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We present the microscopic derivation of a quasiparticle pseudo-Hamiltonian for an infinitesimally
polarized electron liquid. The Hamiltonian is expressed in terms of suitably defined quasiparticle opera-
tors. Our approach is based on a canonical transformation which allows one to replace the bare
Coulombic coupling between the interacting electrons with an effective interaction between quasiparti-
cles in which collective charge and spin fluctuations are explicitly accounted for. The relevant matrix
elements of the charge and spin-density operators enter our theory via linear-response functions: the
charge response, the longitudinal and transverse spin responses, and the mixed charge-spin response.
These susceptibilities are in turn expressed in terms of the appropriate many-body local fields. As a
consequence our method can be seen as an attempt to satisfactorily include in a self-consistent manner
the effects of the vertex corrections associated with charge and spin-fluctuations of the electron liquid.
As a result useful expressions for the quasiparticle energy and the effective interaction between two
quasiparticles are determined. These can, in turn, be employed in a microscopic determination of the
parameters of the Landau theory of the Fermi liquid. The generalization of our results to a multicom-
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ponent system is also discussed.

I. INTRODUCTION

Understanding the many-body aspects of an electron
gas (EG) has been a subject of steady interest for the past
few decades.!” The EG, unlike a system of classical
particles, behaves like a gas at high densities and like a
solid at low densities.* In both these extreme limits, the
ground-state energy of the EG has been evaluated exact-
ly. In the high density limit, the ground-state energy was
obtained as a series in terms of r,, the average electronic
separation in units of the Bohr radius, in three dimen-
sions (3D) by Gell-Mann and Brueckner® and in two di-
mensions (2D) by Rajagopal and Kimball® and by Isihara
and Toyoda.” Wigner showed that at sufficiently small
densities the electrons localize to form a crystal lattice
and hypothesized that in 3D a bcc structure is the most
stable one.* Later on it was verified that, among the sim-
ple lattices, the bcc structure has the lowest energy and
the ground-state energy for the bcc lattice was obtained
as a power series in terms of 7, !/2® In 2D, Bonsall and
Maradudin® calculated the ground state energy for arbi-
trary electron lattices, and showed that the triangular
one, as expected, has the lowest energy.

In the intermediate density regime, which is relevant in
three dimensions for simple metals, and in two dimen-
sions for systems like the electrons in an inversion layer
in most density regimes, the usual perturbative tech-
niques are not effective owing to the lack of an expansion
parameter. Hence, one has to take recourse to approxi-
mate methods which are not completely rigorous but are
physically justifiable. A review of a number of these tech-
niques can be found in Ref. 1. Quite useful in this respect
are the numerical techniques based on the quantum
Monte Carlo methods.'®~ 12

Among the various approximate methods designed to
deal with the intermediate density regime of particular
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interest for its physical appeal and elegance is Landau’s'
original phenomenological theory of the Fermi liquids
which treats accurately low-lying excitations. Landau
called these excitations quasiparticles and postulated a
one-to-one correspondence between them and the excited
states of a noninteracting Fermi liquid. He wrote down
the excitation energy of the system in terms of the energy
of the quasiparticles and their effective interaction. The
quasiparticle interaction function can be used in turn to
obtain various physical properties of the system and can
also be parametrized in terms of experimentally obtain-
able data. Within the framework of perturbative Green’s
function techniques it was shown by Luttinger and
Nozieres'* that the Landau theory is valid in the limit of
zero temperature, long wavelength, and zero frequency.

For an EG long-range screening of the Coulombic in-
teraction is an important factor. The simplest approxi-
mation that takes this into account is the random phase
approximation (RPA). In this approximation the
screened charge response of the EG is assumed to be that
of the noninteracting system.!”> Using a many-body local
field, commonly named after him, Hubbard!® improved
upon this approximation of the screened charge suscepti-
bility by including, in an approximate fashion, some ex-
change corrections.

More recently, Hubbard approach was generalized in
such a way as to include the effects of vertex corrections
due to both charge and spin fluctuations in an unpolar-
ized EG."""2! In these papers, using formally different
approaches, expressions for the quasiparticle self-energy
and effective interaction were obtained. As it was point-
ed out in Ref. 20, these results are basically equivalent.

This body of work showed that the quasiparticle self-
energy and effective interaction can be expressed in terms
of suitable generalized Hubbard many-body local fields
and the charge and spin susceptibilities of the system,
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which, in turn, can be also expressed in terms of the same
quantities. As for the case of an infinitesimally polarized
EG, work on the subject was carried out by Ng and
Singwi by means of a diagrammatic approach.?! This ap-
proach to the many-body theory of the EG has already
found it applications.?>?

In this paper, we extend the results obtained previously
for the unpolarized system by the present authors?® and
derive a quasiparticle pseudo-Hamiltonian for an
infinitesimally polarized liquid in terms of the response
functions and many-body local fields of the system. One
of the motivating factors for the present work is to arrive
at useful expressions that can then be employed within a
Landau theory of the Fermi liquid to evaluate various
physical quantities of interest.?

