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Transition from Sharvin to Drude resistance in high-mobility vrires
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The resistance of a wire is calculated from the ballistic up to the diffusive transport regime
through a semiclassical transmission approach. A formula is derived which describes the transition
from the Sharvin resistance to the Drude resistance when the mean free path becomes comparable
to the wire length. The exact expression differs less than 2.5'%%u0 from an interpolation formula which
simply adds the two resistances. Good agreement with a recent experiment by Tarucha et at. is
obtained.

In 1891 Maxwell~ computed the electrical resistance
of a narrow and short constriction (or point contact) in
a metal, in the diffusive transport regime in which the
width W of the constriction is large compared to the
mean free path E. In 1965 Sharvin~ calculated the resis-
tance in the opposite regime 8 )) W of balli8tit."trans-
port. Subsequently, Wexler studied the intermediate
regime E W, where the resistance crosses over &om
the Maxwell to the Sharvin result.

Interestingly, the transition between the ballistic and
the diffusive transport regime still has been scarcely in-
vestigated for a wire of length L ) W. Only recently,
Tarucha et al. published measurements on the resistance
of wires, of different lengths, defined in a high-mobility
two-dimensional electron gas. This motivated us to study
theoretically the resistance of wires &om the ballistic to
the diffusive regime. We assume elastic impurity scatter-
ing and specular boundary scattering, which is the rele-
vant condition for the experiment. We restrict our inves-
tigation to semiclassical transport, and evaluate the Lan-
dauer formula exactly in this limit. The main outcome
is that the resistance of a wire is the sum of the Sharvin
resistance and the diffusive Drude resistance multiplied
by a factor which we compute numerically, and find to
be of order unity. Our exact calculation shows that—
somewhat unexpectedly —the naive procedure of sum-
ming the Sharvin and Drude resistances is correct within
2.5% (3.5'%%uo for the three-dimensional case) over the range
from L &( E to I )) S. To illustrate the usefulness of
our theory, we apply it to the experiment of Tarucha et
al. and find good agreement with no adjustable param-
eters. In addition, we show in the Appendix that our ap-
proach based on the Landauer formula is equivalent with
the more conventional approach based on the Boltzmann
equation. Finally, we would like to mention two recent,
related papers. Nieuwenhuizen and Luck calculate the
conductance of a diffusive slab &om Milne's equation,
and Bauer et al. obtain results similar to ours by con-
catenation of scattering matrices.

We study transport of noninteracting electrons
through a two-dimensional wire, of width W and length
L (see inset of Fig. 1). The electrons are scattered spec-
ularly at the wire boundaries. The wire is made of mate-
rial with an ideal circular Fermi surface and a mean free
path E for elastic and isotropic impurity scattering. The

modeling of impurity scattering by one single parameter
implies that our results will be averages over the ensemble
of all possible impurity configurations. We assume low
temperatures, and thus neglect inelastic electron-phonon
and electron-electron scattering. Our interest is in the
semiclassical regime, where quantum-interference effects
may be neglected, but Fermi-Dirac statistics must be re-
tained. Beenakker and Van Houten have shown7 that the
semiclassical approximation of the Landauer formula is
able to give a good description of many transport phe-
nomena observed experimentally at temperatures on the
order of 1 K. For a hard-wall wire of width W the semi-
classical limit of the Landauer formula is

2e2 k W dy ~ dp
G = — cos rp T(0, y, y)
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FIG. 1. The conditional transmission probability T(x) as a
function of the position along the wire, for various E/L The.
inset shows schematically the wire and its coordinates.

The transmission probability T(0, y, &p) is the probabil-
ity that an electron which is positioned in lead 1 at
(x, y) = (0, y) with velocity v = v~(cos y, sin p) is trans-
mitted into lead 2 (see the inset of Fig. 1). Baranger
et al. s have confirmed that Eq. (1) follows directly from
the Landauer formula by using a Green function expres-
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sion for the transmission amplitudes and then taking the
semiclassical limit via a stationary-phase approximation.

Equation (1) is easily evaluated in two opposite
regimes. First, the ballistic regime 8 && I . Then
T(O, y, y) = (T) = 1 and hence Eq. (1) reduces to the
familiar two-dimensional Sharvin conductance

2e2 k~R'S—
h vr

(2)

Second, the difFusive regime E « L. Then (T) = m8/2L,
so that Eq. (lb) becomes the Drude conductance

2e2 ky/ 6'
D =

h 2 L (3)

The purpose of this paper is to derive a formula which
describes the transition from Gg to G~ when t Ls

We first note that, because boundary scattering is

specular, electrons starting with equal angle of inci-
dence, but different transverse coordinates, have the
same transmission probability: T(0, y, y) = T(0, y', y)
for all y, y', y. Furthermore, symmetry requires that
T(0, y, y) = T(0, y, —y). The average transmission prob-
ability (T) thus simplifies to

m/2

(T) = dy cosy T(0, y),
0

(4)

