PHYSICAL REVIEW B

VOLUME 49, NUMBER 11

RAPID COMMUNICATIONS

15 MARCH 1994-1

Experimental determination of the dispersion of edge magnetoplasmons
confined in edge channels
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For a two-dimensional electron gas in the quantum Hall regime the time dependences of the
induced charge and the current through the sample are investigated. The fastest electrodynamical
process in the system is the propagation of a wave packet along the edge with the corresponding
charge being held by the edge channel structure. The width of the charged strip is determined and

the dispersion relation is obtained.

The electronic structure near the physical boundary of
a two-dimensional electron gas (2DEG) with a normal
magnetic field has been a topic of great interest in recent
years.!™® The depletion of the 2DEG near the boundary,
together with Landau quantization leads to the forma-
tion of so-called edge channels (EC)—the regions near
the edge, where a noticeable part of the current flows and
which are weakly coupled with each other. Recent solu-
tions of the electrostatic problem near the edge®* have
shown that the real edge potential is smooth within the
length scale of the magnetic length, and that the electron
structure near the edge can be described as alternating
compressible and incompressible strips along the edge.
Most dc transport experiments, discussed on the basis
of the EC picture,+? feel only the absence of the com-
plete equilibrium between different EC, and therefore it
is difficult to extract all the information about the edge
structure.

The excitation spectrum of the EC can contain rich
information about their structure. Up to now there is no
complete theoretical description of the edge excitations in
real systems. The most accurate electrodynamic treat-
ment of the 2DEG in a magnetic field has been done
by Volkov and Mikhailov® disregarding peculiarities of
the electron spectrum near the edge. For a variety of
2DEG systems they investigated in detail the common
edge magnetoplasmon (EMP) mode, where the charge
oscillates in phase across the edge region, and they found
that the velocity is proportional to the Hall conductiv-
ity o4y, and that it depends also on the width / of the
charged strip near the edge. The finite width originated
from the leakage of the charge from the edge into the
bulk with nonzero o.,. There were few attempts to com-
bine the EC picture with the electrodynamical consider-
ation. In Refs. 6 and 7 the EC were considered in a
single-particle model, where the charge can change only
in strips of the order of the magnetic length. Talyanskii et
al.® analyzed qualitatively the influence of the EC struc-
ture on the EMP in a phenomenological approach. From
the other side, Wen?® calculated neutral excitations of the
EC and showed that the Coulomb interaction drastically
modifies the spectrum.

Experimentally EMP was studied both in the
frequency”®1%713 and in the time domain!¢17 for a va-
riety of electrodynamic environments. Up to now only
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the common EMP modes have been observed. Without
additional screening the connection between the charge
and the potential in the wave is extremely nonlocal and
the velocity of EMP is only weakly affected by the dis-
tribution of the charge. As a consequence the velocity of
EMP was found to be roughly proportional to o,y with
small oscillations around integer filling factors'®1¢ due
to variations of the width [ with o,.. The screening of
the Coulomb interaction with the help of gates®11:12:15,17
or with the help of back-side metal electrodes!® reduces
the EMP velocity and increases its sensitivity to the
charge distribution in the wave. For such conditions the
EMP velocity has strong maxima at integer filling fac-
tors, where the width / has minima.*13:1%

In studying time-resolved transport in a 2DEG, we
have recently observed'” a new type of edge excitation.
The dynamics of the potential in the 2DEG on the short-
est time scale can be described as the propagation of a
wave packet of edge magnetoplasmons along the bound-
ary. The charge in the wave packet oscillates with a
common phase, but, contrary to all previous investiga-
tions, the mode, where all the charge is confined by the
EC structure and the charge in the bulk of 2DEG is not
involved in the vibration, has the fastest velocity. The
restriction of the charge distribution by the EC struc-
ture drastically modifies the dependence of the velocity
on filling factor. Some deviations from the macroscopic
description,® which are thought to be due to the EC, have
also been reported in Refs. 8 and 12.