The basic idea leading to the definition of a pseudo-
quasiparticle-Hamiltonian  was  previously  devel-
oped by Hamann and Overhauser for the case of an un-
polarized system.?* These authors limited their analysis
to the simple case of the RPA. Our treatment, on the
other hand, is much more general, and is designed to in-
corporate the effects of vertex corrections associated with
charge and spin-density fluctuations to account for ex-
change and correlation effects in the infinitesimally polar-
ized electron liquid.

We begin by viewing the electron liquid as a system
comprised of a few interacting “test” electrons and a
screening dielectric medium characterized only by its col-
lective charge and spin density excitations. The test elec-
trons and the medium interact via effective potentials
which we express in terms of (a priori unknown) ap-
propriate local field factors G so as to account for their
deviations (due to exchange and correlation effects
beyond RPA) from the bare Coulomb potential. By using
a canonical transformation this interaction terms are
then eliminated to first order, thereby generating an
effective coupling between the test electrons. Upon
averaging over the coordinates of the screening medium
we then obtain the sought renormalization of the test
electrons states. An important step in this procedure is
represented by the identification of the various a priori
unknown matrix elements in terms of appropriate
response functions of the medium: the charge, the longi-
tudinal and the transverse spin, and the mixed charge-
spin response susceptibilities. These response functions
are in turn expressed via the corresponding generalized
Hubbard many-body local fields. Finally we show that in
order to achieve a physically self-consistent description of
the situation the factors G do in fact coincide with the
Hubbard many-body local fields appearing in the
response functions of the medium.

With this purpose in mind it is important to be able to
generalize our treatment of the many-body effects in the
electron liquid to the case of a multicomponent system.
This is in fact necessary for the case of the electronic sys-
tem occurring in a silicon inversion layer. There the mul-
ticomponent nature of the electronic band structure leads
to further interesting and important modifications.

Our paper is structured as follows. In Sec. II, we intro-
duce the total Hamiltonian which we use to model the
EG. In Sec. IIl the bulk of the renormalization pro-
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cedure is presented and a quasiparticle pseudo-
Hamiltonian is arrived at. Next, in Sec. IV we express
our results in terms of the quasiparticle energy and the
quasiparticle effective interaction. Section V contains a
discussion of our results and their implications. The con-
nection of our theory to previous work is also provided
there. The paper contains two Appendices. In Appendix
A we derive useful expressions for the various response
functions that enter our quasiparticle pseudo-
Hamiltonian for the case of a multi-component system.
Finally, in Appendix B an exact expression for the mixed
charge-spin response function is obtained.

II. TOTAL HAMILTONIAN

To describe the excitations of an electron liquid we em-
ploy the picture based on the concept of quasiparticle and
similar to Landau’s phenomenological theory of the nor-
mal Fermi liquid. We start by selecting a few electrons
from the EG and call them test electrons. The remaining
EG is treated as a screening dielectric medium. As the
test electrons move through the dielectric medium they
produce fluctuations in the density of spin up and spin
down electrons. These fluctuations provide virtual cloth-
ing to the test electrons and also screen the interaction
between them. Thus, the dielectric mimics the true pro-
cesses in an average way. It is important to realize that
in reality the test electrons and the electrons comprising
the dielectric are physically the same. This must be taken
into account when exchange effects are considered.

The goal is to derive a Hamiltonian containing only the
degrees of freedom of the clothed test electrons or quasi-
particles. To this end wé proceed as follows. We write
the total Hamiltonian of the system as

H=H{'+H{"+H, , (1)

where HY is the Hamiltonian of the test electrons and is
given by

— +
Hé)p) _2 Ggap,aap,cr

p.o
1 + +
+3 X v(@)ay_q .45 +q,09,0%,0 > (2)
P.p:
q,0,0'

where g70, a; o (@ o) creates (destroys) a quasiparticle
with momentum p and spin index o, (0 ==*1), v(q) is the
Fourier transform of the bare Coulomb potential, with eg
being the bare (band) energy of the test electron. In Eq.
(1) H{™ is the Hamiltonian of the dielectric medium and
is described by specifying its eigenstates |n ) and its ei-
genvalues w,. Furthermore, H, is the part of the total
Hamiltonian that takes into account the test electron-
medium coupling and is given as follows:

