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Nonlinear conductance at small driving voltages in quantum point contacts
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Conductance asymmetry of quantum point contacts at near-zero applied biases is reported. This non-

linearity in the current-voltage characteristics depends in sign and magnitude on the quantization condi-
tion of the point contact (i.e., the gate voltage). The variation in the conductance is of the order of tens
of ohms against a background of several kQ, and occurs in a very small bias region,

~ V~ &&(E„E„—~}/e around zero bias, where E„is the nth one-dimensional subband energy in the
quantum point contacts. The non-Ohmic and asymmetric behavior causes a rectified dc signal as the
response to an applied ac current. Second-harmonic-generation measurements also confirm the observa-
tion. The phenomenon is discussed in light of recent mechanisms for nonlinearities in point contacts due
to the influence of an electric field on a two-level scatterer or on an intermode interference between
mode-mixing points.

The observation of the conductance quantization in
constrictions, made from Ga, „Al„As/GaAs hetero-
structures with a high-mobility two-dimensional electron
gas (2DEG), has generated considerable interest. ' The
constriction is defined electrostatically by means of a me-
tallic split gate deposited on top of the heterostructure.
In such samples, called quantum point contacts (QPC),
the number of conducting one-dimensional subbands in
the constricted region can be gradually reduced by in-
creasing the negative voltage Vz applied to the metal
gate. The conductance 6 has been found to be quantized
as 6=i 2e /h, where i is the number of one-dimensional
(1D) subbands occupied. The basic behavior of the QPC
is well understood by a model of 1D channels of nonin-
teracting electrons based on the adiabatic Landauer ap-
proach for the quantum transport. However, the
influence of a scatterer in the constricted region is still in
its early stages.

In this paper we report the observation of nonlinear
and asymmetric conductance oscillations for small bias
voltages. A deviation from the linear conductance has
been reported earlier ' and attributed to the breakdown
of quantization due to a difference in the number of occu-
pied subbands for the two velocity directions. This
occurs when the applied voltage across the contact, e V,
becomes comparable with the subband spacing, which is
equal to 1-2 meV. However, the nonlinearities we ob-
serve are at bias voltages, which are two orders of magni-
tude smaller and related to deviation from the simplest
adiabatic picture of a quantum point contact, probably
due to scattering centers in the contact region. The
influence of a single scattering center on the properties of
a constriction in a 2DEG (Refs. 6—10) as well as metallic
point contacts ' ' are an issue of xnuch current interest.
Nonlinear properties of tiny metallic constrictions due to
a single scattering center have been considered theoreti-
cally, but so far evaded experimental confirmation.

Our quantum point contacts were made from
molecular-beam-epitaxy-grown GaAs/AIMGa7oAs het-

erostructures containing a 2DEG with an electron densi-
ty of 3.2X10' m and a mobility of 80 m V 's
The split gate was prepared by means of electron-beam
lithography and the split gates had a lithographic separa-
tion of about 0.2 }ttm and were 80 nm above the 2DEG.
The alloyed Au/Ge/Ni Ohmic contacts had contact
resistances which were determined to be less than 1

0 mm in a separate experiment. Measurements were per-
formed in a four-probe geometry at temperatures down
to 300 mK. The samples exhibited clear conductance
quantization up to i =20, when measured as a function of
the gate voltage V . The depletion of the 2DEG under-
neath the gate happened at V~

= Vd ———0.4 V and pinch
off occurred typically at V = V = —1 V. In this gate
voltage range the gate leakage currents were typically
below 100 pA.

A conventional small signal lock-in technique was em-
ployed for the conductance measurements. %e used a
constant ac current source, and the measured resistance
was converted into conductance. The measurements
were done with a slow dc current sweep through Id, =0
for fixed values of the gate voltage far from the pinchoff.
Small ac currents of 2—6 nA were used to obtain the
derivative of the V(I) versus dc current. Measurements
of the difFerential resistance with an accuracy of few
ohms were diScult because of intrinsic noise, which
behaved as a random telegraph signal. The amplitude of
this noise reached several hundred ohms and we used
1-3-sec time constants for the lock-in to suppress this
noisy signal in order to focus on the dc current-voltage
characteristics.