Here, we combine time-resolved measurements of the
current through the sample with measurements of the
charge entering into the 2DEG. The measurements of
both quantities give us the possibility to estimate the
width of the charged strip for the fastest part of the wave
packet. The dispersion relation determined for this mode
does not contradict the classical theory® under the as-
sumption that in our case the charged width is fixed by
the EC structure, and it shows why the restricted mode
is the fastest in our system in distinction from previous
experiments.®7:11:12:16 The variation of the width, which
is thought to be of the order of the distance from the edge
to the location of the last incompressible strip, with fill-
ing factor supports the qualitative validity of the model®
for our samples.

Two samples prepared in the same standard Hall bar
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geometry have been used for the measurements. The ge-
ometry was analogous to the one used in Ref. 17 and is
shown in the inset of Fig. 1. The lengths of the gates G1,
G2, G3 on the top are 50, 740, and 50 um, respectively.
Mobility u, concentration n,, and the distance between
the 2DEG and the gates are 70 m?/V's, 1.9x10'5 m~2,
120 nm for the first and 50 m2/V's, 2.3x10%> m™2, 90 nm
for the second sample. The temperature was 1.3 K in a
standard cryostat with magnetic fields up to 14 T. A
sketch of the measurement scheme is shown in connec-
tion with the sample geometry in the inset of Fig. 1.
A long voltage pulse with a leading edge of 350 ps was
applied to contact 2 relative to ground with contact 3
grounded through the 50-Q input resistance of a broad-
band preamplifier. The output voltage of the pream-
plifier, being proportional to the current through the
sample, was measured by a sampling oscilloscope. Both
the preamplifier and the oscilloscope have 6-GHz band
width. A GaAs metal-semiconductor field-effect tran-
sistor was mounted near the sample, and its gate was
connected with gate G3 of the sample and through a
1-MQ resistance with gate voltage supply. This transis-
tor operated as a source follower in combination with
a room-temperature preamplifier. The output voltage
of the preamplifier is proportional to the change of the
charge on the transistor gate. To obtain the input capaci-
tance Ci, (1.4 pF) and the gain of this source follower an
independent calibration has been performed. The gain
of the follower was unaffected by the magnetic field. By
applying a negative voltage to gate G1, we suppressed
the current through the sample and determined the di-
rect crosstalk between input and output. This crosstalk
signal has been subtracted from the measurements for
the analysis. For all the measurement the wave packet
propagates along the shorter boundary between contacts
2 and 3.

Figure 1 shows examples of charge and current traces

for few noninteger filling factors. At the time t=0 the
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FIG. 1. Charge (solid line) and current (dashed) as a func-
tion of the time after a voltage pulse (14.2 mV for all traces)
has been applied to contact 2 of the geometry shown in the
inset for different noninteger filling factors (second sample).
The different traces are shifted for clarity by steps of 1 pA.
t=0 corresponds to the appearance of the voltage pulse on
contact 2. Inset: Geometry of the samples and sketch of the
measurements. G1,G2,G3 are top gates; 1-6, Ohmic con-
tacts.

voltage pulse reaches contact 2. This time position can be
determined from the residual capacitive coupling. After
a certain delay time, sharp rises appear both in the cur-
rent and charge traces. These fast processes characterize
the appearence of a part of the potential wave packet at
the drain (or below gate G3). The velocity of the wave
packet is approximately ten times smaller in the regions
under top gates due to screening of the Coulomb interac-
tion. The small area between the gate G3 and the drain
is not covered by a metallic gate, therefore the charge at
the gate G3 and the current at the drain appear within
our time resolution simultaneously. The corresponding
charge in this part of the wave packet is mainly confined
within the EC. The restriction is provided by the last
incompressible strip with an integer filling factor (v,=2
for bulk filling factor 2 < v < 3 and v,=4 for v=4.5).17-3
The rest of the wave packet runs slower in a strip with
an average width which is determined by the diffusion
of charge into the 2DEG plane®!5'7 and appears at the
drain later. Since this width is larger than the width
of the charged strip for the fastest process, the charge
rises more rapidly than the current after the first jump.
Additionally the charge appears under the gate due to
diffusion from the EC region, where the potential is al-
ready installed by the first part of the wave packet. The
variation of the relative part of the fast mode in the wave
packet is clearly seen in Fig. 1, where all traces are ob-
tained with the same value of the applied voltage. This
part reaches a maximum for the bulk filling factors just
above even integers (¥=2 in Fig. 1), and decreases with
increasing the deviation from the integer bulk filling fac-
tor. This dependence is due to the variation of the width
of the last incompressible strip, which holds the charge
in the EC region, with filling factor.> The amplitude of
the fast process also depends strongly nonlinearly on the
applied voltage and becomes nearly saturated at some
threshold value I;,.l” This nonlinearity reflects the de-
pendence of the scattering from the EC on the potential
difference between the 2DEG plane and the EC.

