left-hand side of Eq. (11) is
(3nd/dn 2)c—re, with the constraint N= const. Equa-
tion (11}emerges under the assumption that an interpola-
tion between integer values of N makes nz a continuous
smooth function of n and R.

The reason why the sphere theorem (11) does not split
into two separate theorems analogous to the void
theorems (8) and (9) is as follows: For a void, the quanti-
ties n and R are independent (real positive) variables,
whereas for a neutral sphere they vary subject to the con-
straint n 4nR3/3 .=positive integer.

The nonstabilized version of the theorem (11), i.e.,
without the last two terms on the rhs, was derived in Ref.
52 and numerically checked by Ekardt et al.

Finally, with R~~ the limiting cases of infinitely
large voids and spheres are recovered. With the planar
(flat) surface energy cr of stabilized jellium and with
v= 0 sn s, we ave

o„" ~o, v„" ~v, —8"„(R—s)~8{s},
on ~o, vn ~v, Ca(R +$)~8($),

and from Eqs. (8), (9), and (11)we obtain

kn{R)=4{0)+Pi —+ —4z, +o„1 1 „1 1

and an analogous one for nn (R), Eq. (13) takes the form

1 „de
cr =—nP" +n n"

1
d

1 (15)

and, with Eqs. (2) and {15),from Eq. (9) we obtain

y=nPz+n n2 .
n

With the expansion

—8" (R —$)=C(s)+8"(s}—+01 1
R R R

(16}

from Eqs. (8) and (12), we obtain

dr =2 s —s s+s
&

s +2 n
d de

dn dn dn
V( .

III. PERTURBATION TREATMENT OF SMALL VOIDS

A simple "physical" derivation of the small-R expan-
sion for the energy of a spherical void in ordinary jellium
is presented in Appendix D. In this section, we focus on
stabilized jellium.

For small voids, 8 n from Eq. (6) can be treated as a
perturbation. The eigenvalues and eigenstates of the un-
perturbed reference Hamiltonian 8 from Eq. (7} are E„
and ln), respectively (with E and lo) for the ground
state}.

The lowest-order contribution to 0 z arises from

4nR o"„'"={ol~nlo)ln „with

(17)

In nuclear theory, expansions in powers of R ' are re-
ferred to as leptodermous expansions. ' ' For rela-
tions like Eqs. (15) and (16) obtained from the ordinary
jellium model for metal clusters, see Ref. 68.

+n R [n„"(R)—n(0)]l~ (13) &olPxlo&= f d r 6(r)C+(r)+ — [8+(r)]'
4~ ' 2 4~

2o = nR [+(—R)—$(0)]la

nR [na(R—) —n (0)]la
dn

(14)

y"„(~)=y&(0)=p(—m)=0, the potentials are
gauged to zero deep in the bulk for each case.

The nonstabilized version of Eq. (12), i.e., without the
last term on the rhs, is just the Vannimenus-Budd
theorem for the surface energy of ordinary jelhum. The
nonstabilized version of Eq. (14) has been derived in Ref.
66. For a numerical illustration of the theorems (7) and
(12), see Ref. 46. They are the first of a hierarchy of force
sum rules leading from the bulk via surfaces and edges to
corners, as shown in Refs. 29, 66, and 67 for ordinary jel-
lium.

%ith the expansion

n "+ (r)n(r)
n

(18)

where g(r) and n (r) refer to the unperturbed reference
sphere. It is easy to show that

0og"=—— ds C(s}R + n 2R
3 00 15

[—n+n(0)]R .n de

dn
(19)

Due to theorem (7), the first and the last terms of Eq. (19)
cancel each other. So, for stabilized jellium, there is no
contribution -R. For ordinary jelhum, the last term is
not present and the void surface energy is -R for small
R. The second term is just the electrostatic self-energy of
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hP „" =f d r 8' (r} 8+(r)— n'+(r)t(r)
4n'

where 8' (r) arises only from the electron charge density
operator —8(r). A trivial rewriting of hP z is

hPI(= f d r $4.(r)— n "+(r} S(r),
n

n+ (r), which does not inffuence any many-body property
of the homogeneous jellium.