1
T(x) = — dy T(z, y) .

7l Q

An electron at position x with direction y can be trans-
mitted into lead 2 either after being scattered at z or by
continuing in the direction y. This leads to the integro-
differential equation

lcosy ' = T(x, y) —T(x) .BT(z, y)
Bx (6)

At x = 0 and x = L we have the boundary conditions

where the irrelevant y-coordinate has been dropped. By
integrating over all possible electron trajectories start-
ing with incoming angle y, T(0, y) can be determined.
We now introduce T(z, y) with z 6 [0,L] and y 6 [0, n']

as the probability that an electron at position z in the
wire with direction y reaches lead 2. By definition, a
mean free path E implies that an electron traversing an
infinitesimal distance Es = b.z/cosy has a scattering
probability of b,s/E. If an electron is scattered at posi-
tion z, it has a probability T(z) to reach lead 2. Since
the scattering is isotropic, this conditional transmission
probability is given by

T(z)+T(L —x) =1. (8b)

G,p' = GD'+ Gs (12)

which approximates the resistance of the wire by the sum
of the Sharvin and Drude resistances. It is remarkable
how well the interpolation formula Gyp compares with
the exact result G. In Fig. 2(a) the relative error (Gip-
G)/G is also given. It is at most 2.5% when E L and
goes to zero for the ballistic as well as the diffusive limit.

By analogy with Wexler's result for a point contact,
we write the exact solution in the form

2e ky S' 2L1+ AD
7r

The integrodifFerential equation (6) forms the basis of
our calculation of the crossover from the ballistic to the
diffusive regime. It is exact for isotropic impurity scat-
tering and specular boundary scattering and can easily
be solved numerically. In the Appendix an exact relation
between the transmission probability and the solution of
the Boltzmann transport equation is derived.

A closed expression for T(z) can be found by trans-
forming Eq. (6) into an integral equation and integrating
over P. This leads to

L

T(z) = dx' G(z, z') T(z') + To(x), (9)
0

n/2

G(z, z') =- —is —s'//t cos rp (10)
vr 0 Icos y

m/2

T ( ) d
—(L s)/r. cos&—p

0

Equation (9) is known as Milne's equation describing
scattering of light through a difFusive medium. io It is
interesting to note that this similarity between electron
and photon transport is due to the fact that in linear
response the conductance is independent of the screen-
ing properties of the electron gas, as can be found in the
Appendix. This justifies the single-particle transmission
approach.

An exact analytical solution of Eq. (9) is known for an
infinite system (L = oo).ii To obtain solutions for all pos-
sible ratios of E/L we have computed T(z) by discretiz-
ing the z-values and numerically integrating Eqs. (10)
and (11). Equation (9) then becomes a matrix equation
which is easily solved. Once T(z) is known, the trans-
mission probability T(x, y) can be found. Through Eq.
(4) the average (T) and hence the conductance from Eq.
(lb) are derived. Results for T(z) and G are plotted in
Figs. 1 and 2(a). Note that T(z) satisfies the sum rule
(8b). Figure 2(a) also shows the interpolation formula

T(0, y) =0
T(L, y) = 1

if y C [7r/2, vr],

if y c [O, n/2].

where the dimensionless parameter AD depends on the
ratio E/L as plotted in Fig. 2(b). Its limiting values are

T(z, y) + T(L —z, x —y) = 1, (8a)

Furthermore, from symmetry and from the fact that an
electron exits the wire either through lead 1 or through
lead 2, we deduce the sum rules

llm +2D = 1 ~

E/L mo
lim

E/I moo 8
(14)

The diffusive limit follows from the condition G ~ GD if
I/L ~ 0, with GD given by Eq. (3). The ballistic limit
is obtained by solving the integral equation (9) to first
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FIG. 3. Comparison between the experimental resistance
data of Tarucha et at. (Ref. 4) (dots) and the results of our
theory (curves). There are no adjustable parameters.
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order in L/f, , which can be done analytically.
The calculation for a three-dimensional wire goes along

the same lines. In the semiclassical regime, the Landauer
formula reads

2e2 k2S
(15)

where 9 is the cross-sectional area of the wire. (We as-
sume that the wire has a constant cross section along the
z axis. ) The Sharvin conductance Gs is given by Eq. (15)
with (T) = 1. From comparison with the Drude conduc-
tance it follows that in the diffusive regime (T) = 4I/3L.

As in the two-dimensional case, we assume specular
boundary scattering. Therefore, transverse coordinates
are irrelevant. The transmission probability T(z, y) with
z 6 [0, L] and y 6 [O, z] gives the probability that an elec-
tron at position x, and whose velocity is directed at an
angle y with respect to the x axis, reaches lead 2. Now,
Eqs. (6), (7), and (9) still apply, whereas the integrations
in Eqs. (4), (5), (10), and (11) are modified because of
the di8'erent dimensionality.