Two traces of resistance versus current are shown in
Fig. 1 at 0.3 K. Similar traces were measured up to tem-
peratures as high as 4.2 K. Several distinct values of the
random telegraph signal could occasionally be observed,
but they are not seen on this graph because of the long
time constant used. In order clearly to resolve the dc
nonlinearity, two or several resistance traces back and
forth in Id, were recorded. The two measurements
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FIG. 1. Different current bias. The differential resistance is
measured with lock-in technique with a small (6 nA) added ac
excitation current. The noise on the differential resistance is in-
trinsic and due to a random telegraph signal connected with
charging processes. The resistance is measured during two
sweeps of the dc current to improve the statistics of the mea-
surements. The thick curve corresponds to a smoothed mean
value of the two traces. The two sets of data ( A and B) are for
different split-gate voltages. The inset shows how the two split-
gate voltages are chosen, namely, at a maximum and a
minimum of the rectified signal. The nonlinearity in the resis-
tance explains the magnitude of the rectified signal (with the ap-
plied ac current I,=75 nA). This ac current corresponds to
e V, , =0.15 meV to be compared with k& T=0.025 meV.

shown in Fig. 1(A and B) are taken with the gate voltage
chosen at a peak and a valley of the rectified voltage to be
considered subsequently. The two gate voltages corre-
spond, respectively, to a plateau and in-between plateau
of the quantized conductance.

The rectified signal, i.e., the dc voltage response V„„
to a low-frequency oscillating current I sinet, was detect-
ed in a configuration where the voltage leads of the Hall
bars were connected to a high input impedance nano-
voltmeter with differential input terminals, a long time
constant, and a battery-driven power supply. A rectified
signal as a function of gate voltage is shown in the inset
of Fig. 1 with an applied current of I~,=75 nA. The 75
nA corresponds, with the actual sample resistance of
-2 kQ, to a voltage 0. 15 mV=6k~T. The measured
nonlinearity in conductance and the rectified signal was
found in all cases to be consistent, yet the rectified signal
was much easier to detect. The total resistance swing be-
tween positive and negative bias in Fig. 1 is 50 and 100 Q
for the two gate voltages. This compares favorably to the
measured rectified voltage in the inset. We discuss only
results for small dc and ac biases; V (& 1 mV and
I „Id,~ 110 nA, where the difference between electro-
chemical potentials at the two sides of the QPC was
much smaller than the 1D subband separation. However,
we should emphasize that the voltage response e V to the
applied dc and ac currents was typically larger or compa-
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FIG. 2. The rectified voltage vs gate voltage measured at
three different temperatures. The three curves are offset verti-

cally by 5 pV for clarity. Here the quantum point contact was

pinched

off

a Vg 1 35 V.

rable to the thermal energy k&T. However, the resis-
tance asymmetry shown in Fig. 1 could also be observed
at 4.2 K, where the dc voltage bias at which the asym-
metry occurred was considerably smaller than k&T/e.
At this temperature the asymmetry was approximately 20
Q. On increasing the temperature (in the range 0.3—4.2
K) the oscillations of V„„(Vg)and the nonlinearity de-

crease at the same pace as the smearing of the conduc-
tance quantization. The temperature dependence of the
rectified signal is shown in Fig. 2. We measured

V„„(Vs)for different values of the ac currents and found
an overall proportionality between the rectified signal and
the ac current amplitude except at small currents. This
indicates that R(I) changes over a current range less
than 50 nA. The difference between resistance R+ and
R for large currents on each side of the
nonlinear region is bR=R+ —R =mV, «, /I, where

V,«, =(I/2n) fo R(I sing)sinPdP. Our experiments

give AR 150 0 in agreement with direct observation.
A consequence of the resistance step is the observation

of a voltage signal generated at the second harmonics of
the applied frequency co. The second-harmonic voltage

Vz„for one of the samples is shown in Fig. 3. A step in

R, if alone, would cause the signal to be Vz =
3

V t It
is seen that V2 definitely possesses the same features as
V„„andis of the expected magnitude.

Since the conductance of the QPC is given by the
transmission probabilities T„via the Landauer formula
G=2e /hXT„, it is possible and useful to express the
nonlinearity in terms of changes in the confinement po-
tential. We have employed a model of parabolic
confinement' ' 4(x,y) =1/2m' y —1/2m' +Co
with transverse and longitudinal oscillator strengths co,
and m. In this model T„=[1+exp( n.E„)]', a—nd
e„=2/fico„[E+ fico.(n+ —,

'—
) —4O]. We have related the

resistance change to the minimum of the confinement po-
tential, 5$O, as bR =R (dG/dgo)5$O. dG/dgo can be
connected to dG/dV through known parameters, since
dG/dgo=(1/2EF)(dG/dV )(V —Vd) /(V —V ) for
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FIG. 3. The second harmonic voltage response V2„and the
rectified signal for a quantum point contact plotted vs the gate
voltage Vg. I,=55 nA, co/2m=170 Hz. A steplike change in
the contact resistance at zero current bias predicts
V2„=2V, , /3 in rough agreement at all gate voltages. For this
point contact Vq = —0.4 V and Vp 0 85 V.