The next-order contribution to crz arises from

(0[Pz fn }(nfP )((/0}
4~R '~„"("= —g

n%0 n g )
—+oo

Because of ( n ~0 }=5„o,only the following terms of P „"

contribute to Eq. (20}:

3
' '2

4 R2 .(g) f dq 4n de

(2n )' q' dn

X[ —n8(qR)) ~
z(q )

g(q} is the Lindhard function

x(q) =-—3 n q
2 eF 2kF

l(x}=—1+ (1—x )ln
1 1 2 1+x
2 2x 1 —x

where kz =(3n n )'~, ez =kz/2, and

Z(q}=1— y(q)[1 —G (q)]2

(22)

(23)

(24)

or, in reciprocal space [with the Poisson equation
q~iP+—(q) =4m I "+ (q)],

hP „" =f q — — I" (q)&(q). (21)
d'q de

(2m ) dn

4m
2

slnx x cosxj,(x)=

is the transform of 8(R —r)], we obtain

K+ (q =0)=0 expresses the neutrality of the void pertur-
bation (3}. With the linear response expression

, x(q)
E„—E

and with the Fourier transform of n "+ (r}

I +(q) —+ n8(qR)—
[both expressions are valid in the limit R

&
~ 00, and

r(qR)=4"R "'3'( R)
3 qR

where

contains the local field correction G(q) beyond the ran-
dom phase approximation. %ithin LDA, we have

G(q)=— 1

4 d P xc(ne ) q (25)

according to Ref. 60. We take the bulk exchange-
correlation energy per electron e„, from Ref. 59.

A more explicit rewriting of Eq. (22) is

'2
3j,(qR)

0 qR

4m. de de q y(q) 4

q dn dn 4~ Z(q)

(26)

To extract from Eq. (26) the coefficients of the small-R
expansion (1},we make use of the asymptotic behavior of
the spherical Bessel function j( for x ~0, where the term

(de/dn-} needs special treatment due to the asymptot-
ic behavior of the integrand for large q. With
q g(q)A'(q)~ 4n following —from Eq. (23), we can
rewrite Eq. (26) as

v(2) n d(qR) R
3'( R)

9n dn o qR

+ '. f d—q—
3j,(qR)

qR

4m de y(q) de 1 q y(q)
q dn Z(q) dn 4~ Z(q)

R4. (27)

Now, in the first term,

f dx [3j,(x)/x] =3m/5
0

applies (so we obtain an additional term -R ), whereas
in the second term 3j&(x)/x~1 for x~0 leads to the
term -R . As shown in A pendixes B and C, the
small-R expansion of crz =o z" +nz' ' according to Eqs.
(19) and (26) can be confirmed by rigorous theorems and

4, deb= n m —n
15 dn

(28}

coupling-constant integrations mentioned in Sec. II.
In summary, the coeIIcients of the small-R expansion

(1}are a =0 [respectively, (n /3)(de/—dn ) for ordinary
jellium], and
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c= —n dq
9 o

4m de y(q)
q dn Z(q)

4-+ q'X(q)
47r Z(q)

(29)

o (—br, )B3Bi= —+
(ar, )

(ar, )
B, 0,0'

(y/2r, )
(33)

(34)

IV. PADE APPROXIMATION
AND NUMERICAL RESULTS

The small-R limit of Eq. (1) and the large-R limit of
Eq. (2) are linked by a simple Pade approximant

1+A, (Nz) '"+A,(Nz) '"
1+Bi(Nz) ' +Bz(Nz) +B3(Nz)

For a metal with density parameter r„ the void radius
R =(Nz)'/3r, is determined by z (the valence) and N (the
number of removed atoms). The coefficients for the Pade
approximation are obtained from the coeScients of the
limits (1) and (2) by simple algebra:

B3=

(ar, )'

cr(br 3)

(ar, ) (cr,")
(br,')

cr(br, )

(ar, ) +
CT 27s

(br,')
(31)

All stabilization corrections vanish at the equilibrium
bulk density of jellium (de/dn =0 at r, =4.19).

In linear response, the next term in the power expan-
sion of ji (x ) in Eq. (27) gives rise to terms of higher order
than R . And from higher-order perturbation theory
(quadratic response), we expect no further contribution to
the R term, since the perturbation is of order R and its
second-order or R contribution to 4rrR era formally re-
quires only the linear response of the density.