H =73 v(q)[1_64-(q’eg+q—6g)]P—qa;+q,aap,a
p:q,@
-3 v(q)(7’1(q,6§+q—e§)a§ﬂ5”‘_qa;’+q,aap,ﬁ ,

p’ q'
a,B,p

(3)
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where ¢70, a,f==1; u=x,y,z; and ohg is a Pauli ma-
trix. Furthermore, p, and S% are the operators associated
with charge- and spin-density fluctuations, respectively.
Since at this stage the nature and strength of the poten-
tials appearing in H, is unknown we have introduced the
quantities G, and G* in order to account for exchange
and correlation effects. The G’s are taken to be functions
of the change in momentum and the change in energy of
the test electron. In the above equation it has been as-
sumed that G, and G* have reflection symmetry with
respect to the plane perpendicular to the axis of polariza-
tion, namely the z axis. In general, for a polarized EG in
its ground state one expects that G* =G> =GL
#G~ =G _. Later on we will identify these G, and GT
factors in terms of the true many-body local fields of the
EG as a whole (see Sec. III). It is of interest to note that
in real space the effective potential felt by a test electron
of momentum p and spin o as obtained from Eq. (3), can
be expressed as (see Appendix A and Ref. 18 for a similar
result)

(g, 0)=v(g){[An,(q,0)+An (q,0)]
X[1—G ,(q,€5.q—¢€p)]
—o[An(g,0)—An(q,0)]
XG(q,€54q—€p)} > 4)

where z is the quantization axis for the spin o and An,
represents the density fluctuations of electrons with spin
projection o.

III. RENORMALIZATION PROCEDURE

To obtain the quasiparticle Hamiltonian of an
infinitesimally polarized system we adopt the following
renormalization procedure. We first perform a canonical
transformation on the total Hamiltonian so as to elimi-
nate the term H, up to first order. This, in turn, pro-
duces an effective coupling between the test electrons
through their interaction with the charge and spin-
density fluctuations. This is similar to the procedure em-
ployed in deriving the Frohlich phonon mediated
electron-electron effective interaction.”” The transformed
Hamiltonian is given by H’'=e ~THe”, where the opera-
tor T is determined from the requirement

H+ [Segay,a,,+H{™,T]=0. (5)
po

The above form involving only the Hamiltonians of the
noninteracting test electrons and the dielectric medium in
the commutator is chosen for the definition of T for the
following reasons. First, this form enables us to deter-
mine the matrix elements of T with respect to the eigen-
states of the dielectric medium. Second, as will be shown
below, this definition yields the renormalization term as a
combination of identifiable dynamic response functions of
the dielectric medium. Last, this form correctly yields
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the RPA result for the pseudo-Hamiltonian when the ex-
change and correlation vertex corrections are neglected.

A. Averaging out the medium

The second step involves explicitly removing the de-
grees of freedom of the dielectric medium. This is done
by averaging the transformed Hamiltonian H' over the
uniformly infinitesimally polarized state |0) of the medi-
um. We thus obtain the following quasiparticle pseudo-
Hamiltonian Hp:

Hyp=(0|H'|0)=H{ +1(0|[H},T]0) , (6)

which now contains only the test electron operators. In
the pseudo-Hamiltonian given above, constants and
higher order terms in v(g) have been omitted. Later on,
in Sec. IV we present arguments to show that the neglect
of higher-order terms is consistent with the requirement
that the correct pseudo-Hamiltonian must contain all the
correlation effects. The expectation value with respect to
the polarized state |0) on the right-hand side of Eq. (6) is
precisely the term that leads to a renormalization of the
bare interaction potential and also to the clothing of a
bare electron. This term can be evaluated from the ma-
trix elements (O|H,|n ) and {O0|T|n ). Then, from Eqgs.
(3) and (5) we obtain

(n|T|0)= 3 {{1—-G%[q,A5(q)]}{nlpg0)
P90
~ v(glay_g ., ,
—aG* [q,A%(q) S$2i0)} ——————
0G*[q,A7(q))(n|S3]0)} A%(Q)— a0

+
v(q)apﬁqr—oap’a

—GT*[q,AT7(q)](n|SZ|0)
P q A{"(q)—wno ’

(7)

where for the sake of brevity we have defined

Wpo= Oy — A » (®)
Ag(q)Eeg—e;_q , 9)
and
To = —
A% (q)=ep—€, 7 - (10)

In obtaining Eq. (7), we used the relationship
G (q,0)=G*(—q,—w) for which the justification
will become clear in Sec. III when the G’s are shown
to coincide with the many-body local fields. We now
define S*=S*+iS” and wuse the fact that the
quantities (0|S*|n) (n|S*|0), (0|S~|n) (n|ST|0),
(0|S?n) (n|S*l0), and (O|pln) (n|S*|0) vanish.
Furthermore, for ¢#0, we also utilize the fact
that (0|p,/0) and (OIS{I‘IO) vanish  whereas
(OIpqln ) (n 5%, |0) has in general a nonzero value for a
polarized system. Then from Egs. (3) and (7) we obtain
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(OlH,TI0)= 3 [{1=-G[q, —AF(—=q)]}{1-G% [q,a5(q)]}|{nlp,|0}]*
P q

+00'G_[q,—A%(—q)]G* [q,A35(q)]|{n|SZ]0)|?
—(0{1-G 4 [q, —AF(—@)]}G2 [q,A5(q)0lp_gln ) (n|SF|0)

+0'{1-G% [q,45(q)}G _[q, —AZ(—q)[{0|SZ 4 [n ) (nlpyl0})]