the assumption that the width d0 of the construction,
defined by 4(O, do/2)=Ez, is proportional to V . Thus

5/& versus the gate voltage can be calculated from the
measured G( V ) and V„„(V ) curves. Whereas there is

no clear correspondence between positions of plateaus on
the G( Vs ) curve and the extrema on the V„„curve,this
is certainly the case for 5/0(V ) as seen in Fig. 4.
V„„~5/0(dG/dVs) and the oscillations of the rectified
voltage versus V are thus due to oscillations in 5$o as
well as (dG/dV ). For a nonideal QPC, dG/dV has
many extrema versus V giving rise to a complicated
dependence V„„(V ). The behavior of 5$c itself appears
much simpler. An example of its reconstruction is shown
in Fig. 4. As is seen, maxima of 5/0 are located at the
conductance plateaus. The temperature dependence of
(dG/dV ) dominates the smearing of V„„(Vg).

A known mechanism for generating a nonlinearity in a
QPC is due to the different population of the 1D sub-
bands caused by the difference in electrochemical poten-
tial, EIM=eV, on the two sides of the QPC. This non-
linearity is observed at a bias level orders of magnitude
higher than what we use. An additional nonlinearity in
this large bias regime is due to a scheme of electric mea-
surements, where the gate voltage is applied relative to
one of the probes and, hence, an additional gate voltage,
5V =0.5RI, is generated by the current I through the
QPC. In turn, the change of the gate voltage generates a
conductance change. The magnitude of this more trivial
effect can be easily calculated. It causes the rectified sig-
nal V„«=R(dG/dV )I . We observe this nonlinearity
at large bias voltages similar to those of Ref. 3, but not in
the small bias regimes we describe here.

Our results are most likely related to impurities in the
close vicinity of the QPC. It is well known that random
charging and decharging of two impurity states can pro-
duce switching in the quantum point contact conduc-
tance, the so-called random telegraph noise. The alter-
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FIG. 4. The phenomenologically calculated difference 5' in

potential energy of the point conract at a sma11 current bias, the
conductance of the quantum point contact G and the rectified
signal V„„,corresponding to I,=75 nA all plotted as a func-
tion of the gate voltage Vg. A different resistance hR of a quan-
tum point contact for positive and negative current biases can
be related to a difference in transmission through the point con-
tact. If phenomenologically this difference in transmission is as-
cribed to a different potential go+ —

Po =5' of the contact, we
can estimate that 5$o=hR/(R2dR/dPo), where dR/de is
calculated here using a parabolic confinement potential (Refs.
14 and 15). Whereas V„„(fromwhich hR is calculated) has a
complicated behavior as a function of Vg, 5' (top figure) is
much simpler with clear maxima at the conductance plateaus
G=2ie /h (i =3,4, . . . , 8). In the calculation we have used
Vp= —1.5 V; Vg= —0.4V.

nating occupation of such states near the constriction
may be modified by the small electric field in the point
contact as suggested by Kozub. ' Such a slight change in
occupational probability of the two states, which gen-
erates the random telegraph signal, will in turn lead to a
conductance change with bias as observed. If the two-
level states are placed near a QPC, they will be coupled to
the electron reservoirs with the one-dimensional density
of states, and the tunneling probability will refiect the
scattering against one or the other level of the one-
dimensional channels and thus oscillate with gate voltage
depending on which 1D state lies closest to the two-level
state. We have tried to find spectral changes in the ran-
dom telegraph signal and the noise for different bias situ-
ations, but have not been able to detect any systematic
changes. Another appealing explanation of our measure-
ments has recently been suggested by Zagoskin and
Shekhter. ' The basic idea here is that two impurity
scatterers on either side of the quantum point contact (or
one scatterer and one sharp end of the constriction) may
mix two 1D states. A small electric field across the QPC
will give rise to a different quantum-mechanical phase
shift along the two 1D states between the scattering
centers and lead to interference of the two states as in the
electrostatic Bohm-Aharonov effect. Varying the electric
field will change the transmission coe%cient through
these two channels and thus lead to the observed non-
linearity. The fact that the nonlinearity happens at a bias
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which is much smaller than the 1D subband separation is
consistent with experiment. The absolute size of the non-

linearity is more dificult to estimate from this theory
since it depends on the degree of mode mixing.
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