(ar, )
B~ 0, (35)

4nR o'n =4m'R o 2nRy+5—+ (36)

This extended liquid drop expansion, compared with the
Pade approximation of Eq. (30), yields

The arrows indicate the limiting case a —+0, which holds
for stabilized jellium (and for ordinary jellium at its equi-
librium density, i.e., r, =4. 19).

The results for the small-R coeScients a, b, c, according
to Eqs. (28) and (29) and the remark before Eq. (28), are
presented in Table I. The results for the large-R
coefficients cr (planar surface energy) and y (curvature en-

ergy) according to Ref. 44 are presented in Table II.
Table II also contains, for the densities of Al, Na, and Cs,
the results obtained from self-consistent local-density cal-
culations of voids in stabilized jellium with the Perdew-
Wang electron-gas input (as used in all tables and
figures of this paper). These results suggest a "rule"
y/o =2 or 3 bohr. Recent full-potential KKR-GF calcu-
lations for unrelaxed nearly spherical voids in fcc Cu (lat-
tice constant =6.76 bohr), together with self-consistent
half-space and bulk calculations, suggest7' that cr =371.
meV/bohr and y=58. 9 meV/bohr.

Table III gives the Pade coefficients A „Az, B„Bz,
and B3 for voids in stabilized (and in ordinary) jellium at
the densities of Al, Mg, Na, and Cs. From these, we can
estimate the coefficient of the next term of the liquid drop
expansion (2) beyond y/2R, describing curvature in
higher order (interaction between different parts of the
curved surface):

(ar, )+(cr, )B3 cr(cr, )
B

(br,') (br,')'
(32) 5=4nr, o ( Az —A, B,+B i Bz)~4m rzo(—Bzi Bz). (37)—

TABLE I. Coefficients a, b, and c of the small-R expansion (1), according to Eqs. (28} and (29) and
the remark before Eq. (28), for ordinary jellium (J}and stabilized jellium (SJ): (in millihartree/bohr~; r,
in bohr). (1 millihartree/bohr =27.21 meV/bohr~=1557 erg/cm~. }

ar,
Metal

H
Al
ZQ

Pb
Mg
Li
Ca
Sr
Ba
Na
K
Rb
Cs

(1.58)
(2.07)
(2.30)
(2.30)
(2.65)
(3.24)
(3.27)
(3.57)
(3.71)
(3.93)
(4.86)
(5.20)
(5.62)

—6.100
—1.698
—0.998
—0.998
—0.464
—0.129
—0.121
—0.057
—0.038
—0.016

0.019
0.022
0.022

SJ

12.105
5.383
3.924
3.924
2.566
1.404
1.366
1.049
0.935
0.787
0.416
0.340
0.269

SJ

9.774
4.851
3.644
3.644
2.459
1.385
1.349
1.044
0.932
0.786
0.414
0.336
0.264

—15.121
—7.525
—5.733
—5.733
—3.979
—2.372
—2.316
—1.849
—1.675
—1.446
—0.841
—0.709
—0.582

SJ

—30.114
—12.848
—9.170
—9.170
—5.794
—2.977
—2.886
—2.142
—1.877
—1.536
—0.715
—0.554
—0.410
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TABLE II. CoefBcients of the large-R expansion (2): Planar surface energy cr and curvature energy

y, according to the planar-surface calculations of Ref. 44, for ordinary jellium {J) and stabilized jellium
(SJ): (r, in bohr; cr and y/2r, in millihartree/bohr ). Results in parentheses are from fits to the results
of self-consistent void calculations (Ref. 28).

y /2r,
Metal

H
Al

Zn
Pb
Mg
Li
Ca
Sr
Ba
Na

K
Rb
Cs

(1.58)
{2.07)

(2.30)
(2.30)
(2.65)
{3.24)
(3.27)
(3.57)
(3.71)
(3.93)

(4.86)
(5.20)
(5.62)

—3.320
—0.390

—0.067
—0.067

0.108
0,142
0.141
0.128
0.121
0.109

0.067
0.056
0.045

SJ

0.759
0.595

(0.594)
0.479
0.479
0.342
0.200
0.195
0.152
0.136
0.115

(0.115)
0.061
0.049
0.038

(0.039)

0.890
0.442

0.318
0.318
0.197
0.098
0.094
0.068
0.059
0.047

0.020
0.016
0.016

SJ

1.049
0.442

(0.395)
0.309
0.309
0.189
0.094
0.091
0.066
0.057
0.046

(0.045)
0.021
0.016
0.012
(0.013)

As in Eqs. (31)-(35), the arrow refers to stabilized jellium
(or ordinary jellium in equilibrium). Thus we make a
first-principles prediction of the constant term in the lep-
todermous expansion of the energy.