+

viglalt, . a - ,
1 2+ .0 TpmaotRe 4 1(1 661G [q, ~ AL (—q)]
Aa(q)_ (OF))
XGT*[q,Al"(q)][{n|SZI0} |
2+
W 9V ay g —olp.0dpgolpe (11)

A{o(Q)_ @0

Now, on recognizing that the operator T is anti-Hermitian we obtain from Eq. (11) the renormalization term
—(Ol H,,T]|0) of the quasiparticle pseudo-Hamiltonian H QP Then, in the renormalization term, upon identifying the

various matrix elements of the charge and spin fluctuations in terms of the various dynamic response functions, to be
defined below, we obtain the following compact expression:

<0|[H1, T“0> =22 Egﬂ(p)agaap,a + 2 { I‘70,0’[‘1’ —‘Ag"( —~q)’Ag(q)7Ag(q)]a:—q,aa;+q,aap‘,a‘ap,a
p,o

PP
q,0,0

T o’ o
+P! (a,— AL (—q),AT(q), Al (@))a ;g — 0t sq —0lp.08p0) s
(12)

where the terms ¥, . and VL,, are the longitudinal and transverse components of the renormalization part of the
effective interaction between two quasiparticles and are given by

V,0(2,60,8)=0(@*([1—G 4 (q,€)][1—G% (q,0)]Re,c(q,8)
+00'G_(q,€)G* (q,0)Re5(q,8)/(—ph)—{o[1—G ,(q,€)]G* (q,)
+0'[1-G*% (q,0))G_(q,€)}Rexcs(q,8)) , (13)
and
T (q,60,8)=2(1—00"W(1)*G T (q,e)GT*(q,0)Rex"°(q,8)/(—u}) , (14)

with up being the Bohr magneton. In Eq. (12) EZy is the Coulomb hole part?® of the renormalization term and is ob-
tained upon rearranging the creation and destruction operators in the usual order of a Hamiltonian expressed in the
second quantized form

*do | ll—f?+|2xc+|@-|2xs/( —pp)  20Re[(1-G1)G - Ixcs . 41GT 12T /(—ud)

ECH<p)——zu<q)2Pf

o _ _ T —
AP(qQ)—w AY(@)—w A (Q)~o
(15)
T
In the above equation it is understood that the factors |<nlpq|0>|2 [{nlp_ qIO)I2
G ; are functions of q and AJ(q), while G is a function ~ Xc(@V)=3 v— tin  vtoti ’
of q and AT”(q) Moreover, the response functions de- " no N no 4

pend on q and . (16)

The various response functions appearing in the
effective interaction terms and the Coulomb hole term
[see Egs. (13)—(15)] are Y. the charge response, xg the
spin response, ¥ 77 the transverse spin response, and Xcs
the mixed charge-spin response.?’” Exact expressions for
these response functions are as follows: an

Xs(q,v)= —l‘% 2

n

|<n|53|0)|2 _ I(nIS‘.qu)l2
Vv=a,otin v4+w,ot+in ’
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x"(qv)=

’

— {Hnlsglo)lz_|<n|s:g|o>|2»
4

v—w,tin n+w,otin
(18)
and
(Olp_gln){nlszlo)
V=, tTin

_ {olszln)(nlp_jl0)
vt+w,ptin

Xcs(@V)=2 l

n

(01SZ ¢ |n ){n|pgl0)
V=, Fin

(n]8%410){0lpgln )
B vt+w,tin ’

3|

(19)

Details of the derivation of g are presented in Appen-
dix B.

B. Self-consistent identification of the G's

The last step in the renormalization procedure involves
identification of the vertex correction factors G. With
this goal in mind, we will first express the response func-
tions appearing in the renormalization term [see Egs.
(12)-(15)] as functionals of the many-body local fields G
and GT. Then, based on the formal similarity of the po-
tentials given by Egs. (4) and (A6) we make the physically
reasonable ansatz that the vertex correction factors G
coincide identically with the corresponding many-body
local fields G that enter the expression for the response
functions.

For a single-component system the many-body local
fields G4 (Ref. 16) are commonly defined through the
various response functions of the unpolarized medium as
follows:

Xo
= , 20
X I 0 (@1—6Gx, 20
and
Xo
=ur——— o . 21
Xs BB 0 (906 _x, 21

The ), appearing in the above equations differs from the
Lindhard?® polarizability for a noninteracting EG in that
here it is defined in terms of exact occupation numbers if
the local fields G, are taken to be consistent with
Niklasson’s definition (see below).