The results are similar to the two-dimensional case. A
simple interpolation formula which adds the Sharvin and
Drude resistances is within 3.5% different from the exact
G. We write the exact solution as

2e2 k~~S 3L
&+ &30 ~

h 4' 4e
(16)

In Fig. 2(b) psD is plotted. Its limiting values are

llm $3D=1)
Z/L —+0

lim AD —3
4

8/L —+oo

We conclude this paper by comparing our theoreti-

FIG. 2. (a) The conductance [normalized by the Sharvin
conductance (2)] plotted against the ratio 8/L. The solid line
is from the numerical solution of Eq. (9), the dotted line is Gip
according to the interpolation formula (12). The thin solid
line shows the relative error of the interpolation formula. It
remains below 2.5%%uo. (b) The dependence on 8/L of the factor
+2@ in Eq. (13) (solid line) and p3Q in Eq. (16) (dotted line).

cal result for a two-dimensional wire (13) with the ex-
periment by Tarucha et al. ,

4 in which the resistances of
wires with three diHerent widths are measured for several
lengths. The wires are de6ned in the two-dimensional
electron gas in a high-mobility (Al, Ga)As heterostruc-
ture using wet etching. Their widths are Wq ——1.5 pm,
W2 ——3.5 pm, and W3 ——7.5 pm. The lengths vary be-
tween L = 4.0p,m and L = 60@m. The electron den-
sity n = k&2/2z = 2.6 x 10ii cm 2 and the bulk mean
&ee path E = 67 pm. In Fig. 3 the measurements are
compared with the theoretical curves. We note that our
theory —in which simply the experimental parameters
without any fitting are used —provides quite a reason-
able agreement with the measurements. This agreement
indicates that reBection at the boundaries of the wet
etched channels is indeed predominantly specular. Our
results do not support the surmise of Ref. 4 that the mean
&ee path in the narrowest wire is substantially enhanced
above the bulk value due to lateral restriction (an effect
attributed to the presence of one-dimensional subbands
in the wire). It would be of interest to compare our the-
ory with measurements further into the diH'usive regime.

I am grateful to C. W. J. Beenakker, L. F. Feiner, H.
van Houten, and L. W. Molenkamp for valuable discus-
sions. This research was supported by the Dutch Science
Foundation NWO/FOM.

APPENDIX: BOLTZMANN APPROACH

We show that the semiclassical transmission approach
as described in the main text is equivalent with Boltz-
mann transport theory. The wire is connected via per-
fect leads to two electron reservoirs, with electrochemical
potentials pq

——E~ + eV and p,2
——E~. The electrons

inside the wire at the position r = (z, y) and with wave
vector k = k(cosy, siny) have the Boltzmann distribu-
tion function fi, (r). In the presence of an electric field

E(r) the stationary Boltzmann equation reads

E ~f~(r) ~f~(r) "dy' f~(r)
Mk Br o 2zv

where the right-hand side is the impurity-scattering term
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(with scattering time v). We assume translational in-
variance along the z-axis and retain only the relevant

z, y coordinates. Following Wexler, s we introduce a
function u by

The conductance can be expressed in terms of u,

2g' IF'
dp cos p u(z, p),6 ~ 0

(A6)

fI (r) = fo(e) + e
l ~

[4(z) —«(z, p)],
l'Bfp lt

( Be )
(A2)

Bxc z Ip

Bz
= u(z) —u(z, Ip),

&(z) = u(z V).
d(p

p 7l

Icos y (A3)

(A4)

The physical meaning of u is that E~ + eVu(z) is the
local electrochemical potential at z. The boundary con-
ditions on u(z, y) follow from the requirement that the
incoming electrons in the leads must have the same elec-
trochemical potential as the attached reservoirs:

u(0, p) = 1

u(L, p) =0
if (p C [0, z /2],
if(p C [z./2, z]. (A5)

where fe(e) = O(E~ —e) is the Fermi-Dirac distribution
function at energy e = h, k /2m and P(z) is the electro-
static potential. Substitution of Eq. (A2) into Eq. (Al)
yields in linear response and at zero temperature

which is independent of z because of Eq. (A3).
By comparing Eqs. (A3), (A5), and (A6) with Eqs. (6),

(7), and (4) we conclude that the semiclassical transmis-
sion approach is equivalent to the Boltzmann approach,
upon the identification

~(z, (p) = 1 —T(z, m —y) . (A7)

This is a simple but instructive example of the equiv-
alence between the Landauer formula and conventional
transport theory: previously this equivalence has been
derived for the full quantum-mechanical case, starting
from the Kubo formula. (Of course, neither the deriva-
tion in Ref. 12 nor the present one fully do justice to
the connection between the reservoirs and the leads. ~s)

Since the electrostatic potential P(z) does not appear in
Eq. (A3), we conclude that the conductance is indepen-
dent of the screening properties of the electron gas. This
is a generic feature of linear response.

' Also at Instituut-Lorentz, University of Leiden, 2300 RA
Leiden, The Netherlands.
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