Two examples (Al and Na} of the Pade approximation
for ordinary jellium are displayed in Fig. 1, together with
self-consistent local-density results recalculated with the
Perdew-Wang electron-gas input. (In earlier work,
Manninen and Nieminen used the Gunnarsson-
Lundqvist input. ) At the density of Na, no difFerence
can be discerned. At the density of Al, the curves are
qualitatively similar but the minimum occurs at —16.3
meV/bohrz in the Pade and at —17.5 meV/bohr in the
self-consistent result.

Two examples (Al and Na) of the Pade approximation
for stabilized jellium are displayed in Fig. 2, together
with the self-consistent LDA results of Ref. 28. The
good agreement indicates the quality of the Pade repre-
sentation (30). We believe that these curves should also
describe nearly spherical voids in the simple or sp-bonded
metals. That the curves of Fig. 2 deviate only slightly

from straight lines confirms that (for the simple metals)
the domain of validity of the liquid drop model [with only
the first two terms of Eqs. (2) or (36)] extends down al-
most to the atomic scale of sizes, as proposed in Refs. 61
and 62.

From Table II, it can be seen that the values for the
curvature energy y obtained from planar-surface calcula-
tions with the fourth order gradient expansion for the
kinetic energy and from self-consistent void calcula-
tions difFer only slightly. If one uses in Eq. (33) the
latter value for Al, then o x changes for R =2 bohr from
0.457 to 0.467 millihartree/bohr . And the Pade results
for the monovacancies hardly change under such substi-
tutions, as shown in Table II.

In Table IV, we compare the Pade representation of
Eq. (30} against the results of the self-consistent calcula-
tions for monovacancies. Again, the agreement is rather
close. Moreover, the monovacancy formation energies
predicted for stabilized jellium are in rough agreement
with measured values ' for the simple metals; for the
alkalis, the agreement is excellent. [A recent detailed

TABLE III. Pade parameters of Eqs. (30)-(35) for stabilized jellium and (in parentheses) for ordi-
nary jellium.

Metal

Al

(r„z)

(2.07, 3) 0
(1.352)

0
( —0.015)

B,

0.743
(0.218)

B2

0.325
(0.310)

B3

0.123
( —0.004)

Mg (2.65, 2) 0
( —1.476)

0
( —0.451)

0.553
(0.348)

0.328
(0.344)

0.139
(0.105)

Na (3.93, 1) 0
( —0.042)

0
( —0.021)

0.400
(0.389)

0.286
(0.289)

0.146
(0.146)

Cs (5.62, 1) 0
(0.098)

0
(0.064)

0.316
(0.453)

0.224
(0.700)

0.144
(0.130)
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FIG. 1. Void surface energy 0 s (meV/bohr ) of ordinary jel-
lium vs the void radius R (bohr) in the Fade representation
(dashed line) of Eq. (30), compared to the results of self-
consistent calculations (solid line).

LDA calculation' for Al yields vacancy formation ener-
gies 0.83 and 0.73+0.10 eV, respectively without and
with lattice relaxation. And recent measurements yield
a value of 0.73+0.04 eV for the void formation enthalpy
(at 500-650 K), differing slightly from the usually accept-
ed value 0.68+0.03 eV. For Li, an ab initio pseudopoten-
tial study, including structural relaxation, yields a
monovacancy formation energy of 0.54 eV; for Na, the
value is 0.34 eV.]