In Appendix A, for an infinitesimally polarized mul-
ticomponent system, we have derived expressions for the
various response functions in terms of the many-body lo-
cal fields of a single component. Here, we merely present
the results for a single-component system

_ X$txs+Hav(@xdxiG
XC_ @ ’

(22)
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1 | Tod1 —
Xo X5 —4v(g)xoXo(1—G4)

Xs=—H3 D , (23)
1 |
Xo—Xo

= 24

XCS @ ’ ( )

where
D=1—v(g)xd+x$)(1—G4 —G_)
— 4 (g xd6_(1—-6G,) . 25)

The x§ appearing in the above equations is the response
of a free EG defined in terms of the exact occupation
numbers n as follows:

L5 Mp=aT"p (26)
Q2 o—A%Q+in

n
x6(q0)=

with Q being the volume of the system. For the trans-
verse spin response Y'°, we only present its defining
equation in terms of the local field G as follows:

X5’
1+20(g)GT x2o ’

To

xTo=—u} 27

where, similarly to xJ, the noninteracting transverse
response X too is defined in terms of the exact occupa-
tion numbers, i.e.,

1 n %, —n?J
Tr(qeo)=—3—=:1 P (28)
Xob@I=Tg & AT (q)+in

For an unpolarized system, the expressions for the
charge and spin responses, given by Egs. (22) and (23),
reduce to the defining equations of G as given by Egs.
(20) and (21). The mixed charge-spin response Y s, as €x-
pected, reduces to zero for the unpolarized case. As for
the transverse spin response, the isotropy of the unpolar-
ized system reduces it to Ly with the transverse XOT 7 and
GT coinciding with their unpolarized counterparts Xo
and G_.

Now, the G’s that enter the expressions for effective in-
teractions given in Egs. (13) and (14) correspond to the
exchange and correlation corrections to the Hartree in-
teraction between a test electron and the charge and spin
density fluctuations in the dielectric medium. Similarly,
the local fields G and GT too represent the corrections
to the Hartree interaction between an electron and the
density fluctuations in the EG. These facts are made ex-
plicit in the expressions for the potentials given by Egs.
(4) and (A6). Now, since the test electrons and the
screening dielectric medium are one and the same, we ex-
pect the G’s and the G’s to coincide. Hence, we postulate
that the G’s coincide identically with the corresponding
many-body local fields G’s for all values of g and @ for an
infinitesimally polarized system. Then the quasiparticle
pseudo-Hamiltonian is given as follows:
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Hé}P:E[ U+ECH(p)] pa PO

p,o

+1 3 (0(@+V, »[9,— 85 (=), A5(@),A5(Q)]}a; .00 4 g0y, 0'Gp,0
PP’
q,0,0’

+VI [0~ AR (@), A7°(Q), AT(Q)]a; g 85 gy, 0r,0) » 29)
where E¢y, V, ., and V?,: - are formally given by Eqgs. (13)-(15) with the G’s replaced by the corresponding local
fields G.

IV. QUASIPARTICLE PSEUDO-HAMILTONIAN

For the sake of clarity, we now express the quasiparticle Hamiltonian in terms of normal products so that the ex-
change contribution from the effective interaction appears explicitly in the quasiparticle self-energy. We have

HQP=2Eg:a;aa
p,o

+1 3 ((@+V, (6 —AF(—q), A7), AJ(Q)]}:0) g 00 4400y, 0'0p o

PP’y
q,0,0

+Veola —AF(—q),A07(Q),A%(Q)):a ) g oG 1q —oa (30)

—q,—0 p,o@p,ot) -

Here constant terms have been omitted. In the above equation, the longitudinal component Voo corresponds to the
case in which the spins of the quasiparticles are unchanged after interaction while the transverse component v . cor-

responds to the case where opposite spin quasiparticles interact and flip their spins. For the sake of completeness we
provide the expressions for these two as follows:

V,.0(q,60,8)=0v(qg ([1—G,(q,€)][1—-G% (q,0)]Rexc(q,8)+00'G_(q,6)G* (q,0)Rexs(q,8)/(—pu?)

—{o[1-G1(q,€)]1GL(q,0)+0'[1—G%(q,0)]G_(q,€)}Rexcs(q,8)) , (31)
and

V! ,(9,60,8)=2(1—00")w(q)*GT(q,6)GT* (q,0)Rex7?(q,8) /(—pu}) . (32)

The (fully renormalized) quasiparticle energy E p occurring in Eq. (30) contains both a dynamically screened exchange
part Egy and a Coulomb hole part E &y

EJ=€5+Eg(p)+EZ(p), (33)
where
Eg&(p)=—73 (n3_,{v(g)+V, ,[q,A5(q),A5(q),A5(qQ)]} +n, 2% VT _,[q,AI°(q),Al(q),Al(q)]) . (34)
q

In the above expression the first term corresponds to the familiar Hartree-Fock exchange energy while the remaining
terms represent exchange contribution from the dynamical screening produced by charge and spin-density fluctuations.
In Eq. (33) the Coulomb hole term EZ is given by Eq. (15) with the factors G replaced by their corresponding many-
body local fields G.