The dependence of the delay time on filling factor is
plotted in Fig. 2 for both samples. For filling factors
where the fast process is well resolved (2 < v < 3.6, 4 <
v < 5.5,and 6 < v < 7.2 for the first and 2 < v < 3.3,
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FIG. 2. Delay time in dependence on filling factor. Full
triangles, first sample; open squares, second sample.
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4 <v<5.3,and 6 < v < 7.2 for the second sample) the
behavior of the delay time is similar—it increases when
approaching even integer filling factors from above. This
increase connects with the expected dependence of the
width of the charged strip, which is of the order of the
width of the edge region up to the last incompressible
strip.® Below even integers v the amplitude of the fast
current falls under the noise level and the resolvable onset
of the signal is not connected with this fast mode (full
triangles for 3.6 < ¥ < 4 and 5.5 < v < 6 for the first
sample and open squares for 3.3 < v <4and53<v <6
for the second one). Below v=2 all the energy gaps are
small and there are no decoupled EC. Only near v=1 the
quite large spin-split gap opens, but the temperature of
1.3 K is not low enough to ensure that any part of the
charge reaches the drain without scattering into the bulk,
since the delay time changes with lowering temperature.

The dispersion relation for the edge magnetoplasmon
mode in a gated 2DEG was calculated in Ref. 5 with
constant 0., and 0.y throughout the sample:

v = (204,7/K)(2d/10)2, 1o > d. (1)

Here v is the velocity of the wave, & is the averaged di-
electric constant, ly is the characteristic length for the
wave potential perpendicular to the edge connected to
the cutoff length of the Coulomb interaction on short
distances. This cutoff length must be comparable with
the width of the charged strip. The potential consists
of two different parts, which correspond to nonscreened
or to perfectly screened (with the help of the two metal
plates below and above the 2DEG) geometries. For the
first part the charge spreads on the length [y, for the sec-
ond one—on the length v/dly;. Hence one should expect
from this classical approach a relation for the delay time

Ta = (KL/ogy) (I/d)?, (2)

where 0.5 < p < 1, K is a numerical coefficient [equal
to 0.73 in accordance with Eq. (1)], L is the length of
the gated region, and [ is the width of charged strip. Al-
though the charge is held near the edge due to quite dif-
ferent reasons for the approach by Ref. 5 (low o,, across
the whole sample) and for our experiment (low 0., in
the incompressible strip), we believe that the velocity
depends in a similar way on the Coulomb cutoff length
for weakly decaying excitations.

Simultaneous charge and current measurements allow
us to determine the width of the charged strip and to
obtain the dispersion relation for the fast process. We
assume that the charge (and potential) can be described
as being constant in the strip with width ! (inside EC
region) and then falls off rapidly. The exactness of this
assumption can be proved by calculation of the potential
distribution in the wave. Then the potential of the fast
part is Uy = Ih/v,e?, where I is the measured current
and v, is the filling factor of the last incompressible strip.
The corresponding carriers, reaching the gate G3, charge
a sequence of capacitors C, = Coplb (Cp is capacitance
per unit area, b is the length of the gate G3) and Ci,
up to the voltage Uy . Hence, from the measured ratio of
charge and current on the sharp rise, the value of ! can be

extracted. To compare with Eq. (2), we use not the full
Ozy, but v,e2/h, since electrons from the highest Landau
level do not contribute to the wave packet. Results of this
treatment are shown in Fig. 3 for both samples together
with least-square fittings. Fitting parameters are p =
0.74 £ 0.06 and K = 0.73 + 0.12 for the first sample
and p = 0.70 £ 0.05, K = 0.84 + 0.11 for the second
one. These parameters are well inside the limits of the
above mentioned theory,® although the distribution of
the charge is thought to be quite different from the one
calculated in Ref. 5.