Table V shows the term-by-term convergence of the ex-
tended liquid drop expansion of Eq. (36) for the monova-
cancy formation energies, again at the densities of A1,
Mg, Na, and Cs. This table also shows how accurately
the Pade approximation predicts the monovacancy for-

FIG. 2. Void surface energy era (meV/bohr ) of stabilized jel-
lium vs the inverse of the void radius R (in units of rG =z' r, )
in the Pade representation of Eq. (30) (dashed line), compared to
the results of self-consistent (SC) calculations (Ref. 28) (full line)
for Al (z =3, r, =2.07) and for Na (z =1, r, =3.93). (For plots
of cr& vs R, see Ref. 30.)

mation energies found in self-consistent calculations.
With a negative value of R, Eqs. (2), (36), and (30) de-

scribe the nonoscillatory partz ' s of the surface contribu-
tion to the energy of nearly spherical clusters (solid
spheres) of a simple metal. For the Wigner-Seitz radius
R =rc (describing a "cluster" consisting of only one
atom), the quantity 4mrco ", estimates the cohesive ener-

G

gy.
' Table VI shows the term-by-term convergence of

an extended liquid drop expansion like Eq. (36) for the
cohesive energies at the same densities as in Tables III
and V.

TABLE IV. Monovacancy formation energies 4~rGcr"„ofstabilized jellium in the Pade representa-
0

tion of Eq. (30), compared to the results of self-consistent (SC) calculations (Ref. 28) and to experimen-
tal values for real metals. rG =z' r, . (Energy is in electron volts. )

Metal

H
Al
Zn
Pb
Mg
Li
Ca
Sr
Ba
Na
K
Rb
Cs

(r„z)

(1.58, 1)
(2.07, 3)
(2.30, 2)
(2.30, 4)
(2.65, 2)
(3.24, 1)
(3.27, 2)
(3.57, 2)
(3.71, 2)
(3.93, 1)
(4.86, 1)
(5.20, 1)
(5.62, 1)

—2.35
—1.77
—0.72
—1.03
—0.12

0.16
0.37
0.48
0.52
0.30
0.34
0.34
0.32

Pade
SJ

0.24
1.06
0.77
1.39
0.76
0.37
0.69
0.66
0.64
0.33
0.28
0.27
0.24

SC
SJ

1.02
0.74
1.37
0.75
0.37
0.70
0.67
0.65
0.34
0.29
0.27
0.26

expt.

0.73+0.04'
0.54+0.03
0.58+0.04
0.58,0.81

0.48'

0.335b

0.34
0.27
0.28'

'Reference 5.
Reference 3.

'Reference 7.
Reference 2.

'Reference 4.
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TABLE V. Monovacancy formation energies of stabilized jellium in the extended liquid drop expan-

sion of Eq. (36) and in the Pade representation of Eq. (30). The values in parentheses result from self-

consistent void calculations (Ref. 28). Here R =ro is the void radius. (All energies are in electron

volts. )

Metal

Al
Mg
Na
Cs

o'.4n.R

1.81
1.30
0.61
0.41

o'4+R —y.2m.R

0.88
0.73
0.36
0.28

cr 4m.R —y 2mR+5

1.08
0.71
0.29
0.23

0 g .4n.R

1.06 {1.02)
0.76 (0.75)
0.33 (0.34)
0.24 (0.26)

Only for metallic hydrogen (not shown in Tables V and
VI} do we find poor convergence of the liquid drop ex-
pansions for the monovacancy formation and cohesive
energies.

V. GENERALIZED LIQUID DROP MODEL
FOR CURVED SIMPLE-METAL SURFACES.

APPLICATION TO EDGES AND STEPS

f(x)=
3
—1.1

1 —C, /x +C2 /x —C3 /x 3
(39)

So we have, for a 90' edge, (m /2)ro f (2r), and, for a 270'
edge, (n /2)ro f ( —2r). The sum of these edge formation
energies,

ro [f (2r) +f ( ——2r) ],
2

In Ref. 30, a generalized liquid drop model was sug-
gested for the energy of a stable simple-metal surface
curved on the atomic scale. The expression

o dA —1, (38)f 1

1 —C|% '+ C2% —Cpi'

where % ' is the local curvature and C„=B„r,", should
describe the additional total energy arising from the cur-
vature. Planar surface elements with R '=0 do not con-
tribute. The coefiicients C|, C2, and C3 can be obtained
from Eqs. (31)-(33), or alternatively from self-consistent
calculations for voids in stabilized jellium. 2s