The above derivation of the quasiparticle Hamiltonian is readily extended to the case of an EG with v, degenerate
components. The problem is considerably simplified under the assumption that the density fluctuations are the same
for all the components. Also for the case of a multivalley system where the relevant valleys are separated by a large
momentum, an electron retains its valley after being scattered by other electrons. Then the electrons in different valleys
can be regarded as different components with the component index v representing an additional quantum number. An
additional complication is however represented by the fact that in the derivation of the quasiparticle Hamiltonian, the
many-body local fields G, must be replaced by G, i.e., those appropriate for a multicomponent system (see Appendix
A for further details). The final expression for the quasiparticle Hamiltonian is given as follows:
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Hep=3 Eg:a;mvap'ayv:+% S {(vi@+V, . (q—

p:o,v pp,9
o,0',v,0"

+vI, (q ——Ag:"'(

The quasiparticle energy and the effective interaction
terms are still formally the same as those appearing in
Eq. (15) and Egs. (31)-(34). As for the response functions
that enter these terms, expressions are derived in Appen-
dix A.

V. DISCUSSION AND CONCLUSIONS

We have derived a quasiparticle pseudo-Hamiltonian
for a multicomponent infinitesimally polarized Fermi
liquid. This quasiparticle Hamiltonian is constructed in
such a way as to properly account in an averaged way for
the usually unwieldy effects of correlations beyond the
popular RPA. This was achieved through the approxi-

I

3%(p,0)= —2 f‘”

—20 Re[(1—

where in order to recover our results one must set w=eg .
Here g°(k,w) is the bare one electron Green’s function
and is defined as follows:

ny 1—n;
g’(p,0)= —+ — . (37)
o—€e—in  w—etin

Furthermore, in Eq. (36) it is understood that the G are
functions of q and Ap(q), that the GT is a function of q
and AT"(q) and that the response functions depend on q
and e. The expressions for the effective interaction terms
in Egs. (31) and (32) and that for the self-energy in Eq.
(36) can be seen to be equivalent to the corresponding re-
sults of Ng and Singwi,?! who however did not attempt to
express their expressions in a transparent form (see also

2p,w)=

zf

{lo(@)+v(@*(11=G, 2c+]G_

v(q)+v(q)2[|1—G+|2 +31 6_13,/(—p5) lg(p—q0—¢) .
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AZ(—q),A5(Q),AZ(@)]:a ;g 5 08 g0y o

p,a,u'

)ATa(q) AT"(q)) p q,—0o,v :+q —a', v’ p o' p,a,v:} .
(35)

mate use of Hubbard generalized many-body local fields
associated with both charge and spin fluctuations. Our
results can at this point be used to perform explicit calcu-
lations of many-body effects in the EG. To this purpose
suitable approximations to the Hubbard local fields must
be used. Such approximate expressions involve in turn
the knowledge of the exact limits acquired by such quan-
tities.”’ 32 The alternative is to use for these functions
the output of numerical work.!? Lately a elegant self-
consistent method for the evaluation of useful expressions
of the Hubbard local fields has been devised.”> The re-
sults of such an analysis will be presented elsewhere.**

Our results of Egs. (15), (33), and (34) for the self-
energy can be recast in the following transparent and use-
ful form (see Ref. 33):

}(c/(_#%)

)G _cs)1go(p—q,0—€)+4v(g G T 2T /(— b g %(p—q,0—¢€)} ,

(36)

Ref. 33). There are also some differences mostly associat-
ed with the frequency dependence of the various quanti-
ties. The results of Ref. 21 can in fact be recovered if in
our Egs. (31), (32), and (36) in the many-body local fields
that are prefactors to the response functions the complex
conjugate forms are replaced by the corresponding com-
plex forms, and the frequencies of all the local fields are
replaced by the frequency appearing in the response func-
tions.

It is of interest to note that for the special case of an
unpolarized electron liquid, the charge and spin fluctua-
tions are not coupled and also, owing to the isotropy, the
effective potential due to the transverse spin fluctuations
is just twice that due to the longitudinal spin fluctuations.
Accordingly the quasiparticle self-energy of Eq. (36)
simplifies to the following form for the unpolarized case:

(38)

As for the quasnpartlcle Hamiltonian, it is still given by Eq. (30) with Ag' ?(q)=Ap(q) and the following simplifications
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for the screened exchange, Coulomb hole and the effective interaction terms:

Eg(p)=—3[n,—4(v(g)+v(g?{[1-G [q,A5(a)]I*Rexc[q,A5(q)]+3/G_[q,A3(q)]|*Rexs[q,A5(q)]/(—pd )],
q

(39)
» 1—=G 4 2xc+31G_ |2xs /(—ub)
EEH(P)=-§v(q)2Pf0 %Im + CAg(q)~wXS Up ’ o
Vo,0(60,8)=0(¢){[1—G,(q,6)][1-G*% (q,0)]Rex(q,8)+00'G_(q,€)G* (q,0)Rexs(q,8) /(—p})] ,
@1)
and
V3.0(0,60,8)=(1-00"1v(¢)’G_(q,€)G* (q,)Rex5(q,8)/(—pj) . (42)

For this case the quasiparticle self-energy and effective in-
teraction terms of Ref. 21 are obtained form Egs. (38),
(41), and (42) by making the same modifications as in the
polarized case. The above results for the effective in-
teraction terms of an unpolarized system agree with those
derived in Refs. 17, 19, and 20. In these papers however,
the question of the proper frequency dependence of the
various response functions and the corresponding local
fields was not tackled.