The quite strong dependence of the velocity on the
value of [ is responsible for the fact that the mode re-
stricted by the EC runs faster than the common bulk and
EC mode. For the previous experiments in the weakly
screened geometry,'®16 the velocity depended mostly on
Oy, since the dependence on ! in the weakly screened ge-
ometry is logarithmic®” and the mode with the maximal
04y is the faster one. In the experiments,!"!315 where
screening can be considered as strong in the sense that
d < I (d here is characteristic distance up to the screening
metal surface), the restricted mode did not survive due
to its decay by scattering between the EC and the bulk
on large distances. For our condition the restricted EC
mode with a smaller o,,, but also with a smaller [, be-
came the fastest. The relatively small distance between
the source and the drain allows its observation, since it
decays by scattering between the EC and the bulk with
the distance.
~ In Fig. 4 we plot all our data for the width [, obtained
both from charge to current ratio and from the measured
delay times by using dispersion relation (2) with the fit-
ting parameters. We assume that this measured width is
of the order of the distance from the edge up to the begin-
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FIG. 3. Determination of the dispersion relation. The mea-
sured delay times are multiplied with half of the number of
filled edge channels to take into account the prefactor in the
dispersion relation (see text) and are plotted vs the width of
the charged strip, determined from the ratio between charge
and current in the wave. Full symbols, first sample: squares,
bulk filling factor region between v = 2 and v = 4, trian-
gles, 4 < v < 6. Open symbols, second sample: squares for
2 < v < 4, triangles for 4 < v < 6, and circles for 6 < v < 8.
Straight lines are least-square fits to the data (parameters are
in the text).
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FIG. 4. The width of the charged strip plotted vs bulk fill-
ing factor. Full symbols, first sample; open symbols, second
sample; circles, the width is determined from the ratio be-
tween charge and current in the wave; triangles, the width
is determined from the measured delay times by using the
dispersion relation. The lines show the position of the last
incompressible strip calculated using theory by Chklovskii et
al. for a depletion length of 135 nm (full lines) and of 370 nm
(dashed lines).

ning of the last incompressible strip. All the characteris-
tic features of this picture—increase of the width in ap-
proaching even integers from above, periodic dependence
on filling factor with an increasing mean value—are qual-
itatively in good agreement with the model of Chklovskii
et al.> Quantitative deviations are inevitable, since the
calculations of Ref. 3 were performed for a quite different
electrostatic environment. The depletion near the edge
in Ref. 3 has the form v(z)/vo = [(z — 8)/(z + 8)]*/?,
where z is the distance from the edge and ¢ is the char-

acteristic depletion length. The last incompressible strip
lies always on the soft (1 — §/z) tail of this depletion,
where quantitative results of Ref. 3 are hardly reliable.
Due to the softness of this depletion, the position of the
last strip is very sensitive even to small changes of the
electrostatic potential near the edge. Nevertheless, we
show the position of the last strip calculated from Ref. 3
for § = 135 nm and § = 370 nm. These values of §
are chosen to fit experimental points around vy=3, where
v, [V reaches minimum for our data and the rigid part of
the depletion potential is felt better. Theoretical depen-
dences coincide with experimental points in the middle of
each filling factor region (around v = 5 and v = 7 in addi-
tion to the fitted point at v = 3). The overall dependence
of the theoretical curves is found also in the experimen-
tal results. However, the theoretical curves are steeper
and the deviations are larger for the higher filling fac-
tor range. Although the characteristic depletion lengths
extracted from the theoretical curves are of reasonable
order in comparison with other experimental results, the
absolute width of EC region looks surprisingly large.!®

In conclusion, simultaneous time-resolved measure-
ments of charge and current in a 2DEG allowed us to
study the wave packet of EMP, which is restricted by the
EC structure. The width, which is on the order of the
distance between the last incompressible strip and the
edge, is determined and the dispersion relation is found.
An influence of the edge on the electron spectrum is felt
on surprisingly large distances (up to 3 pm).
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