In the following, we use this idea to estimate the edge
formation energy of a simple metal, omitting all atomistic
detail. Imagine two plane faces of stabilized jellium
meeting at an angle 8, the edge they form being rounded
with principal curvature radii r( ro) and De, i.e., with
curvature —,'r ' for 8&m and ,'r ' for —8—)m. From
(38}, we find that the energy per unit length needed to
bend the edge is (m 8)rof(2r), w—here

is the additional energy (per unit length) to cleave a bulk
of stabilized jellium into a 90' wedge or quarter space and
its 270' complementary counterpart or three-quarter
space. "Additional" means the following: arising from
the curvature at the rounded edges, in addition to the
usual cleavage energy of 2rr fdA. For r ~~, this addi-

tional energy vanishes naturally. For atomically rounded
edges of Al (r =re=2. 99) we find, for stabilized jellium
and using Tables II and III, 0.81 and —0.65
millihartree/bohr for the 90' and 270' edges, respectively.
The sum gives 0.16 millihartree/bohr.

Application of Eq. (38}to a monatomic step of height h

with maximally rounded edges of a planar surface of sta-
bilized jellium yields for the step-formation energy per
unit length

——1 ho+ ——cr[f(h)+f ( —h)] .7r m h

2 2 2

For a monatomic step on an Al(111) surface, with a step
height h =a/ 3 and a lattice constant o =7.52 bohr
(r, =2.04, re=2. 94), the two terms of Eq. (40} yield 1.5
and 0.2 millihartree/bohr, using o =0.61 and

y l2r, =0.47 (both in millihartree/bohr' ), br,3 =5. 10
bohr, and cr, = —13.67 bohr extrapolated from Tables
I and II. A detailed calculation by Schefiler, Neugebauer,
and Stumpf ' shows a step-formation energy of 1.7
millihartree/bohr, close to the value 1.8
millihartree/bohr from Eq. (40).

A cruder version o of these estimates, based upon Eq.
(2) instead of Eq. (38), follows from f (x)=y l(2ox ).
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TABLE VI. Cohesive energies of stabilized jellium in an extended liquid drop expansion like Eq.
(36) and in the Pade representation of Eq. (30). The values in parentheses result from self-consistent

cluster calculations within the spin-unpolarized LDA (Ref. 28) and the local spin density approxima-
tion (Ref. 38). Here R = ro is the cluster (sphere) radius. (All energies are in electron volts. )

Metal

Al
Mg
Na
Cs

o"4mR

1.81
1.30
0.61
0.41

cr.4nR +y.2mR

2.75
1.88
0.85
0.54

o'4~R +y-2mR +5
2.95
1.86
0.77
0.49

o' g4mR

3.02 (3.96, 3.79)
1.87 (1.16, 1.16)
0.82 (1.19, 0.92)
0.54 (0.74, 0.56)
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APPENDIX A: PROOF OF THE VOID THEOREM (8)

To derive the void theorem (S), we need to apply

3n =3n —R,
dn Qn BR)

to E and Ea, the ground-state energies of 8 and
8+8a. The combination in Eq. (Al) ensures neutrali-

ty, because N, =(4n /3)R 3n. With

Ri
5(R, —r)], (A2)3n n+(r)=3n[8(R, r)—

n

and (following from this)
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the Hellmann-Feynman theorem applied to Eq. (5) yields

3n =fd r 8(r)n8(R, r)—r —3n N,
dE
dn dn

3 n
-d'

dn

de
e (N& Na—)+3 n (R

& )N&,
n

(A4)

where n (r)and C(r) are the electron density and the elec-
tric field of the reference sphere (R& ), respectively, and

Na is the number of electrons that have spilled out into
1

the vacuum region r )R &.

With

r —R
=4m rT8(r R)8(R z

r—)—
r

(A6)

3n [n+(r)+n+ (r)]
n

R)=3n 8(r R)8(R—r) — —5(R r)—, (A5)2 3R2 2
2

and (following from this)

3n [8+(r)+8+(r)]d

dn

3n (R+(r) =4m n 8(R, r)r, —
n

(A3) application of the Hellmann-Feynman theorem to Eqs.
(5) and (6) yields

r' —R'
3n = r & rn r —R R2 —r

n r
3n —Nz —3 n e (Nz N„N„)+—3 —n„(Rz)N, .dF d de

dn dn dn

(A7)

(Ra (r) is the electric field of the enlarged sphere (R z }with the void at its center. Note