It must be mentioned that our quasiparticle energy
yields what in a diagrammatic analysis would amount to
the on-shell value of the self-energy. Furthermore, and in
connection with the above, it should be made clear that
the quasiparticle Hamiltonian derived here should only
be used for calculations carried out to first order. This
prescription is the consequence of the fact that in our
derivation the renormalization term is explicitly con-
structed so as to ignore higher-order terms in H’. On the
other hand, we believe that such a procedure is appropri-
ate in view of the fact that, as readily verified, our
pseudo-Hamiltonian leads by construction to the expect-
ed RPA results when the many-body local-field correc-
tions are neglected.*

For the case of a multi-component system our ap-
proach does not take into account the effects due to the
difference in the density fluctuations between com-
ponents. Future work that includes these effects is in
progress.

¢T =¢ext+v(q ) [An 1 +An 1 ]_ [ GxT,{ntra + GcT,’irTltra + Gcr,’irater

(v,—1)]
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APPENDIX A

In this appendix, using arguments based on linear
response theory, we will derive the response functions for
an infinitesimally polarized EG with v, degenerate com-
ponents. We will refer here to the various components as
valleys (as in band valleys). We will assume that the val-
leys are separated by large vectors in momentum space
and it is therefore reasonable to assume that electrons re-
tain their valley index after a scattering process.

When an external potential ¢,,(q,w) is applied to the
electronic system it sets up density fluctuations An; of
spin-up and An, of spin-down electrons. Assuming that
these density fluctuations are equal for all the valleys, the
total effective potential felt by a spin up electron can be
written by generalizing the procedure of Refs. 17 and 34
as follows:

2An 1 2An l
- [ GcT,'irftra + Gct,i’xfter ( Yy ™ 1 )] ’
Yy Yy

(AD

where for the sake of brevity the q and w dependence of the potentials, the density fluctuations, and the many-body lo-
cal fields has not been displayed. In the above equation the G’s are assumed to be the same for each valley, the sub-
scripts x and ¢ denote exchange and correlation effects, and the labels intra and inter refer to intravalley and intervalley
processes. Furthermore, among the terms containing the Coulombic potentials v(q), the sum of the first two terms in-
volving the density fluctuations represents the Hartree term, the next one is the exchange term, and the remaining ones
are correlation terms. The total effective potential felt by a spin down electron can be similarly written as

An, 2An,

(A2)

— Gcl,,ixT)tra + Gcl,,ir:ter ( Vo 1 >]

v v

¢l=¢ext+v (q) [AnT +Anl ]— [le,,ilttra +Gcl,’ir£tra +Gcl,,i|iter(vv - 1 )]
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Furthermore, for an unpolarized system, we note that for
symmetry reasons

=l
GxT,iTntra - Gx,intra ’ (A3)
and
1) = U
Gcf, iIm!a(inter) - Gc{intra(inter) . (A4)

We assume that the above relations remain approximate-
ly vahd for an infinitesimally polarized system. Also,
when the electrons after interacting with each other
scatter back to their original valleys, we can write
Gct,illterz(;'Tl =GTl

¢,inter c,intra *

(AS)

With these approximations the potential felt by an elec-
tron with spin o(==1) can be cast in the following com-
pact form:

¢a=¢ext+v(q)[AnT +Anl ](l_ l.)+. )

—ov(q)[An;—An]G" , (A6)
where the quantities G, are defined as follows:
Gy= Vi (G L+ Gl +(vytvw, — )Gl ha] . (A7)
Then on defining the single valley local fields G, as
G1 =G i+ GliltatCllitra » (A8)

we obtain the following useful form for the multivalley
local fields G, defined in Eq. (A7):
G%-)=G+—G (s +--G_ . (A9)
We will now derive the expression for the charge
response of an infinitesimally polarized system. In the
presence of a spin independent infinitesimal external po-
tential ¢.,,, the total effective potential ¢, felt by an elec-

tron of spin o is still given by Eq. (A6). The density fluc-
tuation An, is related to ¢, via the relation

An,=v, X309, » (A10)

where x§ is the response for a free EG as defined in Eq.
(26) in the text. Then using Egs. (A6) and (A10) we ob-
tain the expression for charge response from its definition

AnT+Anl

Xc=E—7—

¢ Pext
v X§+v,x¢ H4v(gvixdxdGo

_ YoXo TV, X0 qvyXoXo ’ (A11)
D,
where

D, =1—v(Q)v,xd+v,x (1—G% —G™)

—40(@)*2xix¢GL(1-GY, ) . (A12)

For an unpolarized system, for which y;= xé, the expres-
sion for Y simplifies to the following

7895

— VUXO
1—v(g1—G% W,Xo

where xo=x4+x¢-

To derive the spin response function, we consider the
case of an infinitesimal external magnetic field HZ,, set-
ting up density fluctuations An; and An,. Using Eq.
(A6) we get the relevant effective potential to be

$y=tpoHi +o(@)[Any +An, 101G )
—av(q)[AnT—Anl]G"_ .

(A14)

Then from the definition of spin response and from Egs.
(A10) and (A 14) it follows that

An ] —AnT
Hy
) VX3 HvoXs — 40 (@uixdxs(1-G%)
“HUB D .
v
For an unpolarized system this reduces to the familiar
form

Xs=Hp

(A15)

(A16)
The mixed charge-spin response function is obtained
by using Egs. (A6), (A10), and (A14)
An, —Anl _ AnT +Anl _ ‘Vuxg—VuXé
St ppHin D,

Xcs=

(A17)

It should be noted that for an unpolarized system, as can
be expected from symmetry considerations, Y cs=0.

The transverse spin response Y% can be defined for a
multivalley system as follows:

XTU:__“Z Vuxga
B 1+20(q)G v xTo

(A18)

where x¥1°(q,®) is defined in Eq. (28) in the text. The
only unknown quantity in Eq. (A18) is the transverse
many-body local field G™ for which we propose the fol-
lowing ansatz:

1

Gl=
2v,

(G ihura + Glitira + G

¢,intra x,intra

+ Gcl, iim'a - 2Gcr, ilntra (A19)

Now, for an unpolarized system y7? simplifies to 1Xs

with xJ° and G reducing to their unpolarized forms y§
and G, respectively. However, it should be noted that
within the present approximation of GxT(I-),intra =G(5),intras
and the transverse field G coincides with the longitudi-
nal field GY..

APPENDIX B

We will consider here a system with arbitrary polariza-
tion and derive the expression for the mixed charge-spin
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response function Ys. Let the initial state of the system
be |0) and let the Hamiltonian H be characterized by
eigenstates |n ) having excitation energies w,,. Let the
ground state of the system be |G ). In order to obtain an
expression of Yog, we begin by considering the spin
response of the system due to an external spin symmetric
potential ¢(r,t). The Hamiltonian corresponding to the
perturbation is (with standard notation) given by

H,=[p#(q,0)e "*“'+c.c.le™ . (B1)

Then the Schrodinger equation can be written as
2 O) =(H+H0) (B2)

where |¢()) is an eigenstate of the total Hamiltonian
and can be projected onto the states |n ) as follows:

W)= a, (e “"|n) . (B3)

The boundary conditions are given by

J

(0[8Z4ln)(n |pq|0)¢(q,w)e(_i“’+”)' B
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1 if n=0

~ |0 otherwise. (B4)

a,(— o)
Substituting Eq. (B3) in Eq. (B2) and retaining only the
terms that are first order in ¢(q,w), we obtain after in-
tegration

(n |pq|0>¢(q’m)e(—iw+iw"0+n)t
a,(t)= ;
0—w,0tin
(nIp,qlo)¢(q,w)*e“m+m"°+mt
- : ) (BS)
otw,p—in
where n#0. Then on defining
(SZ () =(PD)ISZ (1)), (B6)

with S% . being the induced spin density fluctuation
operator and using Egs. (B3), (B5), and (B6), we obtain

<0|S’_q|n Yn |p_q|0>¢(q’w)*e(iw+1])t

(82, (1)=3

» O—w,tTin

N (n]82410)€0lp_gln)g(g@)*e" ™™  (n|SZ,|0){0lpgln)g(q,w)e' i * "

Ot w,,,—in

D~ W, iN

where use has been made of the fact that
(olszlo)=0. (B8)

In Eq. (B7) the second and third terms on the right
hand side vanish since |n ) cannot be coupled to |0) by
both Sg and p_, since the former has momentum gq
whereas the latter has momentum —q. Then we obtain
the following expression for the spin response:

(Sz_q(a))) _
é(q,»)

e $8Lq ()
¢(q,0)
(0|5%41n){nlp,l0)
0—w,tin
(n]8%,10)¢0lpgln)
o+, tin

iot

(B9)

Similarly, upon applying an external magnetic field
hZ,.(r,t), the charge response is given by

o+, tin ] ’ B7)

(0lp_gln ) {n|S%l0)
O0—w,ntin

_ {0lsgln){nlp_ql0)
Ot w,,tTin

(p_q(@))
#thxt(q’w)

3|

l . (B10)

Then on using the definition of ¥ g given in Eq. (A17) we
obtain the following relationship for the mixed charge-
spin response function:
(Olp_qln ) {n|sZl0)
v—w,, tin

XCS(q’V)zz

n

~ {0ISz[n ) nlp_gl0)
v+w,,Tin

(0[S%,In){nlp,l0)
V=, Tin

_ (n|SZ4|0)(0lpgln )
vt+o,otin )

-3

(B11)
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