Nz= (Rz —R )n= R)n=N, .4m 3 3 4m'

3 3

'2
R2 R)

e Na+4nn f dr(r R)8&(r) f —dr r~8(r)—
n 3

R3
3E (Er —E)=4rrE I dr(r R)dr(ri+3 E—

dn R

2

Na and Na are the number of electrons that have spilled out into the regions r )Rz and r (R, respectively.
2

The difference of (A7) and (A4) can be written as

+3
dn

e (N„N„)+3 [na(—Rz}—n„{R,}]N, ,
dn

(AS)

where R3 is in the "bulk" between R and R, and in-
creases with increasing R &. In the limit R

&
—+ ao,

n (Raz), n(R, )~n(s =0),

R~f dr(r R3)Ca{r)—+(Rz —R }—f ds C(s),
R3 (zo

R) 0f dr r C(r)~R
& f ds @(s) .

Na -+4m(R)+2R)bR, )v, Na ~4mRfv,
Here n (s), v, and 8(s) refer to the half-space stabilized
jellium, and
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1 R
AR =— ~0

3 R 1

With relations of the type of Eq. (14), the last three terms
of Eq. (AS) vanish, and Eq. (8) is found after dividing by
the void surface area 4mR .

From Eq. (A4), the sphere theorem (11) is also easily
obtained.

APPENDIX B: PARTIALLY EMPTIED VOID

With

n~+(r)= xn8(—R r)+—n8(r —R, )8(R„r) —(Bl)

instead of Eq. (3), and R„=R
&
+xR, we consider an in-

termediate step when forming the void by gradually emp-
tying the region 0&r &R: x =0 means no void, x =1
means full void, and intermediate situations with

I

0 (x & 1 we refer to as inclusions with lower density. In
this case,

~g R de= ——n
Bx 3 dn

3

n —f dr —@s(r)+f dr 4s(r)R & r oo

3 o R

e+n v„" .
n

(B2)

8z(r) is the electric field and vs is the number of elec-
trons in the partially emptied region 0&r &R per unit
area.

Small-R expansion of the rhs leads automatically to an
explicit dependence on x. Coupling-constant integration
of Eq. (B2}therefore yields the small-R expansion

'2
2

o" =x~—n 2 dq[8(qR}] 1+ +2 + R + ' ' ' (B3)

For x = 1, the result (B3}agrees with Eqs. (19) and (26).
(Cl)

APPENDIX C: PARTIALLY STABILIZED VOID

Here we consider the stabilization corrections to be
switched on between A, =O (ordinary jellium) and A, = 1

(full stabilized jellium}. In this case,

Small-R expansion of vs (A, } makes the A,-dependence ex-
plicit, and coupling-constant integration of Eq. (Cl)
yields

—2 '2
4 deos(&)=o„"( 0) +A, R+—f dq[8'(qR)] R +A, —n f dq[8(qR)] q ~ R +

dn 4m'(q)
(C2)

where
—2

os(0}=— R + nR'
3 dn 15

+ n f dq [8(qR—) ]z q R 4+

For A, = 1 (full stabilization), o s (1)=crs emerges.

(C3)

(3/5)(5N, ) /R. (c) Plunge this sphere of "negative back-
ground" into the jellium. The first-order energy change is

$5N„where P—is the average electrostatic potential en-

ergy of an electron inside the jellium. The second-order
change is given by Eq. (22) with de /dn replaced by zero.

The total energy cost of steps (a), (b), and (c) is thus

—en R +cr 4mR
4m

R

APPENDIX D: PHYSICAL DERIVATION
OF THE SMALL-R EXPANSION
FOR THE ENERGY OF A VOID

IN ORDINARY JELLIUM

2

=(P y, )n R +—— n R +PR +
3 S 3

(D 1)

We imagine forming the spherical void by the follow-
ing steps: (a) Change the electron number in the system
by 5N, = —n4mR /3. The energy cost is p5N„where p
is the chemical potential. (b) Prepare a sphere of "nega-
tive background" with density —n, radius R, and charge
5N, . The energy cost is the electrostatic self-energy

p=P+ (ne) .d

c$n
(D2)

From this equation, we find oz in the form of Eq. (1).
The coefBcient a of the leading term is simplified by the
relationship
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